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Recent investigations on the Hamiltonian of excitons by Schweiner et al. [Phys. Rev. Lett. 118, 046401
(2017)] revealed that the combined presence of a cubic band structure and external fields breaks all antiunitary
symmetries. The nearest-neighbor spacing distribution of magnetoexcitons can exhibit Poissonian statistics, the
statistics of a Gaussian orthogonal ensemble (GOE), or a Gaussian unitary ensemble (GUE) depending on the
system parameters. Hence, magnetoexcitons are an ideal system to investigate the transitions between these
statistics. Here we investigate the transitions between GOE and GUE statistics and between Poissonian and GUE
statistics by changing the angle of the magnetic field with respect to the crystal lattice and by changing the
scaled energy known from the hydrogen atom in external fields. Comparing our results with analytical formulas
for these transitions derived with random matrix theory, we obtain a very good agreement and thus confirm the
Wigner surmise for the exciton system.
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I. INTRODUCTION

Ever since the Bohigas-Giannoni-Schmit conjecture [1],
which stated that these quantum systems can be described by
random matrix theory [2,3], it has been shown that irregular
classical behavior manifests itself in statistical quantities of the
corresponding quantum system [4]. In random matrix theory
the Hamiltonian of a system is replaced by a random matrix
with appropriate symmetries to study the statistical properties
of its eigenvalue spectrum [5]; so only universal quantities of
a system are considered and detailed dynamical properties are
irrelevant. Even though Hamiltonians of dynamical systems
are not random in most cases, it is already understood that
spectral fluctuations for nonrandom and random Hamiltonians
are equivalent [6–8].

All systems with a Hamiltonian leading to global chaos
in the classical dynamics can be assigned to one of three
universality classes: the orthogonal, the unitary, or the sym-
plectic universality class [7]. To which of these universality
classes a given system belongs is determined by the remaining
symmetries in the system. Most of the physical systems
still have time-reversal or at least one remaining antiunitary
symmetry and thus show the statistics of a Gaussian orthogonal
ensemble (GOE). Some examples of these systems are nuclei
in external magnetic fields [9–12], microwave billards [13–15],
molecular spectra [16], impurities [17], and quantum wells
[18]. Atoms in constant external fields, in particular, are
among the most important physical systems belonging to
the orthogonal universality class [19–21]. They are ideal
systems to investigate the emergence of quantum chaos both
in high-precision experimental measurements and precise
quantal calculations, possible because of the availability of
the analytically known Hamiltonian (see Refs. [4,22] and
further references therein). Hence, they are a perfectly suitable
physical system to study the transition from the Poissonian
level statistics, which describes the classically integrable case
in the absence of the fields [7,23], to GOE statistics [21], where
the breaking of symmetries due to the external fields leads to
a correlation of levels and hence to a strong suppression of
crossings [7].

As regards the other universality classes, examples are
much rarer since systems without any antiunitary symmetry

[Gaussian unitary ensemble (GUE)] or systems with time-
reversal invariance possessing Kramer’s degeneracy but no
geometric symmetry at all [Gaussian symplectic ensemble
(GSE)] have to be found [7]. Until now GUE statistics was
observable in rather exotic systems such as microwave cavities
with ferrite strips [24], atoms in a static electric field and
a resonant microwave field of elliptical polarization [25], a
kicked rotor or a kicked top [6,26,27], the metal-insulator
transition in the Anderson model of disordered systems [28],
which can be compared to the Brownian motion model [29],
or for billards in microwave resonators [30], and in graphene
quantum dots [31]. Since random matrix theory has already
been extended to describe also transitions between the different
statistics with analytical functions [5], it is highly desirable
to study these transitions theoretically and experimentally.
However, due to the small number of physical systems showing
GUE statistics, there are only few examples, where transitions
from Poissonian to GUE statistics or from GOE to GUE
statistics in dependence of a parameter of the system could
be studied [6,26–28,32]. Often only mathematical models
with specifically designed Hamiltonians are introduced to
investigate these transitions [5].

In this paper we will investigate these transitions in mag-
netoexcitons. Excitons are the fundamental optical excitations
in the visible or ultraviolet spectrum of a semiconductor and
consist of an electron in the conduction band and a positively
charged hole in the valence band. As the interaction between
both quasiparticles can be described by a screened Coulomb
interaction, excitons are often regarded as the hydrogen analog
of the solid state. Only three years ago Kazimierczuk et al.
[33] observed in a remarkable high-resolution absorption
experiment an almost perfect hydrogenlike absorption series
for the yellow exciton in cuprous oxide (Cu2O) up to a principal
quantum number of n = 25. This experiment has opened the
field of research of giant Rydberg excitons, and has stimulated
a large number of experimental and theoretical investigations
[33–49].

Very recently we have shown that the Hamiltonian of mag-
netoexcitons in cubic semiconductors breaks all antiunitary
symmetries [36]. This is the first evidence for a spatially
homogeneous system breaking all antiunitary symmetries.
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Since in many cases excitons are treated theoretically via
a hydrogenlike Hamiltonian, the appearance of GUE statistics
seems surprising as the hydrogen atom in external fields still
shows one antiunitary symmetry. However, it is well known
that the hydrogenlike model of excitons is often too simple
to account for the huge number of effects in the solid (see,
e.g., Refs. [37,40,42,50–54] and further references therein).
Aßmann et al. [34,35] attributed the appearance of GUE
statistics in a recent experiment with magnetoexcitons in Cu2O
to the interaction of excitons with phonons.

However, we have shown that it is indispensable to account
for the complete valence band structure to describe the
spectra of excitons in magnetic fields in a theoretically correct
way [43]. Without the complete band structure the striking
experimental finding of a dependence of the magnetoexciton
spectra on the direction of the external magnetic field cannot be
explained. It is indeed the simultaneous presence of the cubic
band structure and external fields which breaks all antiunitary
symmetries and leads to GUE statistics [36].

In this paper we investigate the symmetry breaking for
excitons in semiconductors with a cubic band structure in
dependence on system parameters such as the strength and the
angle of the magnetic field or the scaled energy [4,55]. Since
the eigenvalue spectrum of the magnetoexciton Hamiltonian
shows Poissonian, GOE, or GUE statistics depending on these
parameters, it is an ideal system to investigate the transitions
between GOE and GUE or Poisson and GUE statistics. To the
best of our knowledge, there are only two more systems where
both transitions have been studied, i.e., the kicked top [27] and
the Anderson model [28]. However, while the kicked top is a
time-dependent system, which has to be treated within Floquet
theory [6,27], the Anderson model is rather a model system
for a d-dimensional disordered lattice, where parameters such
as the disorder and the hopping rate need to be adjusted
[28]. Magnetoexcitons are a more realistic physical system
allowing for a systematic investigation of transitions between
different statistics. In particular, the parameters describing
these transitions can be easily adjusted in experiments.
Comparing our results with analytical functions from random
matrix theory describing the transitions between the statistics
[5,6], we confirm the so-called Wigner surmise [56], which
states that the nearest-neighbor spacing (NNS) of large random
matrices can be approximated by the NNS of 2 × 2 matrices
of the same universality class [5].

The paper is organized as follows: In Sec. II we present
the Hamiltonian of excitons in cubic semiconductors in an
external magnetic field and introduce a complete basis to
solve the corresponding Schrödinger equation. The methods
of solving the Schrödinger equation for fixed values of the
external field strengths or for a constant scaled energy are
discussed in Secs. II A and II B, respectively. Having shown
analytically that the presence of the cubic band structure and
external fields breaks all antiunitary symmetries in Sec. III,
we investigate the eigenvalue spectrum and the level spacing
statistics numerically. At first we demonstrate the appearance
of GOE or GUE statistics for specific directions of an external
magnetic field in Sec. IV. The transitions between different
level spacing statistics are then investigated in Secs. V A
and V B. Finally, we give a short summary and outlook
in Sec. VI.

II. HAMILTONIAN AND COMPLETE BASIS

In this section we briefly discuss the Hamiltonian of
excitons in direct semiconductors with a cubic valence
band structure and show how to solve the corresponding
Schrödinger equation in a complete basis. For more details
see Refs. [42,43] and further references therein.

When neglecting external fields at first, the Hamiltonian of
excitons in direct semiconductors is given by [57]

H = V (re − rh) + He( pe) + Hh( ph). (1)

The Coulomb interaction between the electron (e) and the hole
(h) is screened by the dielectric constant ε:

V (re − rh) = − e2

4πε0ε

1

|re − rh| . (2)

Since the conduction band is often parabolic, the kinetic
energy of the electron is similar to that of a free particle

He( pe) = p2
e

2me
. (3)

However, the effective mass me of the electron in the semicon-
ductor has to be used instead of the free electron mass m0. As
regards the valence bands, the situation is more complicated.
In general, the uppermost valence band is threefold degenerate
at the center of the Brillouin zone or the � point and the kinetic
energy of a hole within these valence bands is given by [41,42]

Hh( ph) = (1/2h̄2m0)
{
h̄2(γ1 + 4γ2) p2

h − 6γ2
(
p2

h1 I2
1 + c.p.

)
−12γ3({ph1,ph2}{I1,I2} + c.p.)

}
, (4)

with p = (p1, p2, p3), {a,b} = 1
2 (ab + ba), and c.p. denoting

cyclic permutation. The three Luttinger parameters γi describe
the behavior and the anisotropic effective mass of the hole. The
matrices I j denote the three spin matrices of the quasispin
I = 1 which describes the threefold degenerate valence band
[58]. The components of these matrices I i read [42,58]

Ii, jk = −ih̄εijk, (5)

with the Levi-Civita symbol εijk .
Note that the expression for Hh( ph) can be separated in two

parts having spherical and cubic symmetry, respectively [59].
The coefficients μ′ and δ′ of these parts can be expressed in
terms of the three Luttinger parameters: μ′ = (6γ3 + 4γ2)/5γ ′

1
and δ′ = (γ3 − γ2)/γ ′

1 with γ ′
1 = γ1 + m0/me [42,53,59]. The

spin-orbit coupling Hso, which generally enters the kinetic
energy of the hole (4), is neglected here since it is spheri-
cally symmetric and therefore does not affect the symmetry
properties of the exciton Hamiltonian.

When applying external fields, the corresponding Hamilto-
nian is obtained via the minimal substitution. After introducing
relative and center of mass coordinates [60,61] and setting the
position and momentum of the center of mass to zero, the
complete Hamiltonian of the relative motion reads [52,60–65]

H = V (r) + e�(r) + He( p + eA(r)) + Hh( − p + eA(r)),

(6)

with the relative coordinate r = re − rh and the relative
momentum p = ( pe − ph)/2 of electron and hole. We use the
vector potential A = (B × r)/2 of a constant magnetic field
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B and the electrostatic potential �(r) = −F · r of a constant
electric field F.

As we will show in Sec. III, the symmetry breaking in the
system depends on the orientation of the fields with respect to
the crystal lattice. We will denote the orientation of B and F
in spherical coordinates via

B(ϕ, ϑ) = B

⎛
⎜⎝

cos ϕ sin ϑ

sin ϕ sin ϑ

cos ϑ

⎞
⎟⎠ (7)

and similar for F in what follows.
Before we solve the Schrödinger equation corresponding

to the Hamiltonian (6), we rotate the coordinate system to
make the quantization axis coincide with the direction of
the magnetic field (see Appendix A) and then express the
Hamiltonian (6) in terms of irreducible tensors [59,65,66]. We
can then calculate a matrix representation of the Schrödinger
equation using a complete basis.

Note that the Hamiltonian (6) is a model system for
magnetoexcitons since we neglect the spin-orbit coupling
between the quasispin I and the hole spin Sh, which appears,
e.g., in Cu2O [42,43]. Furthermore, we neglect an additional
term in Eq. (6), which describes the energy of the electron
and hole spin in the magnetic field but is invariant under the
symmetry operations considered below. Therefore, we can
disregard these spins in our basis. As regards the angular
momentum part of the basis, we have to consider that the
Hamiltonian (6) couples the angular momentum L of the
exciton and the quasispin I . Hence, we introduce the total
momentum G = L + I with the z component MG. For the
radial part of the exciton wave function we use the Coulomb-
Sturmian functions of Ref. [67]

UNL(r) = NNL(2ρ)Le−ρL2L+1
N (2ρ), (8)

with ρ = r/α, a normalization factor NNL, the associated La-
guerre polynomials Lm

n (x), and an arbitrary scaling parameter
α. Note that we use the radial quantum number N , which is
related to the principal quantum number n via n = N + L + 1.
Finally, we make the following ansatz for the exciton wave
function:

|�〉 =
∑

NLGMG

cNLGMG
|〉, (9a)

|〉 = |N,L, I,G,MG〉, (9b)

with complex coefficients c.
The Schrödinger equation can now be solved for fixed

values of the external field strengths or for a fixed value of
the scaled energy known from atoms in external fields [55].
Both methods will be presented in the following.

A. Constant field strengths

Inserting the ansatz (9) in the Schrödinger equation H� =
E� yields a matrix representation of the Schrödinger equation
of the form [36]

Dc = EMc, (10)

where the external field strengths are assumed to be constant.
The vector c contains the coefficients of the expansion (9).

Since the functions UNL(r) actually depend on the coordinate
ρ = r/α, we substitute r → ρα in the Hamiltonian (6) and
multiply the corresponding Schrödinger equation by α2. All
matrix elements which enter the Hermitian matrices D and
M can be calculated similarly to the matrix elements given
in Refs. [42,43]. The generalized eigenvalue problem (10) is
finally solved using an appropriate LAPACK routine [68].

Since in numerical calculations the basis cannot be in-
finitely large, the values of the quantum numbers are chosen in
the following way: For each value of n = N + L + 1 � nmax

we use

L = 0, . . . , n − 1,

G = |L − 1|, . . . , min (L + 1,Gmax), (11)

MG = −G, . . . ,G.

The values Gmax and nmax are chosen appropriately large so
that as many eigenvalues as possible converge. Additionally,
we can use the scaling parameter α to enhance convergence. In
particular, if the eigenvalues of excitonic states with principal
quantum number n are to be be calculated, we can set α =
nγ ′

1εa0 according to Ref. [67], where a0 denotes the Bohr
radius.

Note that without an external electric field, parity is a good
quantum number and the operators in the Schrödinger equation
couple only basis states with even or with odd values of L.
In this case we consider only basis states with odd values of
L as these exciton states can be observed in parity-forbidden
semiconductors [40,42,47].

B. Constant scaled energy

Besides solving the Schrödinger equation or the generalized
eigenvalue problem (10) for fixed values of the external field
strength, it is also possible to use the concept of scaled energy
[55]. In classical mechanics the Hamiltonian of a hydrogen
atom in external fields possesses a scaling property which
allows reducing the three parameters energy E, magnetic
field B, and electric field F to two parameters [69,70]. The
corresponding transformation reads

r̂ = γ 2/3r, p̂ = γ −1/3 p,

F̂ = γ −4/3 F, Ê = γ −2/3E, (12)

with γ = B/B0 and B0 = 2.3505 × 105 T [4]. This scaling
is not applicable in quantum mechanics since [r̂i , p̂j ] =
ih̄γ 1/3δij �= ih̄δij holds. However, it is possible to define a
scaled quantum Hamiltonian by substituting r̂ = γ 2/3r in
the Schrödinger equation and introducing the scaled energy
Ê = γ −2/3 E.

We will now apply this scaling to the exciton system. Let
us write the Hamiltonian of excitons (6) in the form

H = − e2

4πε0ε

1

r
− eF · r + H0 + (eB)H1 + (eB)2H2, (13)

with the Hi given in Appendix A. Due to the effective masses of
electron and hole and due to the scaling of the Coulomb energy
by the dielectric constant, we introduce exciton Hartree units
so that the hydrogenlike part of the Hamiltonian is exactly of
the same form as that of the hydrogen Hamiltonian in normal
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Hartree units [39] (see Appendix B). Variables in exciton
Hartree units will be indicated by a tilde sign.

Performing the substitution r̂ = γ 2/3 r̃/α in the correspond-
ing Schrödinger equation, where we now have to use γ =
B/B0 with B0 = 2.3505 × 105 T/(γ ′2

1 ε2), and multiplying the
resulting equation with α2γ 2/3, we obtain

−α

r̂
− γ 4/3α3 F̃ · r̂ + γ −2/3α2Ẽg + γ −2/3α2 2

3
�̃(1 + I · Sh)

+γ 2/3H̃0 + γ 1/3α2H̃1 + α4H̃2 = γ −2/3α2Ẽ. (14)

As for the hydrogen atom, we define the scaled energy Ê =
γ −2/3Ẽ and scaled electric field strength F̂ = γ 4/3 F̃. When
using the complete basis of Eq. (9), Eq. (14) represents a
quadratic eigenvalue problem of the form

Ac + τ Bc = τ 2Cc, (15)

with Hermitian matrices A, B, and C and an eigenvalue τ =
γ 1/3. The eigenvalue problem can be changed to a standard
generalized eigenvalue problem by defining a vector d = τ c:(

A B
0 1

)(
c
d

)
= τ

(
0 C
1 0

)(
c
d

)
. (16)

This eigenvalue problem is solved for constant scaled energies
Ê using an appropriate LAPACK routine [68].

We finally note that due to the substitution r̂ = γ 2/3 r̃/α
and due to the use of exciton Hartree units, a different value
of the free convergence parameter α than in Sec. II has to be
used to obtain convergence for the exciton states with principal
quantum number n. This value is given by α ≈ nγ 2/3.

III. DISCUSSION OF ANTIUNITARY SYMMETRIES

In a previous paper [36] we have shown analytically that the
last remaining antiunitary symmetry known from the hydrogen
atom in external fields is broken for the exciton Hamiltonian
(6) for most orientations of the external fields. For the reader’s
convenience we recapitulate the most important steps as some
of the results are important for the following discussions.

The matrices I i of the quasispin I = 1 given by Eq. (5) are
not the standard spin matrices Si of spin one [71]. However,
these matrices obey the commutation rules [58]

[I i , I j ] = ih̄

3∑
k=1

εijk Ik, (17)

for which reason a unitary transformation can be found so
that U† I iU = Si holds. Since in Ref. [71] the behavior of
the standard spin matrices under symmetry operations such as
time reversal and reflections are given, we will use the matrices
Si instead of the I i in the following.

In the special case of vanishing Luttinger parameters γ2 =
γ3 = 0, the exciton Hamiltonian (6) is of the same form as the
Hamiltonian of a hydrogen atom in external fields. It is well
known that for this Hamiltonian there is still one antiunitary
symmetry left, i.e., that it is invariant under the combined
symmetry of time inversion K followed by a reflection Sn̂ at
the specific plane spanned by both fields [7]. This plane is
given by the normal vector

n̂ = (B × F)/|B × F| (18)

or n̂ ⊥ B̂ = B/B if F = 0 holds. Therefore, the hydrogenlike
system shows GOE statistics in the chaotic regime.

As the hydrogen atom is spherically symmetric in the field-
free case, it makes no difference whether the magnetic field is
oriented in z direction or not. However, in a semiconductor
with δ′ �= 0 the Hamiltonian has cubic symmetry and the
orientation of the external fields with respect to the crystal
axis of the lattice becomes important. Any rotation of the
coordinate system with the aim of making the z axis coincide
with the direction of the magnetic field will also rotate the
cubic crystal lattice. The only remaining antiunitary symmetry
mentioned above is now broken for the exciton Hamiltonian if
the plane spanned by both fields is not identical to one of the
symmetry planes of the cubic lattice. Even without an external
electric field the symmetry is broken if the magnetic field is not
oriented in one of these symmetry planes. Only if the plane
spanned by both fields is identical to one of the symmetry
planes of the cubic lattice, the antiunitary symmetry KSn̂ with
n̂ given by Eq. (20) is present since only then the reflection Sn̂

transforms the lattice into itself.
This criterion can also be expressed in a different way:

The antiunitary symmetry known from the hydrogen atom is
broken if none of the normal vectors n̂i of the 9 symmetry
planes of the cubic lattice given by

n̂1 = (1, 0, 0)T,

n̂2 = (0, 1, 0)T,

n̂3 = (0, 0, 1)T,

n̂4 = (1, 1, 0)T/
√

2,

n̂5 = (0, 1, 1)T/
√

2, (19)

n̂6 = (1, 0, 1)T/
√

2,

n̂7 = (1,−1, 0)T/
√

2,

n̂8 = (0, 1,−1)T/
√

2,

n̂9 = (−1, 0, 1)T/
√

2,

is parallel to

n̂ = (B × F)/|B × F|, (20)

or, in the case of F = 0, if none of these vectors is perpendic-
ular to

B̂ = B/B. (21)

Since the breaking of all antiunitary symmetries depends
on the relative orientation of the external fields to all normal
vectors n̂i , we can introduce a parameter which is a qualitative
measure for the deviation from the cases with antiunitary
symmetry:

σ =
[

9∑
i=1

|B × F|2
|n̂i × (B × F)|2

]−1/2

. (22)

For the special case of F = 0 we define

σ =
[

9∑
i=1

(n̂i · B̂)−2

]−1/2

. (23)
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We have σ = 0 for the cases with antiunitary symmetry; and
that symmetry is more and more broken with increasing values
of σ .

Under time inversion K and reflections Sn̂ at a plane
perpendicular to a normal vector n̂ the vectors of position
r , momentum p and spin S transform according to [71]

K rK† = r, (24a)

K pK† = − p, (24b)

K SK† = −S, (24c)

and

Sn̂ rS†
n̂ = r − 2n̂(n̂ · r), (25a)

Sn̂ pS
†
n̂ = p − 2n̂(n̂ · p), (25b)

Sn̂ SS
†
n̂ = −S + 2n̂(n̂ · S). (25c)

For all orientations of the external fields the hydrogenlike
part of the Hamiltonian (6) is invariant under KSn̂ with n̂
given by Eq. (20). However, other parts of the Hamiltonian
such as Hc = (p2

1 S2
1 + c.p.) [see Eq. (4)] are not invariant

if σ �= 0 holds. For example, for the case with B(0, 0) and
F(π/6, π/2), we obtain

Sn̂KHcK
†S†

n̂ − Hc

= 1/8
[
2
√

3
(
S2

2 − S2
1

)
p1p2

+3
(
S2

1p
2
2 + S2

2p
2
1

) − 3
(
S2

1p
2
1 + S2

2p
2
2

)
+{S1,S2}

(
2
√

3
(
p2

2 − p2
1

) + 12p1p2
)] �= 0, (26)

with n̂ = (−1/2,
√

3/2, 0)
T
. Note that even though Hc does

not depend on the external fields, the normal vector n̂ is
determined by these fields via Eq. (20). Otherwise, the
hydrogenlike part of the Hamiltonian would not be invariant
under KSn̂.

Since the expression in Eq. (26) is not equal to zero, we
have shown for B(0, 0) and F(π/6, π/2) that the generalized
time-reversal symmetry of the hydrogen atom is broken for
excitons due to the cubic symmetry of the semiconductor. The
same calculation can also be performed for other orientations
of the external fields. As we have stated above, the antiunitary
symmetry remains unbroken only for specific orientations of
the fields.

IV. APPEARANCE OF GOE AND GUE STATISTICS

We will now demonstrate the breaking of all antiunitary
symmetries by analyzing the nearest-neighbor spacings of the
energy eigenvalues corresponding to the Hamiltonian (6) [21]
for a model system with the arbitrarily chosen set of parameters
Eg = 0, ε = 7.5, me = m0, γ ′

1 = 2, μ′ = 0, and δ′ = −0.15.
If we set F = 0, we expect to obtain GUE statistics in the limit
of high energies as long as the magnetic field is not oriented
in one of the symmetry planes of the lattice.

Before analyzing the nearest-neighbor spacings, we have
to unfold the spectra to obtain a constant mean spacing
[1,7,10,21]. The unfolding procedure separates the average
behavior of the nonuniversal spectral density from universal

spectral fluctuations and yields a spectrum in which the mean
level spacing is equal to unity [5].

To unfold the spectra, we plot for the both cases of constant
field strengths and of constant scaled energy the number

N (E) =
∑

n

�(E − En) (27)

of energy levels up to the value Emax, up to which all eigen-
values converged. Here �(x) denotes the Heaviside function.
We leave out a certain number of low-lying sparse levels to
remove individual but nontypical fluctuations [21]. In the case
of constant scaled energy it is known that the mean number
of levels is proportional to E−2/3 in the dense part of the
spectrum [21]. Hence, we fit N (E) with N̄ (E) = aE−2/3 + b.
In the case of constant field strength no such proportionality
is known and we fit N (E) with a cubic polynomial function
N̄ (E). The level spacings of the unfolded spectrum are then
given by sn = N̄ (En+1) − N̄ (En) [72].

Since the magnetic field breaks all symmetries in the
system and limits the convergence of the solutions of the
generalized eigenvalue problem with high energies [42], the
number of level spacings analyzed here is comparatively small
and comprises about 250 to 500 exciton states. In this case, the
cumulative distribution function [73]

F (s) =
∫ s

0
P (x) dx (28)

is often more meaningful than histograms of the level spacing
probability distribution function P (s).

We will compare our results with the distribution functions
known from random matrix theory [1,34]: the Poissonian
distribution

PP(s) = e−s (29)

for noninteracting energy levels, the Wigner distribution

PGOE(s) = π

2
se−πs2/4, (30)

and the distribution

PGUE(s) = 32

π2
s2e−4s2/π (31)

for systems without any antiunitary symmetry. It can be seen
that the most striking difference between the three distributions
is the behavior for small values of s. While for the Poissonian
distribution the probability of level crossings in nonzero
and thus PP(0) �= 0 holds, in chaotic spectra the symmetry
reduction leads to a correlation of levels and hence to a strong
suppression of crossings. Note that the most characteristic
feature of GOE or GUE statistics is the linear or quadratic
level repulsion for small s, respectively.

In Fig. 1 we show the results for level spacing probability
distribution function and the cumulative distribution function
for B(0, π/6) and B(π/6, π/6) obtained with a constant
magnetic field strength of B = 3 T and exciton states within a
certain energy range. While for B(0, π/6) the magnetic field is
oriented in one of the symmetry planes of the lattice and thus
only GOE statistics can be observed, we see clear evidence
for GUE statistics as regards the case with B(π/6, π/6). Note
that we have chosen the values δ′ = −0.15 and B = 3 T to
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FIG. 1. Level spacing probability distribution functions P (s) (left) and cumulative distribution functions F (s) (right) for δ′ = −0.15,
B = 3 T, ϑ = π/6, and two different values of ϕ. Besides the numerical data (red boxes or red dots), we also show the corresponding functions
of a Poissonian ensemble (black dashed line), GOE (blue dash-dotted line), and GUE (green solid line). Only if the magnetic field is oriented
in one of the symmetry planes of the lattice, one antiunitary symmetry is present and GOE statistics can be observed in (a) and (b). In all other
cases, all antiunitary symmetries are broken and GUE statistics appears in (c) and (d).

be fixed. It is well known from atomic physics that chaotic
effects become more apparent in higher magnetic fields or
by using states of higher energies for the analysis. Hence, by
increasing B or investigating the statistics of exciton states with
higher energies, GUE statistics could probably be observed
also for smaller values of |δ′|. At this point we have to note
that an evaluation of numerical spectra for δ′ > 0 shows the
same appearance of GUE statistics. This is expected since the
analytically shown breaking of all antiunitary symmetries in
Sec. III is independent of the sign of the material parameters.

V. TRANSITIONS BETWEEN SPACING DISTRIBUTIONS

To the best of our knowledge, there are only two physical
systems where both the transition from Poissonian to GUE
statistics and the transition from GOE to GUE statistics in
dependence of a parameter of the system could be studied
[27,28]. As we have already stated in Secs. III and IV, our
system shows Poisson, GOE, or GUE statistics in dependence
on the energy, the magnetic field strength, and the angles ϑ and
ϕ, i.e., in dependence of experimentally adjustable parameters.
Thus, our system is perfectly suited to investigate transitions
between the different statistics or different symmetry classes
when changing one or more of these parameters.

In Ref. [5] analytical expressions for the spacing distribu-
tion functions in the transition region between the different
statistics have been derived using random matrix theory
for 2 × 2 matrices. The transition from Poissonian to GOE
statistics is described by

PP→GOE(s; λ) = Cse−D2s2
∫ ∞

0
dx e−x2/4λ2−xI0(z), (32a)

with z = xDs/λ and

D(λ) =
√

π

2λ
U

(
−1

2
, 0, λ2

)
, (32b)

C(λ) = 2D(λ)2, (32c)

a parameter λ, the Tricomi confluent hypergeometric function
U (a, b z) [74], and the modified Bessel function I0(z) [74].
For the special cases of λ → 0 or λ → ∞ Poissonian or GOE
statistics is obtained, respectively. However, already for λ �
0.7 the transition to GOE statistics is almost completed [5].

At this point we have to note that the transition between
different symmetry classes is not universal and that the level
spacing distributions are universal only in the Poisson, GOE, or
GUE limit. Besides the transition formula (32) derived within
random matrix theory also other interpolating distributions
for the transition P → GOE have been proposed in the
literature [75–79]. When using one of these distributions for
the intermediate regime the results may be modified. However,
since all the transition formulas presented here were derived
in the same manner within random matrix theory, we use
these formula for a consistent description of all transitions
considered here.
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FIG. 2. Level spacing probability distribution functions P (s) (first row) and cumulative distribution functions F (s) (second row) for the
transitions (a) P → GOE, (b) P → GUE, and (c) GOE → GUE. The blue dotted lines show the transition functions of Eqs. (32), (33), and
(34) for λ = 0.1, 0.2, 0.4, 0.6, 0.8. To visualize the differences between the cumulative distribution functions more clearly, especially for the
GOE → GUE transition, we also show in the third row the difference between the distributions for a fixed value of λ and the initial distribution,
respectively.

The transition from Poissonian to GUE statistics is de-
scribed by

PP→GUE(s; λ) = Cs2e−D2s2
∫ ∞

0
dx e−x2/4λ2−x sinh (z)

z
,

(33a)

with z = xDs/λ and

D(λ) = 1√
π

+ 1

2λ
eλ2

erfc(λ) − λ

2
Ei(λ2)

+ 2λ2

√
π

2F2

(
1

2
, 1;

3

2
,

3

2
; λ2

)
, (33b)

C(λ) = 4D(λ)3

√
π

, (33c)

the complementary error function erfc [74], the exponential
integral Ei [74], and a generalized hypergeometric function
2F2 [80].

Finally, the transition from GOE to GUE statistics is given
by

PGOE→GUE(s; λ) = Cse−D2s2
erf

(
Ds

λ

)
, (34a)

with

D(λ) =
√

1 + λ2

√
π

(
λ

1 + λ2
+ arccot(λ)

)
, (34b)

C(λ) = 2
√

1 + λ2D(λ)2. (34c)

As in Ref. [5], we calculate the distribution functions
for λ = 0.01 × 1000(k−1)/999 with k = 1, . . . ,1000 and then
numerically integrate the results to obtain the corresponding
cumulative distribution functions F (s; λ). All these functions
are shown for different values of λ in Fig. 2.

As the transition from Poissonian to GOE statistics has been
investigated in detail for the hydrogen atom in external fields
[21], we will treat the two other transitions in the following.

A. GOE → GUE

Let us start with the transition from GOE to GUE statistics.
For this case we solve the generalized eigenvalue problem
(10) for different orientations of the magnetic field B(ϕ, ϑ)
by setting ϑ = π/6 and gradually increasing the angle ϕ from
0 to π/4. To increase the statistical significance, we analyze
and merge the level spacings for B = 2.8 T, B = 3.0 T, and
B = 3.2 T for a given value of ϕ [21]. The results are finally
fitted by the function FGOE→GUE(s; λ) and shown in Fig. 3.

For the special case of ϕ = 0 we obtain GOE statistics as
expected since the magnetic field is oriented in the symmetry
plane of the solid with n̂ = (0, 1, 0)T. When increasing the
angle ϕ, the parameter λ changes rapidly from 0 to 0.5 and
hence the transition from GOE to GUE statistics is almost
completed for ϕ � 3π/48 (see Fig. 4).

The decrease of the parameter λ for ϕ � π/8 in Fig. 4 can
be explained by considering the orientation of B with respect
to all symmetry planes of the lattice. Hence, we calculate
the value of the parameter σ of Eq. (23) for ϑ = π/6 and
increasing values of ϕ. It is obvious that the value of σ

increases for 0 � ϕ � π/8 and decreases for π/8 � ϕ � π/4
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FIG. 3. Transition from GOE to GUE statistics for fixed values of the magnetic field strength B and increasing values of the angle ϕ in
B(ϕ, ϑ = π/6). The results are presented in the same way as in the bottom most panel of Fig. 2 to show the differences between FGOE(s) and
FGUE(s) more clearly. The data points (red) were fitted with the analytical function FGOE→GUE(s; λ). The optimum values of the fit parameter λ

are given in each panel, but also shown in Fig. 4. One can observe a good agreement between the numerical data and the analytical function
describing the transition between the two statistics in dependence on λ. Only for ϕ = 0 the data shows a slight admixture of Poissonian statistics
to the expected GOE statistics. For further information see text.

since the magnetic field moves away from the plane with n̂2

and then approaches the plane with n̂7. Therefore, the fact
that B approaches the plane with n̂7 for ϕ � π/8 explains the
decrease of λ in Figs. 3 and 4(a).

λ(
ϕ)

 0

 0.2

 0.4

 0.6

 0.8(a)

σ(
ϕ)

ϕ

 0

 0.04

 0.08

 0.12

0π/48 2π/48 4π/48 6π/48 8π/48

(b)

FIG. 4. (a) Optimum values of the fit parameter λ in dependence
on the angle ϕ for the situation presented in Fig. 3. The blue dashed
line only serves as a guide to the eye. (b) The function σ (ϕ) of Eq. (23)
for ϑ = π/6. We obtain a qualitatively good agreement between both
curves, i.e., as expected, both values λ(ϕ) and σ (ϕ) increase from zero
to a certain value and then decrease for ϕ � π/8.

B. Poisson → GUE

Let us now treat the transition from Poissonian to GUE
statistics. It is known from the hydrogen atom in external
fields that for fixed values of the magnetic field strength B

the low-energy part of the eigenvalue spectrum will show
Poissonian statistics while the high-energy part already shows
GOE statistics. For a better level statistics it is appropriate to
analyze the spectra with a constant scaled energy Ê.

For fixed small values of the scaled energy the corre-
sponding classical dynamics becomes regular and energy
eigenvalues of the quantum mechanical system will show
purely Poissonian statistics. On the other hand, as we have
shown above, GUE statistics is observed best at large energies
and for angles ϕ and ϑ , for which the magnetic field is oriented
exactly between two symmetry planes of the lattice. Hence,
keeping the values ϕ = π/8, ϑ = π/6, and δ′ = −0.15 fixed
and increasing the scaled energy, we expect to observe a
transition from Poissonian to GUE statistics.

Having unfolded the spectra according to Ref. [21], we
fit the numerical results by the function FP→GUE(s; λ) given
in Eq. (33). It can be seen from Fig. 5 that we obtain a good
agreement between the results for our system and the analytical
function for all scaled energies Ê > −0.9. The transition from
Poissonian to GUE statistics takes place already at very small
values of the scaled energy −1.2 � Ê � −0.6 (see Fig. 6).
This differs from the hydrogen atom in external fields where
the statistics is still Poisson-like for Ê � −0.6 [21] and can
be explained by the presence of the cubic band structure here.
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FIG. 5. Transition from Poissonian to GUE statistics for fixed values of the angles ϕ = π/8, ϑ = π/6, and increasing values of the scaled
energy Ê. Except for Ê = −1.009 a good agreement between the numerical data and the analytical function FP→GUE(s; λ) is obtained. For
further information see text.

Therefore, the presence of the cubic band structure increases
the chaos in comparison with the hydrogen atom.

For very small values of the scaled energy Ê � −0.8 a
reasonable analysis of the spectra is hardly possible. For these
values of Ê we cannot obtain enough converged eigenvalues
in the dense part of the spectrum due to the required computer
memory. On the other hand, the number of low-lying sparse
levels increases. Hence, fitting the number N (E) of energy
levels with the function N̄ (E) = aE−2/3 + b for the unfolding
procedure (cf. Sec. IV) does not lead to good results since the
mean number of energy levels is proportional to E−2/3 only

λ(
E^ )

E
^

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.8 -0.6 -0.4 -0.2

FIG. 6. Optimum values of the fit parameter λ in dependence on
the scaled energy Ê for the situation presented in Fig. 5. The blue
dashed line only serves as a guide to the eye. The value of λ increases
from a small value at low scaled energies to about λ ≈ 0.7, where the
function FP→GUE(s; λ) almost describes GUE statistics.

in the dense part of the spectrum. This effect can already be
observed for Ê = −1.009 in Fig. 5. Note that a change in the
unfolding procedure or the fit function would not lead to better
results as the problem is connected with the appearance of
the low-lying sparse levels. These levels lead to individual but
nontypical fluctuations [21].

It is generally assumed that the NNS of large random
matrices can be approximated by the NNS of 2 × 2 matrices
of the same universality class [5]. Since we obtained a good
agreement when fitting the functions FGOE→GUE(s; λ) and
FP→GUE(s; λ), which were derived for 2 × 2 matrices, to our
numerical results, we could prove the Wigner surmise [56] for
our system.

VI. SUMMARY AND OUTLOOK

Investigating the Hamiltonian of excitons in cubic semi-
conductors we could show analytically and numerically that
the simultaneous presence of the cubic band structure and
external fields can break all antiunitary symmetries in the
system. The level spacing statistics of the quantum mechanical
spectrum depends on the energy, the field strengths, the field
orientations, and on the value of the parameter δ′, which
determines the strength of the cubic deformation of the band
structure. This makes excitons in external fields a prime system
to investigate the transitions between different level spacing
statistics. Keeping the parameter δ′ fixed, we analyzed the
transition from GOE to GUE statistics and from Poissonian
to GUE statistics. A comparison with analytical formulas for
these transitions derived for 2 × 2 matrices within random
matrix theory showed very good agreements. Hence, we could
confirm the Wigner surmise for our model system.
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Since we changed only parameters such as the angles of the
magnetic field or the scaled energy, which can also be varied in
experiments, we think that the transition between the different
level statistics could also be investigated experimentally.
However, changing the two parameters δ′ and the scaled
energy Ê in numerical calculations will allow us to investigate
arbitrary transitions of the level statistics in the triangle
between Poissonian (arbitrary δ′, small Ê), GOE (δ′ = 0, large
Ê), and GUE statistics (δ′ �= 0, large Ê) in the future. As for
arbitrary transitions within this triangle no analytical formulas
have been derived within random matrix theory so far, the
corresponding functions P (s; λ1, λ2) also have to be found.

We want to note that all transitions considered here are
modeled by Hamiltonians of the form H = Hβ + λHβ ′ [5],
where Hβ ′ has a lower symmetry than Hβ . The level statistics
is strongly affected by the perturbation Hβ ′ if the level
spacings of Hβ , which are smaller than the matrix elements
of this Hamiltonian, and the matrix elements of λHβ ′ are of
comparable size. In the case of h̄ → 0, the transition will take
place at even smaller values of λ. Especially, the connection
between λ and the parameter σ [cf. Eqs. (22) and (23)]
must depend on h̄. However, we note that the parameter σ

has only been introduced phenomenologically to describe the
dependency of the transition on the angle between the vector
n̂ (20) or B̂ (21) and the normal vectors n̂i of the symmetry
planes of the lattice.

To investigate the dependence of all results on h̄, further and
more extensive calculations are necessary, which is beyond
the scope of this work. Nevertheless, our model system
offers the possibility for an according analysis and we will
discuss the effects in a future publication.

Finally, we are certain that the discovery of GUE statistics
for giant Rydberg excitons may pave the way to a deeper
understanding of the connection between quantum and
classical chaos.
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APPENDIX A: HAMILTONIAN

In this Appendix we give the complete Hamiltonian of
Eq. (6) and describe the rotation necessary to make the
quantization axis coincide with the direction of the magnetic
field. Let us write the Hamiltonian (6) in the form

H = Eg − e2

4πε0ε

1

r
+ 2

3
�

(
1 + 1

h̄2 I · Sh

)

+H0 + (eB)H1 + (eB)2H2 − eF · r, (A1)

with B = |B|. Using B̂i = Bi/B with the components Bi of
B, the terms H0, H1, and H2 are given by

H0 = 1

2m0
(γ ′

1 + 4γ2) p2 − 3γ2

h̄2m0

[
I2

1p
2
1 + c.p.

]
− 6γ3

h̄2m0
[{I1, I2}p1p2 + c.p.], (A2)

H1 = 1

2m0

(
2m0

me
− γ ′

1 + 4γ2

)
B̂ · L

+ 3γ2

h̄2m0

[
I2

1(B̂2r3p1 − B̂3r2p1) + c.p.
]

+ 3γ3

h̄2m0
[{I1, I2}(B̂2r3p2 − B̂1r3p1

+B̂3r1p1 − B̂3r2p2) + c.p.], (A3)

H2 = 1

8m0
(γ ′

1 + 4γ2)[B̂
2
r2 − (B̂ · r)2]

− 3γ2

4h̄2m0

[
I2

1(B̂2r3 − B̂3r2)2 + c.p.
]

− 3γ3

2h̄2m0
[{I1, I2}(B̂2r3 − B̂3r2)

× (B̂3r1 − B̂1r3) + c.p.]. (A4)

In our calculations, we express the magnetic field in spher-
ical coordinates [see Eq. (7)]. For the different orientations of
the magnetic field we rotate the coordinate system by

R =
⎛
⎝cos ϕ cos ϑ sin ϕ cos ϑ − sin ϑ

− sin ϕ cos ϕ 0
cos ϕ sin ϑ sin ϕ sin ϑ cos ϑ

⎞
⎠, (A5)

i.e., we replace x → x′ = RTx with x ∈ {r, p, L, I, S} to
make the quantization axis coincide with the direction of the
magnetic field [65,66]. Finally we express the Hamiltonian in
terms of irreducible tensors (see, e.g., Refs. [42,43,59,66]) and
calculate the matrix elements of the matrices D and M in the
generalized eigenvalue problem (10) or the matrices A, B, and
C in the generalized eigenvalue problem (15).

APPENDIX B: EXCITON HARTREE UNITS

When performing numerical calculations for the hydrogen
atom in external fields, often Hartree units are used [39,81].
These units are obtained by setting the fundamental physical
constants e, m0, h̄, as well as the Bohr radius a0 to one. As the
effective masses of the electron and hole differ from the free
electron mass and since the Coulomb interaction is scaled by
the dielectric constant ε, we introduce exciton Hartree units.
Within these units the hydrogenlike part of the Hamiltonian
(6) is exactly of the same form as the Hamiltonian of the
hydrogen atom in Hartree units [39] and the values of the
scaled energies in Sec. II B can be compared directly with
the values of the scaled energies used in calculations for the
hydrogen atom [21]. The exciton Hartree units are obtained
by setting e = h̄ = 1, m0 = γ ′

1, and aexc = γ ′
1εa0 = 1. Since

all other physical quantities have to be converted to exciton
Hartree units as well, we give the according scaling factors in
Table I. Variables given in exciton Hartree units are marked by
a tilde sign, e.g., r → r̃ , throughout the paper.
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TABLE I. Exciton Hartree units converted to SI units for γ ′
1 = 2 and ε = 7.5. For a comparison, we also give the values for normal Hartree

units, which are obtained by setting γ ′
1 = ε = 1.

Quantity Symbol Exc. Hartree unit SI (γ ′
1 = 2, ε = 7.5) SI (γ ′

1 = 1, ε = 1)

charge q e 1.6022 × 10−19 C 1.6022 × 10−19 C
action S h̄ 1.0546 × 10−34 Js 1.0546 × 10−34 Js
mass m m0/γ

′
1 4.5547 × 10−31 kg 9.1094 × 10−31 kg

length r γ ′
1εa0 7.9377 × 10−10 m 5.2918 × 10−11 m

momentum p h̄/γ ′
1εa0 1.3286 × 10−25 kg m/s 1.9929 × 10−24 kg m/s

time t γ ′
1ε

2a2
0m0/h̄ 2.7213 × 10−15 s 2.4189 × 10−17 s

energy E h̄2/γ ′
1ε

2a2
0m0 3.8753 × 10−20 J 4.3597 × 10−18 J

magn. flux density B h̄/γ ′2
1 ε2a2

0e 1.0447 × 10+3 T 2.3505 × 10+5 T

el. field strength F h̄2/γ ′2
1 ε3a3

0m0e 3.0472 × 10+8 V/m 5.1422 × 10+11 V/m
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