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Classical counterparts of quantum attractors in generic dissipative systems
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In the context of dissipative systems, we show that for any quantum chaotic attractor a corresponding classical
chaotic attractor can always be found. We provide a general way to locate them, rooted in the structure of
the parameter space (which is typically bidimensional, accounting for the forcing strength and dissipation
parameters). In cases where an approximate pointlike quantum distribution is found, it can be associated with
exceptionally large regular structures. Moreover, supposedly anomalous quantum chaotic behavior can be very
well reproduced by the classical dynamics plus Gaussian noise of the size of an effective Planck constant h̄eff . We
give support to our conjectures by means of two paradigmatic examples of quantum chaos and transport theory.
In particular, a dissipative driven system becomes fundamental in order to extend their validity to generic cases.
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I. INTRODUCTION

The study of quantum to classical correspondence in dissi-
pative systems is attracting a lot of attention nowadays. This
is related to its relevance for many different fields that range
from the theoretical aspects of quantum information [1,2] to
applications such as in cold atoms [3–6]. There is a new body
of work that asks for a better understanding of the interplay
between the classical and quantum properties of dissipation.
We can mention developments in reservoir engineering, which
have been applied to generate robust quantum states in the
presence of decoherence [7], for example. Optomechanics [8]
is also revealing as a promising field where our knowledge of
the many intricate features of the route to chaos, so deeply
investigated in classical systems, needs to be extended to
the quantum arena. Very recently, interesting properties of
many-body systems have been elucidated [9,10], and the
corresponding classical equations could bring a different
perspective when analyzed in terms of the signatures they
imprint on the original quantum systems. A rocked open Bose-
Hubbard dimer has shown a nontrivial connection between
the interactions and bifurcations in the mean field dynamics.
Subsequently, it is of the utmost importance to clarify any
details that could be controversial.

Along this line, attention has been directed towards the
effects of the monitoring (coupling) details on the emer-
gence or suppression of chaos [11]. Moreover, an apparent
paradox regarding regular quantum behavior corresponding
to a classical chaotic one in an optomechanical system has
been nicely explained owing to studies undertaken from
the correspondence perspective [12]. Finally, it was recently
claimed that quantum chaotic attractors (i.e., complex quantum
equilibrium states typically associated with classical chaotic
attractors) with no classical counterpart exist in the open
dissipative quantum Duffing system [13].

In order to shed light on some of these features, we
study two paradigmatic systems: a dissipative modified kicked
rotator map (DMKRM) which has been very fruitful in
directed transport theory [14], and a dissipative periodically
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driven dynamical system (DPDDS) that has applications in
isomerization reactions [15] and which is fundamental to
support the generic nature of our ideas. We concentrate on the
case of a small but finite value of the effective Planck constant
h̄eff . We have found that by suitably exploring the parameter
space of these systems we are always able to find a classical
chaotic attractor corresponding to any quantum chaotic one,
even when the classical dynamics is regular (we propose a
general way to do it). For the exceptional cases where no
chaotic region is near the regular one in this space, the quantum
limiting distributions also become regular (within quantum
uncertainty). The addition of Gaussian noise of size h̄eff to the
classical equations provides us with the main features of the
quantum evolution. The study of a generic system, beyond the
kicked ones, has been fundamental to extend the validity of
these conjectures [16]

We have organized our paper as follows: In Sec. II, we
describe the models, including the way extra Gaussian noise is
added to the classical versions in order to find the quantum
behavior. The methods to integrate the equations are also
explained. In Sec. III, we explore several key values of the
parameters in order to show our main point, i.e., that a
classical analog can always be found for quantum chaotic
attractors. Also, we explain the exceptional cases where
pointlike quantum distributions exist. In Sec. IV, we conclude.

II. MODELS AND CALCULATION METHODS

A. Dissipative modified kicked rotator map

The first model we consider is a particle moving in
one dimension [x ∈ (−∞,+∞)], periodically kicked by the
potential

V (x,t) = k

[
cos(x) + a

2
cos(2x + φ)

] +∞∑
m=−∞

δ(t − mτ ),

(1)

where k is the strength of each kick and τ is the kicking period.
When adding dissipation, we obtain the following map [14],

n = γ n + k[sin(x) + a sin(2x + φ)],

x = x + τn. (2)
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Here, n is the momentum variable conjugated to x and γ

(0 � γ � 1) is the dissipation parameter. A conservative limit
is reached at γ = 1, whereas the value γ = 0 gives maximum
damping. In order to simplify the parametric dependence, it
is usual to introduce a rescaled momentum variable p = τn

and the quantity K = kτ . This is a paradigmatic model in
directed transport. As such, it shows a current that emerges as
a consequence of breaking the spatial and temporal symmetries
(when a �= 0 with φ �= mπ , and γ �= 1). It is worth mentioning
that we take a = 0.5 and φ = π/2 for this work.

Some of us have conjectured [16] that the main effects
of quantum fluctuations are similar to those of Gaussian
fluctuations of the order of h̄eff that are induced in the classical
map (we define the effective Planck constant h̄eff below). In
order to introduce them we modify the first line of Eq. (2)
by simply adding ξ (i.e., the random fluctuations). We have
chosen to leave no free parameters in order to test the behavior
of our conjecture in this situation, so we fix 〈ξ 2〉 = h̄eff , having
zero mean. However, the exact coincidence of the size of the
fluctuations with h̄eff is not essential for it to be valid.

The quantum model (without noise) is obtained via x → x̂,
n → n̂ = −i(d/dx) (h̄ = 1). Since [x̂,p̂] = iτ (where p̂ =
τ n̂), the effective Planck constant is h̄eff = τ . The classical
limit corresponds to h̄eff → 0, while K = h̄effk remains
constant. Dissipation at the quantum level is introduced by
means of the master equation [17] for the density operator ρ̂

of the system,

˙̂ρ = −i[Ĥs,ρ̂] − 1

2

2∑
μ=1

{L̂†
μL̂μ,ρ̂} +

2∑
μ=1

L̂μρ̂L̂†
μ ≡ 	ρ. (3)

Here, Ĥs = n̂2/2 + V (x̂,t) is the system Hamiltonian, {,} is
the anticommutator, and L̂μ are the Lindblad operators given
by [18,19]

L̂1 = g
∑

n

√
n + 1 |n〉〈n + 1|,

L̂2 = g
∑

n

√
n + 1 | − n〉〈−n − 1|, (4)

with n = 0,1, . . . and g = √− ln γ to comply with the
Ehrenfest theorem.

B. Dissipative periodically driven dynamical system

In order to give more general support to our claims, we
have chosen to study a full dynamical system that can be
thought as a particle moving in the continuously driven time
periodic potential

V (x,t) = 1 − cos(x) − A cos(2x + φa) + k sin(x)[cos(t)],

(5)

where k is the strength of the time periodic forcing.
Throughout this paper we take A = 0.5 and φa = π/2.
The picture is completed by means of a velocity-dependent
damping and Gaussian fluctuations that are usually taken as
thermal ones, but that in our present study will play the same
role as in the previous model, i.e., reproducing the main effects
of quantum fluctuations. It is important to point out that the
association of this Gaussian noise with thermal fluctuations

is purely formal from our point of view, as in fact our main
objective is to reproduce quantum behavior. Moreover, this
connection can only be made at the classical level since we do
not introduce any temperature in the quantum model. Then,
we are led to numerically solve the Langevin equation

mẍ = −
ẋ − V ′(x,t) + ξ. (6)

As usual, x stands for the spatial coordinate of the particle,
m for its mass (we take m = 1), and 
 is the amount of
dissipation. Again, in a way similar to the DMKRM case, the
Gaussian white noise having zero mean ξ is simply asked to
satisfy 〈ξ (t)ξ (t ′)〉 = h̄effδ(t − t ′).

In this system it is interesting to simulate a molecule
with two stable isomers that is under the influence of a
monochromatic laser field pulse, for which the term sin(x)
represents dipole coupling [15]. But it is also of a general
nature, and the results obtained through its study can be directly
applied to many different situations, including, for example,
many-body systems [9].

Quantum mechanical evolution is performed by means
of integrating the corresponding Lindblad equation, which
essentially is Eq. (3) now taking into account the new
V (x,t). Since this potential (in contrast with the previous
kicked system) is a generic time-dependent one, we use a
modified split operator method [15,20] to actually perform
this calculation. In fact, we compose unitary steps given
by the kinetic and potential terms of the Hamiltonian, and
other purely dissipative ones. In order to treat these latter
ones, we use the same model as above. For the sake of
completeness, we explicitly write down the dissipative part
of the Lindblad equation for the density matrix of this system,
which can be written as a completely positive map Dα(dt) in
the operator-sum or Kraus representation

ρ(t + dt) = D(ε,T )(dt)[ρ(t)] = C0ρ(t)C†
0 + C±

1 ρ(t)C±†
1 ,

(7)

where

C0 = 1 − 1

2
C

±†
1 C±

1 , C±
1 =

∑
j

√
ε dt j |p±j∓1〉〈p±j |,

(8)

can be interpreted as infinitesimal Kraus operators obeying
the rule

∑
μ C±†

μ C±
μ = 1 to first order in dt [21]. We take p

as the momentum variable, conjugated to the x coordinate.
In fact, the two different operators denoted by the superscript
± are associated with the positive and negative values of the
p spectrum. It is important to notice that in this case ε is the
system-bath coupling parameter and can be directly associated
with the classical friction parameter 
. Also, 
 is taken
differently from γ in the DMKRM, since in generic dynamical
systems 
 = 0 corresponds to the dissipationless regime,
while in kicked systems γ = 0 stands for maximum damping.

III. ASSOCIATING A CLASSICAL CHAOTIC ATTRACTOR
TO EACH QUANTUM CHAOTIC ONE

A. Dissipative modified kicked rotator map

The main tools used for our investigation are the Liouville
and Husimi [22] limiting distributions of our systems. For
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the DMKRM we have evolved 104 random initial conditions
in the p ∈ [−π ; π ] band of the cylindrical phase space
in the classical case (unless otherwise mentioned). For the
quantum version we use the Husimi distribution of the evolved
initial density matrix corresponding to these classical initial
conditions. A very simple way to see the chaoticity or
simplicity of these sets is by means of the participation ratio
η = [

∑
i P (pi)2]

−1
/N . This measure has its origin as a good

indicator of the fraction of basis elements that effectively
expand the quantum state. It should be mentioned that the
participation ratio depends on the nature of the basis. We have
chosen the momentum one, which is good for our purposes
since it allows us to tell whether or not a distribution is
pointlike. Moreover, we have extended this concept to the
classical case. The corresponding η is calculated by taking
a discretized p distribution after 5000 time steps, which we
have verified is enough to reach a reasonable convergence.
The number of bins is given by the Hilbert space dimension
used in the quantum calculations, which in our case is N = 36.
It is clear that a finer coarse graining would slightly change
the classical η distributions, but this will not affect their main
properties. This is because the distance among points of the
simple limit cycles is almost always greater than the chosen
bin size. The quantum equilibrium distribution is obtained in
a few periods, and we have taken 50.

We have explored the parameter space of the DMKRM in
a relevant region where many regular isoperiodic stable struc-
tures (ISSs [16,23–26], originally called periodicity hubs [27])
appear. They are characterized by low values of η and can be
noticed as the clear areas with sharp borders in Fig. 1(a).
When adding a uniform Gaussian noise of size h̄eff = 0.019,
the resulting η can be observed in Fig. 1(b). If we accept
that this is a good measure of the quantum behavior, it is
clear that chaoticity is the rule while very few parameter sets
correspond to pointlike structures. When noise of the size of
h̄eff is added, the parameter space suffers a deep transition
and just a couple of regions associated with the largest of
these ISSs keep their simplicity. This behavior could seem
paradoxical, and (for low dissipation values) apparently it is
of a strictly quantum nature, implying that purely quantum
chaotic attractors could exist without classical counterparts.
But, can the quantum behavior be completely disconnected
from the classical behavior of the surrounding structures in
parameter space in some cases? The explorations are usually
done with the aid of a typical bifurcation diagram, but if we
see the whole parameter space, everything becomes clearer.
For a representative example of an apparently purely quantum
chaotic attractor, we take k = 2.6 and γ = 0.7. In this case, the
phase space is dominated by a period three limit cycle which is
shown in Fig. 1(c) (we take q = mod x,2π ). If we add noise
of size h̄eff = 0.019, a classical chaotic attractor develops,
induced precisely by it and displayed in Fig. 1(d) (in this
case we have considered 106 random initial conditions with
p ∈ [−π ; π ], and accumulated their evolution over the last 100
periods, from a total of 5000). The similarity with the quantum
distribution shown in Fig. 1(f) is remarkable. But this is not all:
If we explore the parameter space in the orthogonal direction to
γ (which is the one typically explored in bifurcation diagrams),
we notice that classical chaotic regions are very near, as is
the case for the overwhelming majority of regular regions

FIG. 1. In (a) we display the participation ratio η for the noiseless
classical DMKRM. In (b) we show the same quantity when we add
Gaussian noise of the size of h̄eff = 0.019. In (c) we show the limit
cycle of period three that dominates the phase space at k = 2.6 and
γ = 0.7, while in (d) the classical distribution obtained by adding
noise corresponding to h̄eff = 0.019. In (e) we show a classical chaotic
attractor (noiseless system) that is found by moving in the k direction
(γ fixed) for k = 2.49 and γ = 0.7. In (f) we display the quantum
chaotic attractor found at k = 2.6 and γ = 0.7, for h̄eff = 0.019.

that are embedded in them. In this case, for k = 2.49 and
γ = 0.7, we have found a classical chaotic attractor that
closely resembles the previous chaotic distributions (both
classical with noise and quantum) [see Fig. 1(e)]. We define
the overlap O = ∫∫

D1(x,p)D2(x,p)dxdp, where D1(x,p)
and D2(x,p) are normalized phase space distributions with
the same discretization. We have calculated O between the
classical distribution with noise of Fig. 1(d) and both the
quantum distribution of Fig. 1(f), obtaining O = 0.927, and
the quantum chaotic attractor corresponding to the classical
one of Fig. 1(e), obtaining O = 0.905.

In Fig. 2 we show the details of η for different lines along
k and γ , in order to give a more precise explanation of the
previous argument. If we move from k = 2.6, while keeping
γ = 0.7, we can see that the chaoticity of distributions grows.
In particular, it is the kind of dynamics that dominates for
greater k (up to k � 3.5, from 4.6 to 6, and from 7.8 to
9, approximately), but also for some lower k values [see
Fig. 2(a)]. Moreover, if we add Gaussian noise of size
h̄eff = 0.019, the intermittency gets washed out, as can be
seen by the monotonicity of the (blue) line with circles,
with the only exception being the largest regular regions.
For comparison purposes, we also show the γ = 0.3 case
where, again, the exceptionally large regular region fails to be
completely smoothed out by the Gaussian fluctuations, as can
be seen from the deep fall in the (red) line with down triangles.
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FIG. 2. (a) shows η for the DMKRM as a function of k. Lines
(green) with squares and lines (blue) with circles correspond to γ =
0.7. Lines (cyan) with up triangles and lines (red) with down triangles
correspond to γ = 0.3. (b) shows η as a function of γ . Lines (green)
with squares and lines (blue) with circles correspond to k = 2.6. Each
pair of lines corresponds to the DMKRM without and with Gaussian
noise (h̄eff = 0.019), respectively.

We now come to Fig. 2(b), where we explore the parameter
space in the direction of γ . If we fix k = 2.6 and go from
γ = 0.7 to lower values, which means increasing the coupling
with the environment or equivalently increasing dissipation,
it shows that we have a long way to go before arriving at a
chaotic region. This is shown by the (green) line with squares.
By adding noise we recover the quantum behavior without the
need for changing any of the two parameters, as marked by
the (blue) line with circles, which follows the largest η values
associated with the chaotic background.

B. Dissipative periodically driven dynamical system

We extend the previous results to a generic dissipative
system. For that purpose we study the classical and quantum
limiting distributions in a stroboscopic surface of a section
taken at integer multiples of one period of forcing. For the
DPDDS we have evolved 100 random initial conditions in the
p ∈ [−π ; π ] band (we take p = mẋ) of the cylindrical phase
space up to 1500 periods, in the classical case. The Liouville
distributions were obtained by accumulating the points of
the last 50 periods (unless otherwise noted). This assured
a reasonable convergence for these systems that is more
numerically demanding to solve than the DMKRM. Again,

FIG. 3. In (a) we display the participation ratio η for the noiseless
classical DPDDS. In (b) we show the same quantity when we add
Gaussian noise of size h̄eff = 0.041. In (c) we show the limit cycle of
period one that dominates the phase space at k = 2.6 and 
 = 0.06,
while in (d) the classical distribution obtained by adding Gaussian
noise corresponding to h̄eff = 0.041. In (e) we show a classical chaotic
attractor (noiseless system) that is found by moving in the k direction
(
 fixed) for k = 2.75 and 
 = 0.06. In (f) we display the quantum
chaotic attractor found at k = 2.6 and 
 = 0.06, for h̄eff = 0.041.

for the quantum version we use the Husimi distribution of the
evolved initial density matrix corresponding to these classical
initial conditions. In this case, the equilibrium distribution is
obtained within a few periods (we have taken 50).

In Fig. 3(a), it can be seen already that the morphology
of the parameter space is quite similar to the one of the
DMKRM. In fact, we can identify ISSs all over it, with their
typical antennalike features which give them the familiar name
of shrimps. We can also find a larger regular structure to
the right-hand side that is the only partially surviving one
when adding noise of size h̄eff = 0.041 [see Fig. 3(b)]. In
Fig. 3(c) we show a period one limit cycle that could be
a representative case for a possible purely quantum chaotic
attractor located at the low dissipation region, i.e., for k = 2.6
and 
 = 0.06 (remember that in the DPDDS the dissipation
parameter reaches the conservative limit when 
 → 0). If we
look at Fig. 3(d), showing the classical distribution obtained
by adding noise (we have used 104 random initial conditions
with p ∈ [−π ; π ] and have accumulated their evolution over
the last 500 periods), it becomes clear again that this one is
very much similar to that found for the corresponding quantum
case, which is shown in Fig. 3(f). Moreover, we are able to find
a very similar looking classical chaotic attractor at k = 2.75
and 
 = 0.06, displayed in Fig. 3(e). The overlap between the
classical distribution with noise of Fig. 3(d) and the quantum
distribution of Fig. 3(f) is O = 0.983, and with the quantum
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FIG. 4. (a) shows η for the DPDDS as a function of k. Lines
(green) with squares and lines (blue) with circles correspond to

 = 0.06. Lines (cyan) with up triangles and lines (red) with down
triangles correspond to 
 = 0.18. (b) shows η as a function of 
.
Lines (green) with squares and lines (blue) with circles correspond to
k = 2.6. Each pair of lines corresponds to the DPDDS without and
with Gaussian noise (h̄eff = 0.041), respectively.

chaotic attractor corresponding to the classical one of Fig. 3(e)
is O = 0.976.

The same detailed study of what happens when we explore
the parameter space in its two main directions is applicable to
this generic system. For example, if we look at Fig. 4(a), we
can realize that by going up in the forcing strength k (keeping

 = 0.06) will suffice to find a chaotic region beginning
approximately at k = 2.7. This can be seen from the sharp
rise in the (green) line with squares. If we add noise, the curve
closely follows the largest values corresponding to the chaotic
regions, so again we do not need to change any parameter to
find the corresponding classical analog of the quantum chaotic
attractors. For comparison, we show the 
 = 0.18 case, where
the noise only fails to raise the curve at the higher values of
k where the largest regular region lies. If we explore in the

 direction, departing from 
 = 0.06 (and fixing k = 2.6),
it would take a considerable variation to reach the nearest
chaotic region. This can be seen with the aid of the (green)
line with squares in Fig. 4(b), which in this case happens
at approximately 
 = 0.03. By adding noise we see again
how the entire curve rises [see the (blue) line with circles in
Fig. 4(b)].

In these two sections we have explored the main directions,
the ones corresponding to the system parameters k and γ .

FIG. 5. In the left-hand column the results correspond to the
DMKRM and in the right-hand one to the DPDDS. (a) shows the
period two limit cycle that dominates the phase space for k = 7.2
and γ = 0.3, (c) The classical limiting distribution obtained with
a Gaussian noise of size h̄eff = 0.027, and (e) the quantum corre-
sponding one. (b) shows the period one limit cycle that dominates
the phase space for k = 6.0 and 
 = 0.18, (d) the classical limiting
distribution obtained with a noise of size h̄eff = 0.041, and (f) the
quantum corresponding one.

But the general way to find a classical corresponding chaotic
attractor for a given quantum one would be to follow the
shortest overall variation of both parameters in order to reach
the chaotic background. Finally, we have verified this same
behavior for several points in parameter space; the ones shown
are just representative cases.

C. Nonchaotic pointlike structures

The other possibility of finding a purely quantum strange
attractor would be to look for the biggest ISSs which can have
domains quite far from the chaotic background. But when the
chaos is far away, what do the quantum distributions look like?
In the left-hand column of Fig. 5 we analyze one representative
example for the DMKRM, and in the right-hand one we do the
same for the DPDDS (we have verified that the large regular
region to which this case belongs extends beyond k = 6).

The period two limit cycle of Fig. 5(a) transforms into an ap-
proximately squeezed Gaussian state shown in Fig. 5(c) for the
classical DMKRM with Gaussian noise, and in Fig. 5(e) for the
quantum DMKRM. It is important to notice that although
the quantum distribution is not a point (or two), this behavior
is different from the one shown above. These are the simplest,
pointlike quantum structures that can be found in this system
and do not qualify as purely quantum attractors; they should
be associated with simple limit cycles instead (with quantum
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uncertainty, of course). Interestingly, the same happens for the
DPDDS, where the period one limit cycle shown in Fig. 5(b)
undergoes the same transition to an approximately squeezed
Gaussian state both for the classical with Gaussian noise and
quantum DPDDS [see Figs. 5(d) and 5(f), respectively].

By looking at Figs. 2(a) and 4(a) we can see that these points
of the parameter space correspond to the lowest η values for
classical systems with noise.

IV. CONCLUSIONS

Recently, there has been much attention directed towards
the properties of the quantum to classical transition in
dissipative systems. In particular, the study of the effects
of the coupling details on the chaotic behavior [11] and of
puzzling results in optomechanics [12] have provided us with
very interesting advances. In this context, quantum chaotic
attractors with apparently no classical counterpart have been
found in the open dissipative quantum Duffing system [13]. On
the other hand, despite known discrepancies [16,25] for some
limited cases and surviving quantum effects, effective classical
maps with Gaussian noise have been proposed as a direct
replacement to obtain the main features of quantum dissipative
systems. Important consequences have been derived from this
identification [26,28].

We have studied two paradigmatic systems, namely,
the DMKRM [14], and a generic, continuously driven
DPDDS [15] We have found that we can always identify a
classical chaotic attractor which corresponds to the quantum
one. In general, there are no paradoxes in the quantum to

classical correspondence of dissipative systems when we add
Gaussian fluctuations to the classical counterparts. When
chaotic regions are sufficiently far away from a given regular
one, the quantum mechanical attractor is also regular and the
distributions become pointlike (with quantum uncertainty).
Any quantum attractor can be explained with the help of
these two mechanisms. This includes cases where there are
coexisting attractors. Given a quantum chaotic attractor as the
quantum version of an ISS, the general way of finding the cor-
responding classical chaotic one consists of varying the
parameters along the shortest way in order to reach the nearest
chaotic region.

Finally, by analyzing the DPDDS we have been able to
extend the validity of our method to find corresponding chaotic
attractors and the general correspondence via Gaussian fluctu-
ations to systems where even a semiclassical approximation is
hard to obtain. We think that these are generic correspondence
properties of dissipative systems [28] that could have many
different applications, such as in many-body, optomechanical,
and reservoir engineering studies, for example. The influence
of coherence and of different noise distributions on the
quantum to classical correspondence will be the focus of future
studies.
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