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Nonlinear dynamics and band transport in a superlattice driven by a plane wave
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A quantum particle transport induced in a spatially periodic potential by a propagating plane wave has a
number of important implications in a range of topical physical systems. Examples include acoustically driven
semiconductor superlattices and cold atoms in an optical crystal. Here we apply a kinetic description of the
directed transport in a superlattice beyond standard linear approximation, and utilize exact path-integral solutions
of the semiclassical transport equation. We show that the particle drift and average velocities have nonmonotonic
dependence on the wave amplitude with several prominent extrema. Such nontrivial kinetic behavior is related
to global bifurcations developing with an increase of the wave amplitude. They cause dramatic transformations
of the system phase space and lead to changes of the transport regime. We describe different types of phase
trajectories contributing to the directed transport and analyze their spectral content.
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I. INTRODUCTION

Semiclassical models are widely used to describe particle
transport in quantum systems with spatially periodic potential,
such as high-frequency semiconductor devices [1–3], cold
atoms in an optical potential [4], photonic crystals [5], and
waveguide arrays [6]. Being realized in the systems with
inherent semiclassical nonlinearities, this transport is often
accompanied by a development of instabilities and catastro-
phes [7,8], which can be utilized in applications. In particular,
electron transport in semiconductor superlattices (SLs) is
associated with a variety of quantum mechanical and kinetic
effects [9,10]. Those effects are able to enhance the electron
mobility and induce terahertz dynamics of electrons [1,11,12],
making SLs a promising element for designing terahertz
sources [13,14], amplifiers [15], and frequency mixers [16].

During the last decades a number of interesting and impor-
tant phenomena associated with the interaction of carriers in
SLs with high-frequency coherent phonons have been discov-
ered [17–21]. The characteristic feature of such systems is that
in the case of the acoustic wave the propagation effects cannot
be neglected, as is typically done when electromagnetic waves
are considered. In particular, it was found out that SLs are
able to amplify the hypersonic acoustic waves by mechanisms
involving either interwell tunneling [19] or the stimulated
Cherenkov effect [21]. It was also recently shown that acoustic
stimuli can be utilized as a powerful means to induce and to
control high-frequency transport and the resulting emission
of electromagnetic waves in semiconductor heterostructures
[22–24]. Although a certain progress has been achieved
in understanding the related high-frequency electroacoustic
phenomena [25–27], the underlying physical mechanisms and
the related nonlinear dynamics are still poorly studied [28].

In this paper we theoretically study semiclassical dynamics
of particles in a spatially periodic potential induced by a
propagating plane wave on a practically motivated example
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of a single miniband SL driven by a high-frequency acous-
tic plane wave [21]. In order to describe the interaction
between electrons and acoustic waves in crystals one has
conventionally used the linearized transport equations [30,31].
On the contrary, here we use the exact path-integral solution
of the Boltzmann transport equation for an arbitrary wave am-
plitude [32–34]. Remarkably, this nonperturbative approach
requires knowledge about Hamiltonian dynamics of electrons,
which in our case of the plane wave is strongly nonlinear. We
characterize the directed transport in the SL by introducing
the time-averaged velocity of charge carriers and their drift
velocity. The latter takes into account the scattering events.
Both characteristics demonstrate nontrivial dependencies upon
the amplitude of the acoustic wave.

Depending on the wave parameters, different dynamical
regimes are realized in the system, each represented in the
phase space by a characteristic phase portrait. We reveal and
classify various trajectories, which affect charge transport,
and establish a series of global bifurcations associated with
dramatic restructuring of the phase space.

Here the wave amplitude serves as a control parameter
determining sharp transitions between different dynamical
regimes at the bifurcations. Importantly, we find out that these
transitions evoke the characteristic changes in the averaged
velocities of the carriers.

Before the first bifurcation the dominant dynamical regime
is a nonlinear dragging of particles, which is characteristic
for an ordinary acoustoelectric effect [35]. Beyond the first
and successive bifurcations, we observe a switching to the
dynamical regimes termed nonlinear Bloch-like oscillations
[26]. These complex Bloch oscillations are characterized
by specific quasiperiodic motion in the phase plane. The
related trajectories drift in the direction opposite to the
propagating wave, which can lead to the appearance of negative
time-averaged electron velocity. We also investigate how
the bifurcations change the spectral content of the averaged
electron trajectories, which is used for understanding a unique
high-frequency response of SLs to hypersonic excitations.

The paper has the following structure. Section II is devoted
to a semiclassical formalism for characterization of charge
transport in SLs in the presence of scattering. In Sec. III
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different dynamical regimes associated with charge transport
are revealed, and bifurcation transitions between them are
studied. Section IV is dedicated to the spectral analysis of
different trajectories. Finally, in Sec. V we summarize results
and discuss various applications.

II. SEMICLASSICAL DYNAMICS
AND DIRECTED TRANSPORT

We consider the semiclassical dynamics of an electron
which tunnels through the spatiotemporal potential of a
strongly coupled SL driven by a plane acoustic wave. The
effect of a plane wave can be represented by a moving potential
V (x,t) = −U sin[(ks(x + x0) + ωst)] [26,31], which, as time
t changes, propagates along the SL’s axis in the x direction. The
wave amplitude U depends on strain and the deformation po-
tential [26], ks = ωs/vs is the wave number, ωs is the wave fre-
quency, and vs is the speed of sound in the materials of the SL.
Displacement x0 defines the initial phase of the driving wave.

The election transport is assumed only within the lowest
miniband, and interminiband tunneling is neglected. Then,
within the tight-binding approximation, the kinetic energy of
an electron is defined as E(px) = �/2[1 − cos(pxd/h̄)] [1],
where px is the electron quasimomentum, � is the miniband
width, and d is the period of the SL. The semiclassical
Hamiltonian H (x,px) = E(px) + V (x,t) yields the following
equations of motion:

vx = dx

dt
= ∂H

∂px

= �d

2h̄
sin

pxd

h̄
, (1a)

dpx

dt
= −∂H

∂x
= ksU cos[(ks(x + x0) − ωst)]. (1b)

In order to characterize the particle transport described by
model (1) in the presence of scattering we introduce the drift
velocity of electrons, vd . Earlier in [26] vd was calculated using
the Esaki-Tsu formalism [1]. In this case the drift velocity
depends on the initial conditions and will be different for
different trajectories. Therefore, this approach does not allow
one to examine generic transport characteristics or to reveal
global instabilities (bifurcations), which can be developed in
the system.

Here we employ a more generic approach by using the
time-dependent path integral as a steady solution of the time-
dependent Boltzmann transport equation [33,34,36]. Within
this framework the drift velocity is defined as

vd =
∫ T

0

dt

T

∫ t

−∞
e

−(t−t0)
τ vx(t,t0)

dt0

τ
, (2)

where t0 is the moment of time when the electron can be
found at position x0, τ is the scattering time of electrons, and
T = 2π/ωs is the period of the acoustic plane wave.

This implies that, in order to find vd , we need to know the
nonlinear dynamics of electrons governed by Eqs. (1). Note
that Eq. (2) can be considered an extension of the seminal
Chambers result [32] and was earlier used for consideration
of the charge transport in a SL with ac electric field applied
[37,38], also in the presence of a static magnetic field [39].
According to Eq. (2) the drift velocity can be understood as the
velocity of an electron averaged over all initial moments t0 and

over the time period T after taking into account a probability
of electron scattering within the time interval between t − t0
and t − t0 + dt .

There is an alternative way to introduce the drift velocity
by averaging the electron velocities not over initial time t0,
but across the initial positions x0 or, equivalently, across the
initial phases of the acoustic wave. Since the Hamiltonian H

is periodic in time, the velocity of electrons at the presence of
scatterings, v(x,t), can be expanded in Fourier series [36] as

v(x,t) =
∑

n

vne
inks (x−vs t)

with

vn = 1

λ

∫ λ

0
dx0

∫ ∞

0
e

−t ′
τ vx(x0,t

′)e−inks (x0+vs t
′) dt

′

τ
, (3)

where λ = 2π/ks represents the wavelength of the propagating
wave. By applying the Jacobian J = ∂(tvs,t − t0)/∂(t,t0), the
set of variables (x0,t

′) can be substituted by (t0,t), for which
Eq. (3) takes the form

vn = 1

T

∫ T

0
dt

∫ t

−∞
e

−(t−t0)
τ vx(t,t0)e−inωs t

dt0

τ
. (4)

Remarkably, the zeroth Fourier component (for n = 0) of the
velocity in Eq. (4) is identical to the drift velocity vd calculated
with the time-dependent path integral (2), thus implying that
integration over all electron initial positions x0 realized in
Eq. (3) is an equivalent to integration over all starting times t0
in Eq. (2). Later we use this equivalence to better understand
the contribution from different types of electron trajectories to
the transport characteristics of the system. In addition, this is
used for an optimization of numerical calculation of the drift
velocity, since the direct averaging over the initial positions is
easier to implement. In our study we chose the parameters of a
realistic SL [22,26], namely, � = 7 meV, d = 12.5 nm, vs =
5000 m/s, τ = 250 fs, and ωs = 4 × 1011 rad/s. However, we
note that the phenomena discussed can be found in a wide
range of the parameter values.

Figure 1(a) illustrates the change of drift velocity vd

with variation of the acoustic wave amplitude U . The drift
velocity was estimated for the electrons starting at the time
moment t0 with px = 0, which corresponds to the experimental
conditions of the nondegenerate electron gas close to zero
temperature. One can see that the dependence vd (U ) is strictly
nonmonotonic and can be characterized by two representative
values of U , which correspond to the maximum of vd (value
Ucr1) and to the point where the curve sharply changes its
slope (value Ucr2). The presence of a prominent maximum
reminds one of the classical Esaki-Tsu vd (F ) dependence
[1], which reflects the effect of a constant electric field F

on the drift velocity vd . In this case, the dominant transport
regime is related to the conventional Bloch oscillations [40],
and existence of the maximum in the vd (F ) dependence is
evoked by multiple scattering events. However, as it was found
in [26], in the case of the acoustically driven SL the trajectories
of the electrons and, correspondingly, the transport regime can
dramatically change with variation of U . In order to understand
what causes the nonmonotonic character of the dependence
shown in Fig. 1(a), the scattering events or the changes in

062203-2



NONLINEAR DYNAMICS AND BAND TRANSPORT IN A . . . PHYSICAL REVIEW E 95, 062203 (2017)

0

2

4

6

8
v d

 (
10

2  m
s-1

)
(a)

Ucr1

Ucr2

-1

 0

1

3

5

 0  2  4  6  8  10  12

v m
  (

10
3  m

s-1
)

U (meV)

(b) Ucr1

Ucr2

Ucr3

Ucr4

FIG. 1. (a) The drift velocity vd as a function of the acoustic
wave amplitude U ; (b) the dependence of the time-averaged electron
velocity vm upon U . The vertical lines correspond to the critical values
of U .

dynamics, we calculated the mean velocity of electrons, vm,
averaged over the time:

vm = 1

λ

∫ λ

0
dx0

∫ �t

0
vx(t + t0,t0)

dt

�t
. (5)

In fact, formula (5) is a finite time version of Eq. (3) under
the assumption that τ → ∞. In our calculations we chose
�t = 2 ns, which is large enough to ensure convergence
in the numerical calculations of Eq. (5). Note that vm is
an important transport characteristic for cold-atom systems,
whose dynamics can be also described using spatially periodic
Hamiltonians [4]. The dependence of vm(U ) is shown in
Fig. 1(b). Comparison of Figs. 1(a) and 1(b) reveals that both
graphs demonstrate their characteristic features at almost the
same values of U (indicated by dashed lines). Namely, they
both demonstrate prominent maxima at the values U = Ucr1

and have prominent features at U = Ucr2. In addition, the
dependence vm(U ) has multiple maxima, and, in contrast to vd ,
vm can attain negative values. All this evidences that specific
changes in vd with variation of U are associated with the
transitions between different dynamical regimes in electron
transport in the SL.

III. TRAJECTORIES AND BIFURCATIONS

A. Dynamical regimes, phase portraits, and bifurcations

To understand how the dynamics of electrons affects vm and
vd we analyze the equations of motion in the moving reference

frame x ′(t) = x(t) + x0 − vst . In this case the model has the
form

ẋ ′ = v0 sin
pxd

h̄
− vs, (6a)

ṗx = ksU cos(ksx
′), (6b)

which, in contrast to Eqs. (1), does not explicitly depend on the
time. Here, v0 = �d/(2h̄) characterizes the maximal possible
change of electron velocity v(px) within the miniband. For
our choice of SL parameters v0 = 6.6 × 104 m/s and the key
ratio v0/vs is ≈13. New equations of motion correspond to the
Hamiltonian H ′ = E′(px) + V (x ′) with the modified energy
dispersion relation and time-independent potential energy

E′(px) = E(px) − vspx, V (x ′) = −U sin(ksx
′). (7)

It is worth noting that in the limit vs → 0 the Hamiltonian
H ′ transforms to the well-known Hamiltonian of the classical
two-dimensional Harper model [41,42].

For both numerical and analytical studies it is convenient
to rewrite Eqs. (6) in a dimensionless form:

dx̃

dt̃
= v0

vs

sin p̃ − 1, (8a)

dp̃

dt̃
= Ud

h̄vs

cos x̃, (8b)

where x̃ = ksx
′, p̃ = pxd/h̄, and t̃ = ωst . These normalized

quantities have clear physical interpretations. Namely, p̃

corresponds to the phase of the de Broglie wave characterizing
a position of the electron within Brillouin zones, whereas x̃

and t̃ are associated with the phase and time components of
the total phase of the acoustic wave, respectively.

For v0 > vs , which is valid for typical SLs, the dynamical
system (8) demonstrates a countable set of equilibrium points,
which satisfy the following conditions:

v0 sin p̃ = vs, (9a)

cos x̃ = 0. (9b)

Equations (9) evidence that a steady state corresponds to the
situation when an electron moves with the velocity of the
acoustic wave, vs , being at the position coinciding with one of
the extrema of the potential V (x,t). This yields the following
coordinates of the fixed points:

x̃ = π

2
+ mπ, (10a)

p̃ = (−1)l sin−1

(
vs

v0

)
+ lπ, (10b)

where m and l are arbitrary integer numbers. A simple stability
analysis reveals that all these fixed points are always either
centers or saddles. These points are periodically spread in the
phase space as illustrated in Fig. 2, where the black circles
denote the centers and the red crosses indicate positions of the
hyperbolic fixed points (saddles).

We consider the significance of the hyperbolic points in our
forthcoming analysis of global bifurcations, but before that we
need to review evolution of the phase portraits with a variation
of the acoustic wave amplitude U .
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FIG. 2. Phase portraits of the dynamical system (8) for
(a) U = 1.5 meV (U < Ucr1), (b) U = 3.45 meV (U > Ucr1), and (c)
U = 4.25 meV (U > Ucr2). The positions of equilibrium points are
indicated by solid black circles (centers) and red crosses (saddles).
The localized orbits are represented by blue and yellow dots.
Smooth solid curves correspond to the unbounded trajectories, dashed
curves mark the meandering trajectories, and red curves denote the
separatrices.

After dividing Eq. (8b) by Eq. (8a) and performing
integration we obtain the phase trajectory equation

x̃ = (−1)j sin−1

{
sin x̃0 − h̄vs

Ud

[
v0

vs

(cos p̃ − cos p̃0)

+ p̃ − p̃0

]}
+ jπ, (11)

where j is an integer number, and (x̃0,p̃0) is an initial condi-
tion. Figure 2 displays the phase portraits of the dynamical
system (8) calculated using Eqs. (10) and (11) for three
characteristic values of U . Although the physical meaning of
both variables x̃ and p̃ allows their wrapping into the interval
(−π,π ], we found it more convenient to present the phase
portraits in the unwrapped phase space. For small U < Ucr1 ≈
3.1 meV [Fig. 2(a)] the phase space of the system is represented
by periodic “islands” of localized trajectories (blue and yellow
closed orbits), which rotate around corresponding centers
(solid black circles). Depending on the particular location
in the phase space the localized trajectories rotate either

clockwise (blue orbits) or counterclockwise (yellow orbits).
The islands of the localized trajectories are intermittent with
the areas of unbounded trajectories, which propagate either to
the positive or negative direction along the x̃ axis, depending
on the initial value p̃0. In the particular case of Fig. 2(a),
the unbounded trajectories above the islands of the clockwise
orbits (black lines) propagate in the positive direction of x̃,
whereas the trajectories below these islands (green lines) run
in the negative direction of x̃. The characteristic regions of
different trajectories are separated by a heteroclinic structure
(red curves), a separatrix, formed by the manifolds of the
saddle points (red crosses) with the same coordinate p̃.

As U increases, the areas of the unbounded trajectories
shrink, and after U exceeds the critical value Ucr1, the
unbounded trajectories drifting in the positive directions of
x̃ disappear, thus manifesting a dramatic change in the
topology of the phase portrait. This phase-space realignment
is associated with the origin of a new type of phase tra-
jectories, which demonstrate a meandering behavior [dashed
black curves in Fig. 2(b)] encompassing the islands of the
localized orbits. Independently of the initial conditions these
meandering trajectories always drift in the negative direction
of x̃. Further increase of U above Ucr2 ≈ 3.92 meV eliminates
completely the unbounded trajectories, but it gives rise to
complex meandering trajectories, which are more elongated in
the p̃ direction and envelop more islands of the localized orbits
[dashed black curves in Fig. 2(c)]. These new elongated phase
trajectories coexist with less elongated trajectories [dashed
green curves in Fig. 2(c)] that were born when U exceeded
Ucr1. We found out that other critical values of U (Ucr3 ≈
4.75 meV and Ucr4 ≈ 5.58 meV) indicated in Fig. 1(b) relate to
the appearance of new meandering trajectories, which envelop
along the p̃ direction a larger number of the islands of the
localized orbits.

Such restructuring of the phase portraits is usually associ-
ated with the development of global bifurcations (instabilities)
in the dynamical system [43]. In order to get deeper insight into
the onset of these bifurcations, we analyze an evolution of the
separatrices near the critical values of U . Figure 3 presents the
separatrix formed by the manifolds of the saddles with coordi-
nate p̃1 = π − sin−1(vs/v0) for three characteristic values of
U close to Ucr1. When U < Ucr1 [Fig. 3(a)] the separatrix is a
heteroclinic structure that delimits the regions of the localized
orbits; see also Fig. 2(a). With an increase of U the manifolds
of the saddles with coordinate p̃1 approach the saddles with co-
ordinate p̃2 = sin−1(vs/v0) [Fig. 3(b)] and at U = Ucr1 touch
them, thus causing the global bifurcation. Further growth of U

enforces a manifold reconnection, which forms the separatrix
consisting of both the homoclinic and heteroclinic structures
[Fig. 3(c)]. In this case, the manifolds connect the neighboring
saddle points having the same coordinate p̃1. In addition,
the manifolds of each saddle form a homoclinic loop, which
bounds the island of localized trajectories rotating around
the centers with the coordinate p̃2. This separatrix structure
provides the conditions for emergence of the meandering
trajectories depicted in Fig. 2(b) by dashed curves.

Similar topological rearrangements of the phase space
take place near other critical values of U . For example,
Fig. 4 illustrates the evolution of the separatrix topology
with variation of U in the vicinity of Ucr2. Before the global
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FIG. 3. Evolution of the separatrix structure with a variation of U

around the first bifurcation point (Ucr1 = 3.1 meV): (a) U = 2.5 meV,
(b) U = 3 meV, and (c) U = 3.15 meV. The positions of the centers
are indicated by solid black circles and the saddles by red crosses.

bifurcation [Fig. 4(a)], i.e., for U < Ucr2, the separatrix is
formed by a set of heteroclinic and homoclinic connections
similar to the one shown in Fig. 3(c). However, in the present
case we consider the separatrix formed by the manifolds
of the saddles characterized by the coordinate p̃2. As U

approaches the critical value Ucr2 the heteroclinic parts
of the separatrix come closer to the saddle points with
p̃3 = −π − sin−1(vs/v0) [Fig. 4(b)], and at the point of the
bifurcation, U = Ucr2, involve these saddles in heteroclinic
connections. This nonrobust structure disconnects with further
increase of U , forming an additional lap around the centers
with coordinate p̃4 = −2π + sin−1(vs/v0); see Fig. 4(c). This
complex wriggling shape of the separatrix promotes generation
of the meandering trajectories that encompass several areas of
the localized trajectories similar to those shown in Fig. 2(c) by
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FIG. 4. Evolution of the separatrix structure with a variation
of U in the vicinity of the second bifurcation (Ucr2 = 3.92 meV):
(a) U = 3.7 meV, (b) U = 3.9 meV, and (c) U = 4 meV. Other
notations are the same as in Fig. 3.

dashed curves. We also reveal that all other critical values of
U associated with the local extrema of the dependence vm(U )
[see Fig. 1(b)] correspond to additional global bifurcations,
which involve new saddle points in heteroclinic connections.

Since the global bifurcations are attributed to the situations
when a manifold of one saddle touches another saddle, the
conservation of energy, H ′ = const [Eq. (7)], can be used for
finding the bifurcation points analytically:

Ucr = h̄

d

v0(cos p̃si − cos p̃sj ) + vs(p̃si − p̃sj )

sin x̃sj − sin x̃si

, (12)

where (x̃si ,p̃si) and (x̃sj ,p̃sj ) are coordinates of a pair of
saddles involved in a given bifurcation as we described above
in our explanation of Figs. 3 and 4 [44]. Next, using these
coordinates we obtain the following explicit expression for
critical values of U :

Ucrn
= h̄vs

d

[√(
v0

vs

)2

− 1

+ sin−1

(
vs

v0

)
+

(
n − 3

2

)
π

]
(n � 1). (13)

For our choice of SL parameters this equation gives Ucr1 =
3.1 meV, Ucr2 = 3.92 meV, Ucr3 = 4.75 meV, and Ucr4 =
5.58 meV, which are in an excellent agreement with critical
values found in numerical simulations and shown in Fig. 1(b).

Criterion (13) constitutes the main analytical result of our
work. Physical processes behind this formula are generally
related to resonances in a transition scattering of the sound
wave by electrons [45] placed in the SL periodic potential.
More detailed analysis of theses processes in relation to the
global bifurcations will be published elsewhere.

B. Typical dynamical regimes and real space trajectories

Analysis of the phase portrait changes with variation of
U allows us to reveal three characteristic types of the phase
trajectories that determine the electron transport in the real
space. Typical examples of those trajectories and the related
electron trajectories in the real space are summarized in Fig. 5.
Figure 5(a) displays the localized phase trajectories, which
orbit around the centers either clockwise (trajectory 1 in the
left panel) or counterclockwise (trajectory 2 in the left panel) in
dependence on the initial conditions. However, independently
of the rotation directions these phase trajectories manifest
themselves in the drift of the electrons with speed vs towards
the positive direction of x. This drift is accompanied by peri-
odic oscillations; see the right-hand panel of Fig. 5(a). In this
regime the acoustic wave just drags electrons that are localized
within a single minimum of the acoustic potential [26].

For small U the localized phase trajectories coexist with the
unbounded trajectories, which are illustrated in the left-hand
panel of Fig. 5(b). The direction of the propagation of the
unbounded trajectories along the x̃ axis depends on the initial
conditions. For instance, in the left-hand panel of Fig. 5(b) the
blue trajectories (curves 1) run towards the positive directions
of x̃, while the yellow trajectories (curves 2) move in the
negative direction along x̃. In this regime p̃ only slightly
oscillates around a certain mean value. Therefore, according
to Eq. (1a) the time-averaged velocity of the electron in
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FIG. 5. Three distinct types of the phase trajectories (left) and
the corresponding electron trajectories in the real space (right) for
(a) U = 1.5 meV, (b) U = 2.5 meV, and (c) U = 4.2 meV.

this regime can be estimated as αv0, where α is a constant
constituting the averaged value of sin p̃, either positive or
negative. The electron trajectories for this type of dynamics
are shown in the right-hand panel of Fig. 5(b). One can see
that the electrons are not trapped by the acoustic wave and can
move either in positive or negative directions, depending on
the initial value of p̃. Since the initial conditions directly affect
constant α, they influence the time-averaged electron velocity.
This is clearly seen in Fig. 5(b), where few trajectories are
depicted for comparison.

As U grows, the amplitude of nonlinear p̃ oscillations
becomes larger and eventually exceeds the size of the first
Brillouin zone |p̃| > π resulting in Bragg reflections of the
electron and the rise of complex Bloch oscillations. In terms of
nonlinear dynamics this indicates a global bifurcation, which
gives birth to the meandering trajectories of the type shown
in the left-hand panel of Fig. 5(c). For U > Ucr2, depending
on the initial conditions, the meandering phase trajectory can
encompass either even (blue curve 1) or odd (yellow curve
2) numbers of the islands of the localized trajectories [see
also black or green dashed curves in Fig. 2(c)]. Nevertheless,
in both cases these meandering trajectories wander towards
the negative directions of x̃. Such a phase-space dynamics
determines the electron trajectories rapidly moving in the
negative direction as shown in the right-hand panel of Fig. 5(c).

C. Directed transport in terms of phase trajectories

The contribution of different phase trajectories to electron
transport in a SL explains well the shape of the depen-
dencies vm(U ) and vd (U ) in Fig. 1. As it was pointed
out in Sec. I, vm can be understood as a time-averaged
electron velocity additionally averaged over initial positions
x0. Since we consider the case close to zero temperature, a
zero initial momentum p0 was assumed for all trajectories.
Figure 2(a) evidences that for a weak acoustic wave only
localized [Fig. 5(a)] and unbounded trajectories [Fig. 5(b)]
determine the value of vm. With this, for zero initial mo-
menta the unbounded trajectories generate backward motion
of the electrons, which competes with positive drift promoted
by the localized trajectories. Since for the given SL parameters
the ratio vs/v0 is small enough, the positions of saddles,
according to Eq. (10b), are very close to p̃ = 0. The mea-
sure of localized trajectories starting from zero momenta is
much larger than the one for unbounded trajectories, which
predetermines the positive value of vm. Moreover, as U

increases, the area of the islands of the localized trajectories
increases as well, diminishing the proportion of unbounded
trajectories. This explains a rapid growth of vm followed
by its saturation within the range of U between zero and
Ucr1. For U > Ucr1 the meandering trajectories [dashed black
curves in Fig. 2(b)], which promote rapid backward motion of
electrons [Fig. 5(c)], start to affect vm. Increase of U widens
the area of the meandering trajectories on the phase plane,
thus evoking a sharp drop of vm. The next global bifurcation at
U = Ucr2 creates a homoclinic loop [Fig. 3(c)], which bounds
the localized trajectories. Increase of U expands this loop,
thus widening the area of localized trajectories and shrinking
the region of meandering trajectories. These changes in the
phase portraits slightly increase vm. Further global bifurcations
repeat the scenario described above and produce additional
extrema in the graph of vm(U ) shown in Fig. 1(b). Essentially
the same arguments are also valid for explanation of the
dependence vd (U ) presented in Fig. 1(a). However, scattering
events limit the length of the trajectories contributing to the
drift velocity. In Eqs. (2) and (3) the reduction of the miniband
velocity due to scattering is reflected in the presence of the
exponent involving the scattering time τ . These factors weaken
the effect of the phase portraits’ restructuring on the drift
velocity, and therefore the manifestation of only the two most
prominent global bifurcations is visible in the profile of vd (U ).

IV. SPECTRAL ANALYSIS OF TRAJECTORIES

Previously, we showed that electrons starting from different
initial conditions can move along topologically different
trajectories; see Figs. 2 and 5. Therefore, in order to study the
frequency characteristics of the global transport, we introduce
the x0-averaged velocity of electrons, va(t) = 〈ẋ〉x0 , and its
Fourier spectrum Sa(ω). To calculate 〈ẋ〉x0 we average ẋ(t)
for an ensemble of electron trajectories with different x0

from the interval [−λ/2,λ/2). We assume all electrons start
with the same p0 = 0 (low-temperature limit). Typical time
realizations of va(t) in the vicinity of U = Ucr1 are displayed
in the left-hand panels of Fig. 6. The left-hand panel of
Fig. 6(a) presents a realization of va(t) calculated for U =
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FIG. 6. A typical time realization of va(t) (left), its Fourier
spectrum Sa(ω) (middle), and the dependence of the spectrum
S(ω) on the initial position of the particle x0 (right) calculated for
(a) U = 1.5 meV < Ucr1 and (b) U = 3.45 meV > Ucr1. Dot-dashed
lines mark the dependence ω1(x0) calculated analytically (see the
text for details). The spectra in the right-hand panels are given in
logarithmic scale in order to make the spectral peaks more noticeable.

1.5 meV < Ucr1. It demonstrates oscillations whose amplitude
changes in a prominently erratic manner. These oscillations are
characterized by a broadband spectrum Sa(ω) [middle panel of
Fig. 6(a)] centered around frequency ω = 2.5 × 1012 rad/s−1.
Their broadband character is determined by contribution of
the localized and unbounded trajectories shown in Fig. 2(a).

The above localized and unbounded trajectories can be
quite accurately described within a pendulum approximation.
Indeed, by assuming a small change of p̃, Eqs. (8) can be
reduced to the pendulum equation

d2ỹ

dt̃2
+ 	2 sin ỹ = 0. (14)

Here ỹ = x̃ − π/2, and 	 = (U�/2)1/2(d/h̄vs). The spec-
trum of oscillations of system (14) is known to depend on the
integral of motion H = ˙̃y2

0/2 − 	2 cos ỹ0, where ỹ0 and ˙̃y0 are
the initial values of ỹ and dỹ/dt̃ , respectively. In particular,
the position of the first harmonic ω1 in the spectra of the
oscillations ỹ(t) can be expressed as ω1 = π	ωs/[2K(κ)]
for localized trajectories, and as ω1 = π	ωsκ/K(1/κ) for
unbounded trajectories [46]. Here κ2 = 1/2 + H/(2	2),
and K(·) is the complete elliptic integral of the
first kind.

To illustrate this better, we calculate the spectra of in-
dividual trajectories, S(ω), and compare them with Sa(ω).
The right-hand panel in Fig. 6(a) displays the dependence of
the spectrum, S(ω), of ẋ(t) on initial condition x̃0 calculated
numerically using basic Eqs. (1). The color map denotes the
different values of S(ω), while the dot-dashed lines show
the frequency ω1 found analytically. The figure reveals that
the frequency of the most prominent spectral peak changes
significantly with variation of x0, having a mean value close

to the center of the spectral band of Sa [cf. middle panel of
Fig. 6(a)]. This is also confirmed by the dependence ω1(x0)
calculated analytically [dot-dashed curve in the right-hand
panel of Fig. 6(a)], which demonstrates an excellent agreement
with the spectra calculated numerically.

When U slightly exceeds Ucr1, the averaged oscillations
va(t) become less erratic [left-hand panel of Fig. 6(b)], which
manifest themselves also in the appearance of a pronounced
peak in Sa(ω) [middle panel of Fig. 6(b)]. These changes
in the spectrum are associated with the emergence of the
meandering phase trajectories [Fig. 2(b)] corresponding to
the frequency-modulated miniband velocity ẋ(t). This type of
trajectory represents the complex Bloch oscillations and can be
viewed as a frequency modulated signal with the characteristic
cutoff frequency ωcut = ksUd/h̄ [26]. Notably, for v0 � vs ,
Ucr1 ≈ �/2 and therefore when U ≈ Ucr1

ωcut

ωs

≈ v0

vs

� 1. (15)

At the same time, the localized trajectories condition the
broadness of the spectrum Sa(ω) presented in the middle panel
of Fig. 6(b).

Remarkably, the frequency of the dominant peak of the
frequency-modulated oscillations is weakly dependent on the
initial conditions. The dependence of the spectrum S(ω) of
ẋ(t) on the initial position x0 is shown in the right-hand panel
of Fig. 6(b). The figure confirms that for the meandering
trajectories starting from the vicinity of x̃0 = −π/2 [see also
Fig. 2(b)], the position of the dominant peak in S(ω) changes
weakly. Moreover, the positions of the most prominent peaks in
the spectra S(ω) [right-hand panel of Fig. 6(b)], corresponding
to different meandering trajectories, are well agreed with the
position of the dominant peak in Sa(ω) (middle panel). All
this leads to regularization of va(t) oscillations [see right-hand
panel of Fig. 6(b)].

Thus, for U > Ucr1 a propagating sound wave induces a
high-frequency response in ballistic transport of electrons,
which is characterized by a sharp pronounced spectral peak,
whose frequency for the given parameters about ten times
exceeds the frequency of the acoustic wave. The emergence
of this peak is associated with generation of complex Bloch
oscillations, which are represented in the phase plane by the
meandering trajectories. We also analyzed the higher-order
bifurcation at Ucri

, and show that the variation of the wave
amplitude U allows one to considerably tune the frequency of
the main peak, and to control its height (see the Appendix for
more details).

V. CONCLUSION

Combining nonperturbative methods of nonlinear dynam-
ics and kinetics, we disclosed the bifurcation mechanisms
governing the miniband electron transport induced in a
periodic superlattice potential by a propagating acoustic wave.
Analysis of the phase portraits in the moving reference
frame allowed us to identify the specific bifurcations, which
are developed with variation of the wave amplitude U . These
global bifurcations, evoking a structural rebuilding of the phase
space, cause a sudden change of both the drift velocity vd and
the time-averaged velocity vm of electrons. We analytically
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estimated the critical values of U , corresponding to the
bifurcations, by deriving the conditions for appearance of the
heteroclinic connections in the phase space of the system.
Both dependencies vd (U ) and vm(U ) demonstrate prominent
maxima followed by an abrupt drop. The values of U corre-
sponding to these specific features in the velocity dependencies
are in excellent agreement with the critical U calculated
analytically.

We also revealed and classified three characteristic types of
ballistic electron trajectories generated by an acoustic wave.
They are attributed to (i) the motion of electrons confined
by a propagating potential wave (localized trajectories in
the moving reference frame), (ii) unconfined electron motion
(unbounded trajectories in the moving reference frame), and
(iii) complex Bloch oscillations (meandering trajectories in
the moving reference frame). Depending on the particular
value of U the contribution from each type of trajectories
to the charge transport is different. This predefines both drift
and frequency properties of the transport regime realized in
the system. By choosing an appropriate amplitude of the
acoustic wave one can generate oscillations of the averaged
electron velocity va(t), which will be characterized either by
a broadband spectrum or by a spectrum with a pronounced
peak. With this, the central frequency of the velocity spectrum
can significantly exceed the frequency of the propagating wave
and can be controlled by a variation of U .

Our results suggest that fast miniband electrons driven by
an acoustic wave should spontaneously emit submillimeter
electromagnetic waves. The waves could be detected by the
technique of time-resolved terahertz-emission spectroscopy,
in the way similar to that used in other radiating superlattice
devices [47,48]. Moreover, the spectral signatures of the elec-
tron velocity unravel the potential of the acoustically pumped
superlattices for an amplification of high-frequency electro-
magnetic signals involving mechanisms similar to the stable
Bloch gain [15,49]. From a nonlinear dynamics perspective,
our semiclassical tight-binding model belongs to the so-called
driven Harper models [50,51]. In this respect, it is interesting
to compare the possible physical manifestations of the global
bifurcations in different nonlinear systems of this class [50–
53]. It would also be important to study how the bifurcation
scenario alters with change of other control parameters. For
example, the results of [50] allow one to assume that a variation
of the frequency or the wavelength of the driving wave could
lead to a qualitatively different evolution of the phase portraits.
Last but not least, the model of a superlattice driven by a plane
wave is potentially realizable with ultracold atomic matter
waves [4]. It provides an opportunity to model the discussed
nonlinear electroacoustic effects utilizing cold-atom manipu-
lations, thus contributing to rapidly developing areas of atom-
tronics [54,55] and the related simulations of lattice transport
phenomena [56].
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FIG. 7. A typical time realization of va(t) (left), its Fourier
spectrum Sa(ω) (middle) and the dependence of the spectrum S(ω)
on the initial position of the particle x0 (right) calculated for
(a) U = 4.85 meV, (b) U = 4.932 meV, and (c) U = 5.2 meV. The
spectra in the right-hand panels are given in logarithmic scale in order
to make the spectral peaks more noticeable.

APPENDIX: SPECTRAL ANALYSIS
OF HIGHER-ORDER BIFURCATIONS

Figure 7 illustrates how the average velocity va(t) and
the related spectra change with variation of U between two
successive global bifurcations. In particular, we consider three
values of U between Ucr3 and Ucr4, namely, U = 4.85 meV
[Fig. 7(a)], U = 4.932 meV [Fig. 7(b)], and U = 5.2 meV
[Fig. 7(c)]. Since for these control parameter values the
unbounded trajectories do not exist, the transport is determined
only by the contribution of the localized and the meandering
trajectories. The latter have a complex shape encompassing
three or four islands of stability. In addition, the interval of
the initial conditions x0 for meandering trajectories becomes
comparable with the range of initial conditions for localized
trajectories. All this reflects in the dynamics of the average
velocity of particles, va(t), which now demonstrates very com-
plicated behavior (left-hand panels). As a result, the spectrum
of va becomes broader and richer due to the generation of
new spectral components (compare middle panels of Figs. 6
and 7). However, for all values U considered a pronounced
peak persists in the spectra, having a frequency significantly
larger than for the case of Ucr1 < U < Ucr2 [Fig. 6(b)]. The
specific content of Sa(ω) can be understood after inspection
of the dependence of the velocity spectrum S(ω) on the initial
position x̃0 shown in the right-hand panel of Fig. 7. Here,
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a significant range of the initial positions corresponds to
the meandering trajectories. Since each meandering trajec-
tory implies a frequency-modulated electron oscillation, they
contribute to Sa(ω) by multiple peaks typical for frequency-
modulated signals. With this, the spectral components of S(ω)
only slightly depend on the initial position x̃0. This promotes
quite prominent peaks in the spectrum of the averaged velocity

Sa(ω). The localized trajectories in their turn provide a broad-
band background situated in the range (3–6) × 1012 rad/s. As
U changes between Ucr3 and Ucr4, the frequency of the most
prominent peak of Sa(ω) slightly increases. Its height changes
nonmonotonically attaining the maximum at the value of
U ≈ 4.93 meV corresponding to the local maximum of vm in
Fig. 1(b).
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