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Rattleback dynamics and its reversal time of rotation
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A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction,
it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other
direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between
the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the
pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation
the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required
for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988)]. In this work, we reformulate the rattleback
dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and
rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1)
the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in
the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive
numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard
formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast
spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of
dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative
system.
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I. INTRODUCTION

Spinning motions of rigid bodies have been studied for cen-
turies and still are drawing interest in recent years, including
the motions of Euler’s disks [1], spinning eggs [2], and rolling
rings [3], to mention just a few. Also, macroscopic systems
which convert vibrations to rotations have been studied in
various context such as a circular granular ratchet [4] and
bouncing dumbbells, which show a cascade of bifurcations
[5]. Another interesting example of rigid body dynamics which
involves such oscillation-rotation coupling is a rattleback, also
called as a celt or wobble stone, which is a semielliptic spinning
toy [Fig. 1(a)]. It spins smoothly when spun in one direction;
however, when spun in the other direction, it soon starts
wobbling or rattling about its short axis and stops spinning,
then it starts to rotate in the opposite direction. One who has
studied classical mechanics must be amazed by this reversal
in spinning, because it apparently seems to violate the angular
momentum conservation, and the chirality emerges from a
seemingly symmetrical object.

There are three requirements for a rattleback to show this
reversal of rotation: (1) the two principal curvatures of the
lower surface should be different, (2) the two horizontal
principal moments of inertia should also be different, and
(3) the principal axes of inertia should be misaligned to
the principal directions of curvature. These characteristics
induce the coupling between the spinning motion and the two
oscillations: the pitching about the short horizontal axis and
the rolling about the long horizontal axis. The coupling is
asymmetric, i.e., the oscillations cause torque around the spin
axis and the signs of the torque are opposite to each other. This
also means that either the pitching or the rolling is excited
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depending on the direction of the spinning. We will see that
the spinning couples with the pitching much stronger than that
with the rolling; therefore, it takes much longer time for spin
reversal in one direction than in the other direction, and that
is why most rattlebacks reverse only for one way before they
stop by dissipation.

In the 1890s, a meteorologist, Walker, performed the first
quantitative analysis of the rattleback motion [6]. Under the
assumptions that the rattleback does not slip at the contact point
and that the rate of spinning speed changes much slower than
other time scales, he linearized the equations of motion and
showed that either the pitching or the rolling becomes unstable
depending on the direction of the spin. More detailed analyses
were performed by Bondi [7] and recently by Wakasugi [8].
Case and Jalal [9] derived the growth rate of instability at slow
spinning. Markeev [10], Pascal [11], and Blackowiak et al.
[12] obtained the equations of the spin motion by extracting
the slowly varying amplitudes of the fast oscillations of the
pitching and the rolling. Moffatt and Tokieda [13] derived
similar equations to those of Markeev [10] and Pascal [11],
and pointed out the analogy to the dynamo theory. Garcia and
Hubbard [14] obtained the expressions of the averaged torques
generated by the pure pitching and the rolling, and derived the
formula for spin reversal time.

As the first numerical study, Kane and Levinson [15]
simulated the energy-conserving equations and showed that
the rattleback changes its spinning direction indefinitely for
certain parameter values and initial conditions. They also
demonstrated the coupling between the oscillations and the
spinning by showing that it starts to rotate when it begins with
pure pitching or rolling, but the direction of the rotation is
different between pitching and rolling. Similar simulations
were performed by Lindberg and Longman independently
[16]. Nanda et al. simulated the spin resonance of the rattleback
on a vibrating base [17].
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FIG. 1. (a) A commercially available rattleback made of plastic.
(b) Notations of the rattleback. (c) A schematic illustration of the
shell-dumbbell model.

Energy-conserving dynamical systems usually conserve the
phase volume, but the present rattleback dynamics does not
explore the whole phase volume with a given energy because
of a nonholonomic constraint due to the no-slip condition.
Therefore, the Liouville theorem does not hold, and such
a system has been shown to behave much like dissipative
systems. Borisov and Mamaev in fact reported the existence of
“strange attractor” for certain parameter values in the present
system [18]. The no-slip rattleback system has been actively
studied in the context of chaotic dynamics during the last
decade [19,20].

Effects of dissipation at the contact point have been
investigated in several works. Magnus [21] and Karapetyan
[22] incorporated a viscous type of friction force proportional
to the velocity. Takano [23] determined the conditions under
which the reversal of rotation occurs with the viscous dissi-
pation. Garcia and Hubbard [14] simulated equations with
aerodynamic force, Coulomb friction in the spinning, and
dissipation due to slippage, then they compared the results
with a real rattleback. The dissipative rattleback models based
on the contact mechanics with Coulomb friction have been
developed by Zhuravlev and Klimov [24] and Kudra and
Awrejcewicz [25–27].

This paper is organized as follows. In the next section, we
reformulate the rattleback dynamics under the no-slip and no
dissipation condition in a physically transparent way. In the
small-spin and small-oscillation approximation, the dynamics
is reduced to a simplified three-variable dynamics. We then
focus on the time required for reversal, or what we call the
time for reversal, which is the most evident quantity that
characterizes rattlebacks, and obtain a concise expression for
the Garcia-Hubbard formula for the time for reversal [14]. In
Sec. III the results of the extensive numerical simulations are
presented for various model parameters and initial conditions
in order to examine the validity and the limitation of the theory.
Discussions and conclusion are given in Sec. IV and Sec. V,
respectively.

II. THEORY

A. Equations of motion

We consider a rattleback as a rigid body, whose configura-
tion can be represented by the position of the center of mass G
and the Euler angles; both of them are obtained by integrating
the velocity of the center of mass v and the angular velocity ω

around it [28].
We investigate the rattleback motion on a horizontal plane,

assuming that it is always in contact with the plane at a single
point C without slipping. We ignore dissipation, then all the
forces that act on the rattleback are the contact force F exerted
by the plane at C and the gravitational force −Mgu, where u
represents the unit vertical vector pointing upward [Fig. 1(b)].
Therefore, the equations of motion are given by

d(Mv)

dt
= F − Mgu, (1)

d(Îω)

dt
= r × F, (2)

where M and Î are the mass and the inertia tensor around G,
respectively, and r is the vector from G to the contact point C.

The contact force F is determined by the conditions of the
contact point; our assumptions are that (1) the rattleback is
always in contact at a point with the plane, and (2) there is no
slip at the contact point. The second constraint is represented
by the relation

v = r × ω. (3)

Before formulating the constraint (1), we specify the coordi-
nate system. We employ the body-fixed coordinate with the
origin being the center of mass G, and the axes being
the principal axes of inertia; the z axis is the one close to
the spinning axis pointing downward, and the x and y axes are
taken to be Ixx > Iyy (Fig. 2).

In this coordinate, the lower surface function of the
rattleback is assumed to be given by

f (x,y,z) = 0, (4)

where

f (x,y,z) ≡ z

a
− 1 + 1

2a2
(x, y)R̂(ξ )�̂R̂−1(ξ )

(
x

y

)
(5)

with

R̂(ξ ) ≡
(

cos ξ, − sin ξ

sin ξ, cos ξ

)
, �̂ ≡

(
θ, 0
0 φ

)
. (6)

Here a is the distance between G and the surface at x = y = 0,
and ξ is the skew angle by which the principal directions of
curvature are rotated from the x-y axes, which we choose as
the principal axes of inertia (Fig. 2). θ/a and φ/a are the
principal curvatures at the bottom, namely at (0,0,a)t .

Now, we can formulate the contact point condition (1); the
components of the contact point vector r should satisfy Eq. (4),
and the normal vector of the surface at C should be parallel to
the vertical vector u. Thus we have

u ‖ ∇f, (7)
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FIG. 2. A body-fixed coordinate viewed from below. The dashed
lines indicate the principal directions of curvature, rotated by ξ from
the principal axes of inertia (the x-y axes).

which gives the relation

r⊥
a

= 1

uz

R̂(ξ )�̂−1R̂−1(ξ )u⊥, (8)

where a⊥ represents the x and y components of a vector a in
the body-fixed coordinate.

Before we proceed, we introduce a dotted derivative of
a vector a defined as the time derivative of the vector
components in the body-fixed coordinate. This is related to
the time derivative by

da
dt

= ȧ + ω × a. (9)

Note that the vertical vector u does not depend on time, thus
we have

du
dt

= u̇ + ω × u = 0. (10)

These conditions, i.e., the no-slip condition (3), the conditions
of the contact point (4) and (8), and the vertical vector condition
(10), close the equations of motion (1) and (2).

Following Garcia and Hubbard [14], we describe the
rattleback dynamics by u and ω. The evolution of ω is obtained
as

Î ω̇ − M r × (r × ω̇)

= −ω × (Îω) + M r × [ṙ × ω + ω × (r × ω)]

+Mgr × u (11)

by eliminating the contact force F from the equations of
motion (1) and (2), and using the no-slip condition (3). The
state variables u and ω can be determined by Eqs. (10) and
(11) with the contact point conditions (4) and (8).

The rattleback is characterized by the inertial parameters
M , Ixx , Iyy , Izz, the geometrical parameters θ , φ, a, and the
skew angle ξ . For the stability of the rattleback, both of the

dimensionless curvatures θ and φ should be smaller than 1;
without loss of generality, we assume

0 < φ < θ < 1, (12)

then it is enough to consider

−π

2
< ξ < 0, (13)

for the range of the skew angle ξ . The positive ξ case can be
obtained by the reflection with respect to the x-z plane.

At this stage, we introduce the dimensionless inertial
parameters α, β, and γ for later use after Bondi [7] as

α ≡ Ixx

Ma2 + 1, β ≡ Iyy

Ma2 + 1, γ ≡ Izz

Ma2 , (14)

which are dimensionless inertial moments around the contact
point C. Note that

α > β > 1, (15)

because we have assumed Ixx > Iyy .

B. Small-amplitude approximation of oscillations under ωz = 0

We consider the oscillation modes in the case of no spinning
ωz = 0 in the small-amplitude approximation, namely, in the
linear approximation in |ωx |, |ωy | � √

g/a, which leads to
|x|, |y| � a, |ux |, |uy | � 1, and uz ≈ −1. In this regime, the
x and y components of Eq. (10) can be linearized as

u̇⊥ ≈ ε̂ ω⊥, ε̂ ≡
(

0, 1
−1, 0

)
= R̂(−π/2). (16)

By using Eq. (8) with uz ≈ −1, Eq. (11) can be linearized as

Ĵ ω̇⊥ ≈ g

a2
(r × u)⊥

= −g

a
ε̂ [−R̂(ξ )�̂−1R̂−1(ξ ) + 1]u⊥, (17)

with the inertial matrix

Ĵ ≡
(

α, 0
0, β

)
. (18)

From the linearized equations (16) and (17), we obtain

Ĵ ω̈⊥ = −g

a
(�̂ − 1)ω⊥, (19)

where

�̂ ≡ R̂(ξ + π/2)�̂−1R̂−1(ξ + π/2). (20)

At this point, it is convenient to introduce the bra-ket notation
for the row and column vector of ω⊥ as 〈ω⊥| and |ω⊥〉,
respectively. With this notation, Eq. (19) can be put in the
form of

| ¨̃ω⊥〉 = −Ĥ |ω̃⊥〉 , (21)

with

|ω̃⊥〉 ≡ Ĵ 1/2 |ω⊥〉 , Ĥ ≡ g

a
Ĵ−1/2(�̂ − 1)Ĵ−1/2, (22)

where Ĥ is symmetric. The eigenvalue equation

Ĥ |ω̃j 〉 = ω2
j |ω̃j 〉 (23)
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determines the two oscillation modes with j = p or r , whose
frequencies are given by

ω2
p,r = 1

2

[
(H11 + H22) ±

√
(H11 − H22)2 + 4H 2

12

]
(24)

with

ωp � ωr. (25)

Here Hij denotes the ij component of Ĥ . The orthogonal
condition for the eigenvectors |ω̃p〉 and |ω̃r〉 can be written
using ε̂ as

|ω̃p〉 = ε̂ |ω̃r〉 , |ω̃r〉 = −ε̂ |ω̃p〉 , (26)

〈ω̃r | = 〈ω̃p| ε̂, 〈ω̃p| = − 〈ω̃r | ε̂. (27)

In the case of zero skew angle, ξ = 0, we have

ω2
p =

(g

a

)1/φ − 1

α
≡ ω2

p0, (28)

ω2
r =

(g

a

)1/θ − 1

β
≡ ω2

r0, (29)

and the eigenvectors |ωp〉 and |ωr〉 are parallel to the
x and the y axes thus these modes correspond to the pitching
and the rolling oscillations, respectively. This correspondence
holds for |ξ | � 1 and ωp0 > ωr0 as for a typical rattleback
parameter, the case we will discuss mainly in the following
[29].

C. Garcia and Hubbard’s theory for the time for reversal

Based on our formalism, it is quite straightforward to derive
Garcia and Hubbard’s formula for the reversal time of rotation.

1. Asymmetric torque coefficients

Due to the skewness, the pitching and the rolling are coupled
with the spinning motion. We examine this coupling in the
case of ωz = 0 by estimating the averaged torques around the
vertical axis caused by the pitching and the rolling oscillations.
From Eqs. (1) and (2) and the no-slip condition Eq. (3), the
torque around u is given by

T ≡ u · (r × F) ≈ −Ma2[ω̇⊥ · ε̂(�̂ − 1)ε̂ u⊥ ], (30)

within the linear approximation in ω⊥, u⊥, and r⊥ discussed
in Sec. II B.

We define the asymmetric torque coefficients Kp and Kr

for each mode by

−Kp ≡ T p

Ep

, Kr ≡ T r

Er

, (31)

where T j (j = p or r) is the averaged torque over the
oscillation period generated by each mode, and Ej is the
corresponding averaged oscillation energy which can be
estimated within the linear approximation as

E ≈ Ma2
(
αω2

x + βω2
y

)
. (32)

The minus sign for the definition of Kp is inserted in order
that both Kp and Kr should be positive for typical rattleback

parameters as can be seen below. Note that the asymmetric
torque coefficients are dimensionless.

From Eqs. (30) and (32), −Kp is given by

− Kp = 〈ωp| ε̂(�̂ − 1)ε̂ε̂ |ωp〉
〈ωp|Ĵ |ωp〉

= − (a/g) 〈ω̃p| Ĵ−1/2ε̂Ĵ 1/2Ĥ |ω̃p〉
〈ω̃p|ω̃p〉 (33)

= −ω2
p

(a/g) 〈ω̃p| Ĵ−1/2ε̂Ĵ 1/2 |ω̃p〉
〈ω̃p|ω̃p〉 . (34)

In the same way, Kr is given by

Kr = − (a/g) 〈ω̃r |Ĵ−1/2ε̂Ĵ 1/2Ĥ |ω̃r〉
〈ω̃r |ω̃r〉 (35)

= ω2
r

(a/g) 〈ω̃p|(Ĵ−1/2ε̂Ĵ 1/2)†|ω̃p〉
〈ω̃p|ω̃p〉 . (36)

Equations (33)–(36) yield simple relations for Kp and Kr as

Kp

Kr

= ω2
p

ω2
r

(37)

and

Kp − Kr = (a/g)

〈ω̃p|ω̃p〉Tr[Ĵ−1/2ε̂Ĵ−1/2Ĥ ]

= −1

2
sin(2ξ )

(
1

β
− 1

α

)(
1

φ
− 1

θ

)
. (38)

Equations (37) and (38) are enough to determine

Kp = −1

2
sin(2ξ )

(
1

β
− 1

α

)(
1

φ
− 1

θ

)
ω2

p

ω2
p − ω2

r

, (39)

Kr = −1

2
sin(2ξ )

(
1

β
− 1

α

)(
1

φ
− 1

θ

)
ω2

r

ω2
p − ω2

r

. (40)

Note that Eqs. (39) and (40) are consistent with the three re-
quirements of rattlebacks: ξ 
= 0, α 
= β, and θ 
= φ. Equations
(39) and (40) are shown to be equivalent to the corresponding
expressions Eq. (42a,b) in Garcia and Hubbard [14] although
their expressions look quite involved. These results also show
that

KpKr > 0 and hence T pT r < 0, (41)

namely, the torques generated by the pitching and the rolling
always have opposite signs to each other.

2. Typical rattleback parameters

Typical rattleback parameters fall in the region that satisfies
the following two conditions: (1) the skew angle is small,

|ξ | � 1, (42)

and (2) the pitch frequency is higher than the roll frequency.
Under these conditions, the modes p and r of Eq. (23) corre-
spond to the pitching and the rolling oscillations respectively,
and

ω2
p ≈ ω2

p0, ω2
r ≈ ω2

r0 (43)
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in accord with the inequality (25) [29]. From Eqs. (31), (39),
and (40), the signs of the asymmetric torque coefficients and
the averaged torques for typical rattlebacks are given by

Kp > 0 and Kr > 0 (44)

and

T p < 0 and T r > 0, (45)

by noting ξ < 0, α > β, θ > φ.
The fact that ωp0 > ωr0 for a typical rattleback means

that the shape factor, 1/φ − 1 or 1/θ − 1, contributes much
more than the inertial factor, 1/α or 1/β, in Eqs. (28) and
(29) although these two factors compete, i.e., 1/φ − 1 >

1/θ − 1 and 1/α < 1/β. This is a typical situation because
the two curvatures of usual rattlebacks are markedly different,
i.e., φ � θ < 1 as can be seen in Fig. 1(c). Moreover, we
can show that the pitch frequency is always higher for
an ellipsoid with a uniform mass density whose surface is
given by x2/c2 + y2/b2 + z2/a2 = 1 (b2 > c2 > a2). This
also holds for a semiellipsoid for b2 > c2 > (5/8)a2, where
the coordinate system is the same as the ellipsoid.

3. Time for reversal

Now we study the time evolution of the spin n defined as
the vertical component of the angular velocity

n ≡ u · ω, (46)

assuming that the expressions for the asymmetric torque
coefficients, Kp and Kr , obtained above are valid even when
ωz 
= 0. We consider the quantities n, Ep, and Er , averaged
over the time scale much longer than the oscillation periods, yet
much shorter than the time scale for spin change. Then, these
averaged quantities should follow the following evolution
equations:

Ieff
dn(t)

dt
= −KpEp(t) + KrEr (t), (47)

dEp(t)

dt
= Kpn(t)Ep(t), (48)

dEr (t)

dt
= −Krn(t)Er (t). (49)

Here Ieff is the effective moment of inertia around u under the
existence of the oscillations and is assumed to be constant; it
should be close to Izz. As can be seen easily, the total energy
Etot defined by

Etot ≡ 1
2Ieffn(t)2 + Ep(t) + Er (t) (50)

is conserved. It can be seen that there is another invariant,

CI ≡ 1

Kp

ln Ep + 1

Kr

ln Er, (51)

which has been discussed in connection with a Casimir invari-
ant [13,30]. With these two conservatives, general solutions of
the three-variable system (47)–(49) should be periodic.

Let us consider the case where the spin is positive at t = 0
and the sum of the oscillation energies are small compared to
the spinning energy:

n(0) ≡ ni > 0, Ep(0) + Er (0) � 1
2Ieffn

2
i . (52)

For a typical rattleback, the pitching develops and the rolling
decays as long as n > 0 as can be seen from Eqs. (44), (48),
and (49). Thus the rolling is irrelevant and can be ignored,
i.e., Er (t) = 0, to estimate the time for reversal. Then we can
derive the equation

dn(t)

dt
= −Kp

2

[
n2

0 − n(t)2], (53)

where the constant n0 > 0 is defined by

1
2Ieffn

2
0 ≡ Etot. (54)

This can be easily solved as

n(t) = n0
(n0 + ni) exp(−n0Kpt) − (n0 − ni)

(n0 + ni) exp(−n0Kpt) + (n0 − ni)
, (55)

and we obtain the time for reversal trGH+ for the ni > 0 case
as

trGH+ = 1

n0Kp

ln

(
n0 + ni

n0 − ni

)
, (56)

by just setting n = 0 in Eq. (55).
Similarly, in the case of ni < 0, only the rolling develops

and the pitching is irrelevant, thus we obtain n(t) and the time
for reversal trGH− as

n(t) = −n0
(n0 + |ni |) exp(−n0Krt) − (n0 − |ni |)
(n0 + |ni |) exp(−n0Krt) + (n0 − |ni |) (57)

and

trGH− = 1

n0Kr

ln

(
n0 + |ni |
n0 − |ni |

)
. (58)

Equations (56) and (58) are Garcia-Hubbard formulas for the
times for reversal [14].

From the expressions of Kp and Kr given by Eqs. (39)
and (40), we immediately notice that (1) the time for reversal
is inversely proportional to the skew angle ξ in the small
skewness regime, and (2) the ratio of the time for reversal
trGH−/trGH+ is simply given by the squared ratio of the pitch
frequency to the roll frequency ω2

p/ω2
r , provided initial values

n0 and ni are the same except their signs.
For a typical rattleback, ω2

p � ω2
r , thus trGH+ � trGH−,

i.e., the time for reversal is much shorter in the case of ni > 0
than in the case of ni < 0. Thus we call the spin direction
of ni > 0 the unsteady direction [14], and that of ni < 0 the
steady direction.

In the small skewness regime, this ratio of the squared
frequencies is estimated as

ω2
p

ω2
r

≈ ω2
p0

ω2
r0

= β

α

1/φ − 1

1/θ − 1
. (59)

This becomes especially large as θ approaches 1 or as φ

approaches 0, namely, as the smaller radius of principal
curvature approaches a, or as the larger radius of principal
curvature becomes much larger than a. We remark that both of
the inertial parameters α and β are larger than 1 by definition
Eq. (14) and cannot be arbitrarily large for a typical rattleback.
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TABLE I. Two sets of parameters used in the simulations: GH used by Garcia and Hubbard [14] and SD for the present shell-dumbbell
model. For SD, the parameter values are chosen randomly from the ranges shown, and averages and/or distributions of simulation results are
presented.

γ fsd α, β θ φ −ξ (deg)

GH 12.28 — 13.04, 1.522 0.6429 0.0360 1.72
SD [5,15] [0.05,0.15] — [0.6,0.95] [0.01,0.1] (0,6]

Let us consider these two limiting cases: φ → 0 and θ → 1
with |ξ | � 1. In the case of φ → 0,

Kp → ∞, Kr → (−ξ )

(
1

β
− 1

α

)
α

β

(
1

θ
− 1

)
, (60)

thus the time for reversal trGH− remains constant while trGH+
approaches 0. In the case of θ → 1,

Kp → (−ξ )

(
1

β
− 1

α

)(
1

φ
− 1

)
, Kr → 0, (61)

and thus trGH+ remains constant while trGH− diverges to
infinity, i.e., the negative spin rotation never reverses.

III. SIMULATION

We perform numerical simulations for the times for the first
spin reversal and compare them with Garcia-Hubbard formulas
(56) and (58).

A. Shell-dumbbell model

To consider a rattleback whose inertial and geometrical
parameters can be set separately, we construct a simple model
of the rattleback, or the shell-dumbbell model, which consists
of a light shell and two dumbbells: the light shell defines the
shape of the lower part of the rattleback and the dumbbells
represent the masses and the moments of inertia. The shell is a
paraboloid given by Eq. (4). The dumbbells consist of couples
of weights, mx/2 and my/2, fixed at (±rx,0,0) and (0, ± ry,0)
in the body-fixed coordinate, respectively [Fig. 1(c)]. Then the
total mass is

M = mx + my, (62)

and the inertia tensor is diagonal with its principal moments:

Ixx = myr
2
y , Iyy = mxr

2
x , (63)

Izz = myr
2
y + mxr

2
x . (64)

Note that the simple relation

Izz = Ixx + Iyy (65)

holds for the shell-dumbbell model. We define

fsd ≡ Iyy/Izz, (66)

then the dimensionless parameters α, β, and γ defined by
Eq. (14) are given by

γ = Izz/Ma2, α = (1 − fsd )γ + 1, β = fsdγ + 1.

(67)
The parameter fsd satisfies 0 < fsd < 0.5, since we have
assumed α > β.

The shell-dumbbell model makes it easier to visualize an
actual object represented by the model with a set of parameters
and is used in the following simulations for determining the
parameter ranges.

B. Methods

The equations of motion (10) and (11) with the contact point
conditions (4) and (8) are numerically integrated by the fourth-
order Runge-Kutta method with an initial condition ω(0) and
u(0). In the simulations, we take

u(0) = (0,0, − 1)t (68)

and specify ω(0) as

ω(0) = (|ωxy0| cos ψ, |ωxy0| sin ψ, − ni) (69)

in terms of |ωxy0|, ψ , and ni . According to the simplified
dynamics (47)–(49), the irrelevant mode of oscillation does
not affect the dynamics sensitively as long as the relevant
mode exists and the initial spin energy is much larger than the
initial oscillation energy. Thus we choose |ω(0)〉 = (ωx0,ωy0)t

in the direction of the relevant eigenmode,

ψ = ψp for ni > 0, and ψ = ψr for ni < 0, (70)

where ψp and ψr are the angles of the eigenvectors |ωp〉 and
|ωr〉 from the x axis, respectively.

Numerical results are presented in the unit system where
M , a, and

t̃ ≡ 1/ω̃ ≡
√

a/g (71)

as units of mass, length, and time. The size of the time step for
the numerical integration is taken to be 0.002 t̃ . In numerics,
we determine the time for reversal tr by the time at which
n = ω · u becomes zero for the first time, and they are
compared with Garcia-Hubbard formulas (56) and (58); n0

is determined as

γ n2
0

2
= 1

2

(
αω2

x0 + βω2
y0 + γω2

z0

)
, (72)

assuming Ieff = Izz at t = 0. Here the potential energy U (u)
is set to zero where u(0) = (0,0, − 1)t .

The parameters used in the simulations are listed in Table I.
For the parameter set SD, the ranges are shown. When numer-
ical results are plotted against Kp or Kr , given by Eqs. (39) or
(40), respectively, sets of parameters are chosen randomly from
the ranges until resulting Kp or Kr falls within the range of
±0.1% of a target value. The ranges of SD are chosen to meet
the following two conditions: (1) 0 < φ � θ < 1, β < α, and
|ξ | � 1 and (2) the pitch frequency should be higher than the
roll frequency. As argued in Sec. II C, usual rattlebacks such
as one in Fig. 1(a) satisfy these two conditions. Figure 3 shows
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FIG. 3. (a) Cumulative distributions of the pitch and the roll
frequencies for the parameter set SD in Table I; ωp and ωr of Eq. (23)
and their zeroth order approximation ωp0 and ωr0 by Eqs. (28) and
(29) are shown. The inset shows the cumulative distribution of ωp/ωr .
The number of samples is 106.

the cumulative distributions for the eigenfrequencies ωp and
ωr , and their approximate expressions ωp0 and ωr0 for the
parameter set SD; it shows (ωp/ωr ) > 1.3 in accordance with
the condition (2).

The parameter set GH gives Kp = 0.553 and Kr = 0.0967,
and the distributions of Kp and Kr for SD are shown in Fig. 4,
where one can see Kp � Kr . From Eq. (37), this corresponds
to ω2

p � ω2
r , i.e., the pitch frequency is significantly faster than

the roll frequency. Consequently, the time for reversal is much
shorter for the unsteady direction ni > 0, where the pitching is
induced, than for the steady direction ni < 0, where the rolling
is induced. We denote the time for reversal for the unsteady
direction as tru and that for the steady direction as trs when we
consider a specific spinning direction.
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code shown is in the logarithmic scale for the relative frequency
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is 108.
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FIG. 5. A typical spin evolution and the corresponding ωx and
ωy for GH (Table I). (a) The case of the initial spin in the unsteady
direction. The initial condition is specified by Eqs. (68)–(70) with
ni = 0.1 ω̃ and |ωxy0| = 0.01 ω̃. (b) The case of the initial spin in the
steady direction with ni = −0.1 ω̃ and |ωxy0| = 0.01 ω̃. The dashed
lines in (a-1) and (b-1) show Garcia and Hubbard’s solution n(t) given
by Eqs. (55) and (57), respectively.

C. Results

1. General behavior for the parameter set GH

In Fig. 5 we show a typical simulation result of the time
evolution of the spin n(t) along with the angular velocities
ωx(t) and ωy(t) for the parameter set GH (Table I) in the case
of the unsteady direction ni > 0 (a), and the steady direction
ni < 0 (b).

Figure 5(a-1) shows that the spin n changes its sign from
positive to negative at tru ≈ 112 t̃ , and Fig. 5(b-1) shows the
spin n changes its sign from negative to positive at trs ≈ 810 t̃ .
Garcia and Hubbard’s solutions n(t) of Eqs. (55) and (57)
are shown by the dashed lines in Figs. 5(a-1) and 5(b-1),
respectively; they are in good agreement with the numerical
simulations.

The angular velocities ωx and ωy oscillate in much shorter
time scale, and their amplitudes evolve differently depending
on the spin direction. In the case of Fig. 5(a), where the positive
initial spin reverses to negative, the amplitude of ωx becomes
large and reaches its maximum around tru; the amplitude of
ωy also becomes large around both sides of tru but shows the
local minimum at tru. Both ωx and ωy oscillate at the pitch
frequency ωp ≈ 1.44 ω̃. In the case of Fig. 5(b) where the
negative spin reverses to positive, the situation is similar but
the amplitude of ωy reaches its maximum around trs , and ωx

and ωy oscillate at the roll frequency ωr ≈ 0.602 ω̃.
These features can be understood based on the analysis

in the previous section as follows. The positive spin induces
the pitching, which is mainly represented by ωx because the
eigenvectors of the pitching |ωp〉 are nearly parallel to the
x axis, i.e., ψp ≈ −17◦. Likewise, the negative spin induces
the rolling, mainly represented by ωy , because ψr ≈ 88◦. The
local minima of the amplitude for ωy in Fig. 5(a-3), or ωx in
Fig. 5(b-2), at the times for reversal are tricky; it might mean
that the eigenvector of the pitching (rolling) deviates more
from the x axis (y axis) for ωz 
= 0 than that for ωz = 0; as a
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coefficient Kp in the logarithmic scale. The error bars indicate one
standard deviation of 1000 samples for each data point. The solid
lines are trGH+ given by Eq. (56), calculated using the mean values
of n0. (b) A typical spin evolution with ni = 0.5 ω̃, |ωxy0| = 0.01 ω̃.
The parameter set GH is used.

result, the pitching (rolling) mode has a larger projection on
the y axis (x axis) for ωz 
= 0.

Note that for given |ni |, the maximum value of ωy in
Fig. 5(b-3) is larger than that of ωx in (a-2). This is due
to α � β; the oscillation energy around zero spin for the
both cases should be the same, which gives αω2

x ≈ βω2
y

thus
√

ω2
x <

√
ω2

y .

2. Simulations with the parameter set SD

We present detailed results of the simulations for the ranges
of the parameters given by SD in Table I.

a. Unsteady initial spin direction (ni > 0). In this case,
the system behaves basically as we expect from the Garcia-
Hubbard formula unless the initial spin or oscillation is too
large. Figure 6 shows the time for reversal tru as a function
of Kp when spun in the unsteady direction. The results are
plotted against Kp by the procedure described in Sec. III B.

When the initial spin ni is ni � 0.2 ω̃ with |ωxy0| =
0.001ω̃, 0.01ω̃, tru is in good agreement with the Garcia-
Hubbard formula trGH+ of Eq. (56), i.e., almost inversely
proportional to Kp with small scatter around the average.
For a given ni , as the initial oscillation amplitude |ωxy0|
becomes large, the standard deviations of tru become large, and
the average of tru deviates upward from the Garcia-Hubbard
formula trGH+, which is derived with the small amplitude
approximation of ωx and ωy . For larger ni , trGH+ also
underestimates tru, as already noted by Garcia and Hubbard
[14] for the parameter set GH. The underestimation can be
also seen in Fig. 5(a-1), where one can see that Garcia and
Hubbard’s solution n(t) of Eq. (55) changes its sign earlier
than the simulation.

For ni � 0.4 ω̃, tru deviates notably upward from the
Garcia-Hubbard formula trGH+. As ni increases, the average
of tru increases and the standard deviations become large.
Figure 6(b) shows a typical spin evolution with ni = 0.5 ω̃.
The spin oscillates widely at the pitch frequency, which is
qualitatively different from typical spin behaviors at small ni

and from Garcia and Hubbard’s solution n(t) of Eq. (55) as in
Fig. 5(a-1). In this region, the Garcia-Hubbard formula is no
longer valid.

b. Steady initial spin direction (ni < 0). Much more com-
plicated phenomena are observed when spun in the steady
direction. When the initial spin |ni | is small enough, the spin
simply reverses as shown in Fig. 5(b-1). We call this simple
reversal behavior Type R. For larger |ni |, however, there appear
some cases where the spin never reverses; in such cases there
are two types of behaviors: steady spinning at nss (Type SS),
and spin wobbling around nw (nss < nw < 0, Type SW). For
Type SS samples, nss is slightly less than ni , i.e., nss < ni < 0,
because small initial rolling decays and its energy is converted
to the spin energy. Typical spin evolutions of a Type SS sample
and a Type SW sample are shown in Figs. 7(b-1) and 7(b-2).

Figure 7(a) shows the Kr dependence of the fractions of
Types R, SS, and SW for various initial conditions given by
ni and |ωxy0|. For each sample, we wait up to t = 5trGH−; the
spin evolution is classified as Type R if it reverses. If it does
not, the spin evolution is classified as Type SS if the initial
rolling amplitude decays monotonously, and classified as Type
SW if the spin n starts wobbling by the time 5trGH−. The other
samples, in which the rolling grows slowly yet shows no visible
spin change by the time 5trGH−, are labeled “unclassified” in
Fig. 7. Such samples may show spin reversal or spin wobbling
if we take a much longer simulation time. Type SS appears
for |ni | � 0.3 ω̃, and its fraction increases as |ni | increases.
The fraction is larger for smaller Kr and smaller |ωxy0|, i.e.,
|ωxy0| = 0.001 ω̃. Type SW appears for |ni | � 0.1 ω̃, and its
fraction is also larger for smaller Kr , but stays around 0.2 for
|ni | � 0.4 ω̃.

Figure 8 shows the Kr dependence of trs only for the
samples of Type R, which shows a spin reversal behavior. For
small |ni | � 0.2 ω̃ with |ωxy0| = 0.01 ω̃,0.001 ω̃, trs is in good
agreement with Garcia-Hubbard formula trGH− of Eq. (58),
and the average of tru is almost inversely proportional to Kr . As
in the case of the unsteady direction, the standard deviations of
trs become large, and the average trs deviates downward from
trGH− as initial oscillation amplitude |ωxy0| becomes large.
Note that trGH− tends to overestimate trs , in contrast to the
case of the unsteady direction, where trGH+ underestimates
tru. This has also been noted by Garcia and Hubbard [14] for
the parameter set GH and can be seen by Garcia and Hubbard’s
solution n(t) in Fig. 5(b-1). For |ni | � 0.3 ω̃, one may notice
the standard deviations are large for Kr � 0.1. In these cases,
we find that some samples appear to spin stably for quite a
long time, i.e., several times of trGH−, and then abruptly starts
to reverse its sign. During the time period t < trs , the rolling
grows much more slowly than it should as predicted by the
theory in Sec. II. Such samples make both the average and
standard deviation large as Fig. 8.

Next we consider the Type SS samples. There always exists
a steady solution, ω(0) = (0,0,const)t and u(0) = (0,0, − 1)t ,
and Bondi [7] has shown that for the steady direction, this
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FIG. 7. (a) Fractions of types R, SS, and SW for the steady direction for eight values of Kr with various initial conditions |ωxy0| and ni .
Parameters are randomly chosen from SD (Table I). The number of the samples is 1000 for each Kr . Filled triangles show the fractions of
samples whose |nc1| is smaller than |ni |. (b) Typical spin evolutions of a Type SS sample (b-1) and a Type SW sample (b-2), along with an
example of “chaotic” oscillation (b-3) found for Kr = 0.0041 with ni = −0.5 ω̃.

solution is linearly stable for n < nc1 < 0, where nc1(< 0) is
given by

n2
c1 ≡ g

a

−(1 − θ )(1 − φ)

2 − (θ + φ) − (α + β − γ )(θ + φ − 2θφ)
. (73)

When the denominator of Eq. (73) is positive, such a threshold
does not actually exist, and the steady solution is always
unstable. Note that nc1 does not depend on ξ .
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FIG. 8. Time for reversal trs for the steady direction as a function
of Kr in the logarithmic scale. Each data point represents the average
with the standard deviation of Type R samples out of 1000 simulations
from the parameter set SD (Table I).

In Fig. 7 the filled triangles show the fraction of samples
whose |nc1| is smaller than |ni |, which should correspond with
the ratio of Type SS. For |ωxy0| = 0.001 ω̃, all samples whose
|nc1| is smaller than |ni | actually show Type SS behaviors and
vice versa. On the other hand, for |ωxy0| = 0.1 ω̃, there are
some samples whose |nc1| is smaller than |ni | yet do not show
Type SS behavior; for ni = −0.3 ω̃, there are only several
Type SS samples out of 8000 samples, which cannot be seen
in Fig. 7(a), and for |ni | � 0.4 ω̃, the fractions of Type SS for
|ωxy0| = 0.1 ω̃ are smaller than those for |ωxy0| = 0.001 ω̃.
This may be because |ωxy0| = 0.1 ω̃ is not small perturbation,
and the spin might have escaped from the basin of attractor of
Type SS behavior.

Last we consider the Type SW samples. The time when the
spin starts to wobble roughly corresponds with trs of Type R
in Fig. 8; the center of wobbling nw and its amplitude vary
from sample to sample. As in the case of Type R, there are
some samples which start to wobble after several times of
trGH− where Kr � 0.1. Wobbling behaviors of such samples
are similar to those which start wobbling around trGH−. We
remark that there are two qualitatively different Type SW
behaviors. When |ni | � 0.4 ω̃, the spin of Type SW sample
oscillates almost periodically. However, when ni = −0.5 ω̃

and Kr � 0.1, we find some samples that show “chaotic”
oscillations as an example shown in Fig. 7(b-3).

IV. DISCUSSION

In the present work, we study the minimal model for the
rattleback dynamics, i.e., a spinning rigid body with a no-slip
contact ignoring any form of dissipation. We have reduced the
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original dynamics to the simplified dynamics (47)–(49) with
the three variables. The assumptions and/or approximations
used in the derivation are (1) the amplitudes of the oscillations
are small, (2) the coupling between the spin and the oscillations
does not depend on the spin, and (3) the time scale for the
spin change is much longer than the oscillation periods. It
is interesting to note that the last assumption is apparently
analogous to that used in the derivation of an adiabatic invariant
for some systems under slow change of an external parameter
if the spin variable is regarded as a slow parameter. In the
present case with this separation of time scales, the dynamics
conserves the “Casimir invariant” CI of Eq. (51).

Our simplified dynamics can be compared with some
previous works. Based on Bondi’s formulation [7], Case and
Jalal obtained the growth rates δx and δy of the pitching and
the rolling amplitudes around the x and y axes, respectively,
at a small constant spin and small skewness [9]. Their results
can be expressed as

δx = n

2
Kp, δy = −n

2
Kr, (74)

using our notations. The factor 1/2 comes from the choice of
the variables; they chose the contact point coordinates, while
we choose the oscillation energies, which are second order
quantities of their variables.

Moffatt and Tokieda [13] obtained equations for the
oscillation amplitudes of pitching and rolling, P and R, and
the spinning S for small spin and skewness as

d

dτ

⎛
⎝P

R

S

⎞
⎠ =

⎛
⎝ R

λP

0

⎞
⎠ ×

⎛
⎝P

R

S

⎞
⎠ =

⎛
⎝ λPS

−RS

R2 − λP 2

⎞
⎠, (75)

where τ is rescaled time, and λ is the squared ratio of the pitch
frequency to the roll frequency. Equation (75) is equivalent
with Eqs. (47)–(49); again the difference comes from choice
of the variables. The mathematical structures of Eq. (75) have
been investigated recently in more detail by Yoshida et al. [30]
in connection with the Casimir invariant and chaotic behavior
of the original dynamics.

After the first round of spin reversals, our simplified
dynamics (47)–(49) repeats itself and shows periodic behavior
as well as the dynamics studied by Moffatt and Tokieda
Eq. (75) because the system with only three variables has
two conservatives, i.e., the total energy and the Casimir
invariant. However, the Casimir invariant is an approximate
one in the original dynamics, and invariant only under the
approximations given at the beginning of this section. The
Casimir “invariant” actually varies and the original system
shows aperiodic behaviors.

A few examples for longer time evolutions of spin n(t) are
given in Fig. 9 for the system with the parameter set GH except
for the curvature in the rolling direction θ = 0.6429 (a) for
GH, 0.82 (b), and 0.9 (c) along with those by the corresponding
simplified dynamics. The first example (a) almost shows a
periodic spin reversal behavior as is expected by the simplified
dynamics. It is, however, only quasi-periodic with fluctuating
periodicity. The second example (b) does not show a periodic
behavior; the initial spin reversal till t/t̃ ≈ 100 is nearly the
same with (a), but after the time of the second spin reversal
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FIG. 9. Three types of spin behaviors after the first reversal period
in the small spin regime with ni = 0.1ω̃, |ωxy0| = 0.01ω̃. (a) A
quasiperiodic behavior with the parameter set GH (θ = 0.6429),
(b) a chaotic behavior with θ = 0.82, (c) a quasiperiodic behavior
with a period shorter than the first one with θ = 0.9. All the other
parameters for (b) and (c) are the same as GH. The dashed lines
show the spin evolutions for the corresponding simplified dynam-
ics, where Ep(0) = Ma2[α(|ωxy0| cos ψp)2 + β(|ωxy0| sin ψp)2]/2,
Er (0) = 3 × 10−5Ma2ω̃2, and n(0) = ni .

around t/t̃ ≈ 3000, it turns into chaotic, deviating from the
simplified dynamics. The third example (c) may look similar
to (a) but is peculiar; it shows a quasiperiodic behavior after
the initial round of spin reversals, and its periodicity is much
shorter than that by the simplified dynamics.

The simplified dynamics seems to work reasonably well for
the case of smaller θ in (a) but fails for larger θ close to 1 in
(b) and (c). This indicates that the approximations or assump-
tions used to derive the simplified dynamics are not valid for
the larger curvature in the rolling direction θ ; as the radius of
curvature 1/θ becomes small and close to 1, i.e., the height
of the center of mass, the restoration force for the rolling
oscillation becomes weak. This should result in the rolling
oscillation with larger amplitude and the slower frequency,
thus the assumptions (1) and (3) given at the beginning of this
section may not be good enough.

The fact that the system shows a different behavior after
the first round of spin reversals is reminiscent of the existence
of attractors, which is normally prohibited in a conserving
system by Liouville theorem. In the present system, however,
the theorem is invalidated by the nonholonomic constraint due
to the no-slip condition Eq. (3) [31]. As mentioned already,
the existence of strange attractors in an energy conserving
system with a nonholonomic constraint has been studied by
Borizov et al. [20], and chaotic behavior in the rattleback
system has been discussed in connection with the Casimir
invariant by Yoshida et al. [30].

V. SUMMARY AND CONCLUSION

We have performed the theoretical analysis and numerical
simulations on the minimal model of rattleback. By refor-
mulating Garcia and Hubbard’s theory [14], we obtained the
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concise expressions for the asymmetric torque coefficients,
Eqs. (39) and (40), gave the compact proof to the fact that the
pitching and the rolling generate the torques with the opposite
sign, and reduced the original dynamics to the three-variable
dynamics by a physically transparent procedure.

Our expressions for the asymmetric torque coefficients are
equivalent to those by Garcia and Hubbard, but we explicitly
elucidate that the ratio of the two coefficient for the pitching
and the rolling oscillation is proportional to the squared ratio of
those frequencies. Since the pitching frequency is significantly
higher than that of the rolling for a typical rattleback, the
time for reversal to one spin direction (or unsteady direction)
is much shorter than that to the other direction (or steady

direction); the spin reversal for the latter direction is not usually
observed in a real rattleback due to dissipation.

The simulations on the original dynamics for various
parameter sets demonstrate that Garcia-Hubbard formulas for
the first spin reversal time (56) and (58) are good in the case
of small initial spin and small oscillation for both the unsteady
and the steady directions. The deviation from the formula is
especially large for the steady direction in the fast initial spin
and small Kr regime, where the rattleback may not reverse and
shows a variety of dynamics, that includes steady spinning,
periodic and chaotic wobbling.

In conclusion, the rattleback is simple but shows fascinat-
ingly rich dynamics and keeps attracting physicists’ attention.
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