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Identifying coherent structures in unsteady flows acting over a finite-time is a well-established research area,
in part due to the applicability to realistic velocities obtained from experimental, observational, or numerically
generated data. More recently, there is an emerging need to understand the impact of small-scale uncertainties
on larger scale structures; for example, the “stochastic parametrization” problem in climate models. This article
establishes a rigorous tool in this direction, specifically quantifying the uncertainty of advected curves in the
presence of small stochasticity. Explicit expressions are derived for the expectation and the variance of the curves’
location. The velocity field may be unsteady and compressible, and the Wiener process driving the stochasticity can
have general spatiotemporal dependence. Monte Carlo simulations are used to verify the uncertainty expressions.
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I. INTRODUCTION

There has recently been considerable interest in evaluating
the impact on trajectories when an unsteady velocity field
operates over a finite time interval. The motivation for
this is the fact that in all realistic velocity fields obtained
from experiments (using particle image velocimetry, say) or
observations (from oceanic measurements, for example), data
is explicitly available only over a finite time [1]. In many such
cases, there is a need to determine (time-varying) transport or
transport barriers [1–4]. Essentially, all methods that have been
developed in this sense use the velocity data as deterministic.
However, in all realistic cases, there is some uncertainty in
the velocity measurements [5–7]. This may be modeled using
stochasticity, and there are methods which address issues
such as quantifying the resulting decorrelation [8,9], decoding
the stochasticity from observations [5,10], determining an
effective diffusivity [11–14], or obtaining properties of mean
derivatives [15]. This article is concerned with a different
aspect of such uncertainties: given a stochastic model for the
uncertainty in a two-dimensional unsteady velocity field, is it
possible to quantify the uncertainty of an advected curve?

Here, the two-dimensional advection is formulated in terms
of a stochastic differential equation, with the stochasticity
formed from a Wiener process, which is modulated by a
(potentially spatially and temporally dependent) diffusion
matrix. Numerical simulations of a particular curve of initial
conditions would result in stochastic trajectories, which are
scattered around the deterministically advected curve. The
curve therefore acquires an uncertainty, and this article first
determines the expected location of the stochastically advected
curve at later times. Unsurprisingly, this is to leading-order
exactly the deterministically advected curve. Second, the focus
is on quantifying the uncertainty. This is defined in terms of
the square-root of the variance of the scattered trajectories in
the normal direction to the deterministically advected curve.
An expression for this width, valid in the limit of small
stochasticity, is obtained with the help of Itô’s lemma and Itô’s
isometry [16,17]. This enables the definition of a widening
zone around the deterministically advected curve in which
realizations of stochastic advection are most likely to lie.

This article is organized as follows. Section II explains the
theoretical approach for computing the curve’s uncertainty.

Implications to elementary flows and Taylor dispersion is
briefly presented in Sec. III. Section IV applies the theory
to the flow of the forced Duffing equation and validates the
uncertainty expressions, as well as their errors, quantitatively
in relation to Monte Carlo simulations. An anisotropic spatially
varying diffusion matrix is used in these computations.
Section V uses a compressible flow model and examines
an isotropic diffusion matrix—including one which has
time-variation—and performs analogous validations of the
theory. Section VI discusses future and ongoing directions.
Appendix A provides the proof of the uncertainty expressions
presented in Sec. II, and Appendix B provides additional
details on the time-validity and simplifications of those results.

II. STOCHASTIC CURVE UNCERTAINTY

Consider the finite-time unsteady deterministic flow,

ẋ = u(x,t), (1)

where x ∈ � is two-dimensional, and Eq. (2) is only defined
during the finite-time interval t ∈ [t1,t2]. It is possible that
u is known only via data, obtained from experiments or
observations, or alternatively from the output of a direct
numerical simulation. Suppose C(t1) is a simple smooth curve
chosen as an initial condition to Eq. (1), and when materially
advected generates the curve C(t) for t ∈ [t1,t2]. The intuitive
question addressed is: is it possible to quantify the uncertainty
in C(t) when a stochastic perturbation is included in Eq. (1)?

To address this, first Eq. (1) will be written in the stochastic
differential equations notation as

dxt = u(xt ,t)dt. (2)

The stochastic perturbation to this will be represented in the
standard form [18] by

d yt = u( yt ,t)dt + εσ ( yt ,t)dW t t ∈ [t1,t2], (3)

for yt ∈ �, in which dW t represents a two-dimensional
Wiener process, 0 < ε � 1 and σ is a bounded and suitably
smooth 2 × 2 matrix representing diffusion. Thus, yt is a
random process in contrast to xt . The presence of both spatial
and temporal dependence in each of the four components of
σ allows for spatiotemporal anisostropy and heterogeneity of
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FIG. 1. The advection of C(t1) from the time t1 (left) to the time t

(right), showing the resulting deterministic curve C(t) (dashed black)
and a stochastic realization C(t) (solid magenta).

the diffusion process. If C(t1) is chosen as an initial condition
for Eq. (3), and evolves into the time-varying curve C(t), the
issue is to characterize the random and nondifferentiable C(t)
in comparison to the deterministic C(t).

The definitions to follow are pictured in Fig. 1. Parametrize
C(t1) by s in the form xs

t1
, where xs

t for each s would
solve Eq. (2). Differentiability of xs

t in s is guaranteed
by the smoothness assumption on C(t1). Let ys

t be the
solution to Eq. (3) under identical initial conditions, that is,
ys
t1

= xs
t1

for all s. Define for vectors f = (f1,f2) ∈ R2, the
perpendicular vector f ⊥ := (−f2,f1) obtained by rotating
f by +π/2. The random normal displacement Ns

t will be

defined by

Ns
t := [

ys
t − xs

t

] · n̂s
t , for t ∈ [t1,t2], (4)

where

n̂s
t :=

(
∂xs

t

∂s

)⊥/∣∣∣∣∂xs
t

∂s

∣∣∣∣ (5)

gives a unit normal vector to C(t) at the location xs
t . This Ns

t

characterizes the normal displacement of C(t) in comparison
to C(t) at each t ∈ [t1,t2]. If thinking in terms of explicitly the
impact of the full finite time inverval [t1,t2], understanding Ns

t2
may be the goal. However, more generality will be pursued
here, in the sense of understanding the evolution of Ns

t until
time t2.

Under the conditions that the second-order spatial deriva-
tives of u and the first-order spatial derivatives of σ are
bounded, it is shown in Appendix A that, correct to O(ε),

Ns
t = ε

∫ t

t1
e
∫ t

ξ
[∇·u](xs

η,η)dη
([ ∂xs

ξ

∂s

]⊥)�
σ
(
xs

ξ ,ξ
)
dW ξ∣∣ ∂xs

t

∂s

∣∣ , (6)

where (�)� is the transpose. The proof uses an application
of Itô’s lemma for a certain Itô process associated with the
stochastic differential Eq. (3). Equation (6) tells us of the
distribution of the random curves C(t) when considered in
the normal direction to C(t) from a point xs

t on it. Given the
fact that all the terms in the integrand above are deterministic,
standard stochastic calculus results [16,17] give the fact that
the expectation of the normal displacement is

E
[
Ns

t

] = 0 (7)

to O(ε) for all s. This gives the unsurprising fact that, on
average, C(t) will exhibit no movement in the normal direction
from C(t). Next, the square-root of the variance of Ns

t will
provide an estimate of a width around C(t) in which C(t) lies.
Now, since the expectation is zero to leading order,

ws
t :=

√
Var

[
Ns

t

]

= ε∣∣ ∂xs
t

∂s

∣∣
√

E

[( ∫ t

t1

e
∫ t

ξ
[∇·u](xs

η,η)dη

([
∂xs

ξ

∂s

]⊥)�
σ
(
xs

ξ ,ξ
)
dW ξ

)2
]
. (8)

By a straightforward application of Itô’s isometry [16,17] to
the stochastic integral above, this width estimate is given by

ws
t = ε

(∫ t

t1
e

2
∫ t

ξ
[∇·u](xs

η,η)dη
∣∣σ�(

xs
ξ ,ξ

)( ∂xs
ξ

∂s

)⊥∣∣2
dξ

)1/2∣∣ ∂xs
t

∂s

∣∣ . (9)

This is the expression for the expected uncertainty in the
width of the stochastically advected curve. (The curve C(t)
also acquires a tangential displacement along C(t) in general,
which can if necessary be determined using the determinisitc
ideas in Ref. [19]. However, the formulas will be unwieldy,
and moreover the fact that tangentially moving a curve has
little visible effect means that this motion can be ignored for
our purposes.) The t is time, and the s-variable represents the
location xs

t at which the normal is drawn to C(t).

It will be reiterated that both Eqs. (6) and (9) should
also include additive O(ε2) terms, which will be omitted
for brevity throughout the main text of this article. Since the
expression in Eq. (9) contains only the O(ε) term, a legitimate
question would be whether there are time restriction imposed
by ignoring the higher-order terms. It is shown in Appendix B
that the time-interval of validity of the first-order expression
in Eq. (9) obeys t − t1 ∼ ε−2, as long as the deterministic
curve does not acquire strong folds during the time-interval
[t1,t], which could lead to abruptness in the variation
of n̂s

t .
The width expression Eq. (9) allows for defining a region

Rα(t) :=
⋃
s

⋃
r∈[−αws

t ,+αws
t ]

{
xs

t + r n̂s
t

}
, (10)
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FIG. 2. Original curve (a), and subsequent advected curve points (cyan), with the deterministically advected curve (solid blue) and the
theoretical R2(t) (red dashed), for the stochastic Duffing equation as described in Sec. IV: (b) t = 0.5, (c) t = 1, and (d) t = 1.5.

in which C(t) is more likely to be. Here, α is a factor indicating
how many widths ws

t away from the deterministically advected
curve the region is defined. Thus, Rα(t) may be thought of
as a “widening zone” of the curve C(t) due to stochastic
uncertainty. Since Eq. (9) represents a standard deviation, a
sensible value for α might be 2 (in line with the fact that a
Gaussian distribution has 95% of its data within two standard
deviations). So R2(t) might be considered a heuristic [20]
“95% confidence interval” region around C(t).

The quantities Ns
t2

, ws
t2

, and Rα(t2) would be relevant
to commonly studied fixed-step finite-time methods only
interested in the impact at a fixed final time t2. In contrast,
the general expressions here catalog the time-variation during
the interval [t1,t2] as an added benefit.

III. ELEMENTARY FLOWS

Before using the width Eq. (9) in its generality, a situation
in which it provides a highly simplified formula will be
considered and related to intuition from elementary flows.
Appendix B details the simplifications to Eqs. (9) and (6),

which occur in two highly pertinent situations: the fluid
being incompressible (∇ · u = 0), and/or the diffusion being
isotropic and constant (σ = Id). While the reader is referred
to Appendix B for details, the simplification to Eq. (9) under
both incompressibility and isotropic constant diffusion will be
stated here:

ws
t = ε

(∫ t

t1

(
T s

ξ ;t

)2
dξ

)1/2

, (11)

where the relative local tangential expansion associated with
the determinstic flow is given by

T s
ξ ;t :=

∣∣∣∣∂xs
ξ

∂s

∣∣∣∣
/∣∣∣∣∂xs

t

∂s

∣∣∣∣, ξ ∈ [t1,t]. (12)

The word “relative” here means relative to the final time t .
The first observation from Eq. (11) is that if the flow

were still (i.e., u ≡ 0), then T s
ξ ;t = 1, and so ws

t = ε
√

t − t1
irrespective of the point on the curve, or the nature of the
curve, chosen. This is, of course, the classical expectation for
two-dimensional Brownian motion. In a more general flow,

062201-3



SANJEEVA BALASURIYA PHYSICAL REVIEW E 95, 062201 (2017)

-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1

-0.5

0

0.5

1

x 2

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
x1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

(b)

-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

(c)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 2

(d)

FIG. 3. Original curve (a), and subsequent advected curve points (cyan), with the deterministically advected curve (solid blue) and R2(t)
(dashed red), for the stochastic Duffing equation as described in Sec. IV: (b) t = 0.5, (c) t = 2, and (d) t = 5.

Eq. (11) indicates that the width is ε times the L2-norm
of the expansion rate T s

ξ ;t . Thus, the resulting width occurs
as an interaction between the stretching rate and Brownian
motion.

To elucidate this further, consider a steady extensional flow
that has a stretching rate of λ > 0 in a certain direction, and
suppose C(t1) is a line that lies along the direction of stretching.
Then, from Eq. (11),

ws
t = ε

(∫ t

t1

(
eλξ

eλt

)2

dξ

)1/2

= ε

(
1 − e2λ(t1−t)

2λ

)1/2

. (13)

For small t − t1, ws
t ∼ ε

√
t − t1 independent of λ, and for

large t , this asymptotes to the constant value ε/
√

2λ. The small
t − t1 limit is exactly what is expected of the standard deviation
of the absolute dispersion in hyperbolic flow regions [21–23],
and the long-time constant value represents the limiting
situation in which the diffusion balances the stretching. In
contrast, if C(t1) were taken to be a straight line normal to
the direction of stretching, the width expansion for all times

would be given by the Brownian form ws
t = ε

√
t − t1, which

does not approach a constant.
For the more general width expression, Eq. (9), the

interaction between the stretching rate and the diffusion is
more complex, and its impact will be assessed in two more
examples.

IV. DUFFING OSCILLATOR

The first numerical validation of the results will be
performed using the standard Duffing oscillator model [24],

ẋ1 = x2

ẋ2 = x1 − x3
1 + 0.2 sin (2πt)

, (14)

in which particular choices have been made for the parameters
in the time-periodic forcing, as the unsteady flow Eq. (2). For
the corresponding stochastic differential Eq. (3), take

σ (x1,x2,t) =
(

1 + 3 cos (5x2) sin (πx1)(
x1 − 3

2

)
x2

2 ex2

)
, (15)
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FIG. 4. Several choices of initial curves seeded with 1000 points [left panel], and their resulting stochastic advection [right panel] under
the Duffing flow to time t = 0.5.

which is inhomogeneous across the domain. Different parts of
an advected curve will therefore experience different diffusion
depending on where they are located at each time instance of
advection. Throughout this example, the initial time is t1 = 0,
and ε = 0.02 is chosen. In numerically advecting the stochastic
differential Eq. (3), the Euler-Maruyama scheme [25] is used.
To maintain the fact that the stochasticity is considered small
in comparison to the base flow Eq. (14), it is necessary to
have |ε| � √

�t , where �t is the time-step used in the Euler-
Maruyama scheme. Consequently, the choice �t = 0.01 is
made.

For the first numerical experiment, the closed circular
blue curve as shown in Fig. 2(a) is considered. This is
seeded with 1000 points, and each point is advected under
the stochastic differential Eq. (3) with σ given by Eq. (15).
The dashed curve shown in Fig. 2(a) is the heteroclinic loop
of the Duffing system in the absence of forcing; the forced
system Eq. (14) has chaotic bands occurring nearby these
dashed curves. The points on the blue curve were advected
using the Euler-Maruyama scheme to generate 1000 points
at the time t , thereby obtaining points along one realization

of the curve C(t). The 105 points resulting from performing
100 such simulations are shown collectively in the other
subfigures of Fig. 2, at different final times t , as cyan dots.
The solid blue curve in each figure is the deterministically
advected curve, whereas the cyan dots scatter around it. The
dashed red boundary drawn around this was computed using
Eq. (9) and identifies R2(t) (i.e., the heuristic for the 95%
confidence interval). In this case, the velocity field Eq. (14)
is area-preserving, and thus the term ∇ · u = 0, leading to
simplifications in Eq. (9). In performing this computation, it
was necessary to keep track of the deterministically advected
curve, and also compute the derivative of the curve location
with respect to the parameter s. This was accomplished by
thinking of s, which parametrizes the blue curve in Fig. 2(a)
as simply being an index assigned to each point (so s ∈
{1,2, . . . ,1000} in this instance). Then, at any subsequent time
ξ , the quantity ∂xs

ξ /∂s could be numerically approximated by
xs+1

ξ − xs
ξ , and inserted into Eq. (9).

In Figs. 2(b) and 2(c), the simulations show regions where
there is large scattering from the deterministic curve and other
regions where the normal dispersion is small. The theoretical

062201-5



SANJEEVA BALASURIYA PHYSICAL REVIEW E 95, 062201 (2017)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
N1

0

1

2

3

4

5

6

7

8

9

f(
N

1)

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
N1

0

0.5

1

1.5

2

2.5

3

3.5

4

f(
N

1)

(b)

-3 -2 -1 0 1 2 3 4
N1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f(
N

1)

(c)

ln E 1.313 2.29 ln Ε

4.5 4.0 3.5 3.0 2.5 2.0
9

8

7

6

5

4

3

ln Ε

ln
E

(d)

FIG. 5. A comparison between the frequency statistics f (N1) of the numerically simulated N1 (red circles), its imputed normal distribution
(dashed red curve), and theoretical (normalized) distribution (solid blue curve) for (a) ε = 0.03, (b) ε = 0.07, and (c) ε = 0.15 for the Duffing
flow as described in the text. (d) Variation of the error Eq. (16) with ε (blue dots) and a linear fit.

(red-dashed) region does an excellent job of capturing this
varying stochastic width along the curve. The regions in
which there are bulges, and regions in which the stochastic
simulations are mostly pinched toward the blue deterministic
curve, are well approximated. By Fig. 2(d), the R2 still
delineates the scatter quite well, but some difficulties have
emerged, which illustrates why Rα cannot be rigorously
thought of as an envelope in general. The reason for this
is that there are several points at which the deterministic
curve has large curvature, and hence the normal vector to
this curve—the direction in which the stochastic width is
computed in Eq. (9)—undergoes a sharp transition. Basically,
if the local osculating circle has radius of the order of ε or
smaller, Eq. (10) with r = ±αws

t , with the sign chosen such
that one is going in the direction of the osculating circle,
can lead to multivaluedness. Intuitively, these difficulties arise
when the curve folds unduly. This is certainly the expectation
when curve points pass through the chaotic zone, which leads
to the stretching and folding behavior whose inception is
visible in Fig. 2(d). If the curve has significantly folded, of

course, expressing a stochastic widening zone makes less
sense.

Tests were also performed by seeding many more points
(∼105). The scattered points filled in the R2(t) in an even
more conclusive fashion than in Fig. 2, respecting the thicker
and thinner regions. (These are not shown here because of the
size of the figure files becomes unwieldy.)

Next, the alternative initial curve as shown in Fig. 3(a)
is considered. As chosen, this is almost tangential to the
stable manifold at the origin. As time progresses, the advected
deterministic curve is expected to approach the unstable
manifold of the hyperbolic trajectory of Eq. (14) that moves
around in a periodic fashion near the origin. The solid
blue curves (again with 100 simulations) in Figs. 3(b)–3(d)
illustrate the time-evolution of this approach. By t = 0.5, the
deterministic curve shortens, but the stochastic expansion in
the normal direction is large because the unstable manifold’s
attraction is roughly in the same direction. As time progresses,
the curve gets pulled along the unstable manifold. Once again,
the shape of R2(t) captures the thickness of the stochastic
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FIG. 6. Original curve (a), and subsequent advected curve points (cyan), with the deterministically advected curve (solid blue) and the
theoretical zone R2(t) (dashed red), for the flow Eq. (17) stochastically perturbed with σ = Id. The flow Eq. (17) is expanding above the dashed
black curve. (b) t = 0.1, (c) t = 0.2, and (d) t = 0.3.

widening displayed by the simulations. Notice, however, that
the number of numerical iterates near the origin is very small
by t = 5; this is since the unstable manifold pulls iterates out at
an exponential rate. While not populated by sufficiently many
simulations to enable a comparison in Fig. 3(d), a theoretical
width assessment in the vicinity of this hyperbolic trajectory
is computable. A verification (not shown) that this width does
indeed recover the stochastic behavior near the hyperbolic
trajectory at t = 5 was performed by seeding many more
particles near the origin in the initial curve of Fig. 3(a).

Figure 4 examines two other initial curves [left panel] and
their resulting stochastic advection [right panel]. Generically,
the expectation is that all curves would eventually get squashed
onto the unstable manifold, and the final uncertainty would
be that associated with the unstable manifold. The curves
may fold while getting attracted to the unstable manifold,
and eventually, characterizing their normal widening becomes
meaningless. However, during the transient process, the width
expressions are meaningful, as is illustrated by the usage of
R2(0.5) for the two examples in Fig. 4.

Next, the statistics associated with simulations will be
compared to the first-order theoretical standard deviation and
mean in Eqs. (9) and (7), and the fact that the error is
second-order will be verified. The point (0.5,0.5) is fixed
as the initial condition xt1 = x0 (i.e., t1 = 0). The curve
C(t1) will be a curve passing through this point with local
slope 1. The idea is to numerically compute Nt as given in
Eq. (6) at time t = 1, where the s subscript is unnecessary
because only one point on the curve is being considered. For
computing the local normal and tangent vector, the two points
x±

0 = x0 ± (δ/
√

2)(1 1)�, where δ is small (here taken to be
fixed at 0.001) are evolved along with xt . The statistics of N1

from 104 simulations is shown in Fig. 5(a), in which ε = 0.03
was used, and f (N1) is the density of the distribution. The
red circles are the frequencies obtained from the Monte Carlo
simulations of the 104 points, and the red dashed curve is the
normal distribution imputed by using the mean and standard
deviation of the simulations. It appears that the distribution
is, in fact, approximately normal. The solid blue curve is
a normal distribution computed using the theoretical mean
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FIG. 7. A comparison of the frequency statistics f (N0.3) (red circles), its imputed normal distribution (dashed red curve), and theoretical
(normalized) distribution (solid blue curve) for (a) ε = 0.08, (b) ε = 0.4, and (c) ε = 0.7 for the compressible flow as described in the text.
(d) Variation of the error Eq. (16) (with subscript 0.3) with ε (blue dots) and a linear fit.

of 0 (from Eq. (7)) and standard deviation (from Eq. (9)).
Figures 5(b) and 5(c) show similar simulations at larger ε, with
all other parameters kept constant. The agreement between the
numerical simulations and the O(ε) theory clearly worsens as
ε increases. To analyze the ε-dependence, define the error
function

E = |
√

Var(N1) − w1|, (16)

where the variance of N1 is numerically computed from the
104 simulations, and w1 from the O(ε) expression, Eq. (9).
Figure 5(d) compares ln E with ln ε. The computed slope of the
log-log plot indicates that the error goes as O(ε2.29), validating
the fact that Eq. (9) was claimed to be correct to O(ε2). It
should be noted that if ε is pushed to smaller numbers, it
will be necessary to make δ smaller, to ensure that the errors
associated with the normal vector computation are of much
smaller size than the standard deviation; here, the fixed value
of 0.001 chosen satisfied this over the range of ε considered.
Several other simulations with different choices of x0 and local

orientations of the curve going through x0 were performed (not
shown) and yielded similar results.

V. A COMPRESSIBLE FLOW

This example is to specifically elucidate the role of the
compressibility of the flow. To remove deterministic temporal
effects, consider

ẋ1 = x3
1

ẋ2 = 2x2
2

, (17)

and let σ = Id (constant isotropic diffusion) initially. In
this case, ∇ · u = 3x2

1 + 4x2, which is positive when x2 >

−(3/4)x2
1 . Since areas chosen within this region expand under

the flow Eq. (17), the expectation is that the stochastic width
would be larger in this region, and indeed smaller in the region
x2 < −(3/4)x2

1 in which areas compress. The theoretical
estimate Eq. (9) incorporates this information in the ∇ · u
term in the interior integral, and the idea here is to verify
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FIG. 8. Original curve (a), and subsequent advected curve points (cyan), with the deterministically advected curve (solid blue) and the
theoretical region R2(t) (dashed red), for the flow Eq. (17) stochastically perturbed with σ (x,t) = χ[0.5,1](t) Id: (b) t = 0.5, (c) t = 1, and
(d) t = 1.2.

that this captures the combined effects of compressibility and
stochasticity.

Figure 6 shows the result of advecting an initial line,
shown in Fig. 6(a), by the corresponding stochastic differential
equation, in which ε = 0.02. The Euler-Maruyama algorithm
uses �t = 0.01, to retain the fact that the stochasticity is
considered small (i.e., ε � �t). Given the facts that the
accuracy of the algorithm is O(�t), and the flow Eq. (17)
has rapid expansion in x2 when x2 > 0, numerics can only be
computed for relatively short time periods for this choice of
parameters. The quantity ∇ · u > 0 above the dashed curve
x2 = −(3/4)x2

1 shown in all the figures. As expected, the
stochastic trajectories that are within this region for a longer
time experience more dispersion, whereas those below the
curve [i.e., in the region in which Eq. (17) is compressing] are
more tightly situated around the blue curve of deterministic
advection. The region R2(t) is shown by the red dashed curves
and is seen to capture the behavior well.

The next task is to quantitatively verify the standard
deviation and order of the error. The same initial point, local

tangent, and number of simulations (104) as for the analogous
investigation for the Duffing equation were used. However,
here the calculations were done until a final time of 0.3 using
�t = 0.001, and consequently, N0.3 is the random variable
whose statistics were analyzed. Figures 7(a)–7(c) show the
frequency statistics generated at different ε values, using the
same notation as for Fig. 5. There is asymmetry at the largest
value of ε pictured, with a long (but thin) tail extending in
the negative N0.3 direction. However, the distribution appears
to approach normality for smaller ε. Figure 7(d) shows the
ε-dependence of the error E [as defined in Eq. (16) but with
the subscript 0.3] in the standard deviation, and in this case it
appears that the error is ∼O(ε4), amply justifying the claim
that Eq. (9) was correct to O(ε2). The higher accuracy may be
because the deterministic flow is regular (unlike in the Duffing
example) in spite of being compressible.

Finally, the impact of time-variation in σ is considered,
by taking σ (x,t) = χ[0.5,1](t) Id, where χ is the indicator
function. This means that the stochasticity is only operating
for t ∈ [0.5,1]. The stochastic advection is now performed
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with the circle as shown in Fig. 8(a) as the initial curve.
Here, the calculations can be performed for a longer time than
the previous ones, since this lies in x2 < 0 [the line x1 = 0
is invariant for Eq. (17), and so this curve cannot venture
into the region x2 > 0 to experience substantial expansion
in x2], and is also within the compressing region for some
time. There is no uncertainty at t = 0.5, since the stochasticity
only kicks in at this point. The (red-dashed) region boundary
curves fall exactly on the (blue) deterministic curve in this
instance. By t = 1, stochastic trajectories have dispersed
around the curve, and by t = 1.2, this dispersion persists,
although there is no accumulated dispersion from the motion
for t ∈ [1,1.2] because the stochasticity has been switched off.
Once again, the theoretical region R2(t) shown in red does well
at elucidating this behavior (though by t = 1.2, the advected
curve is acquiring sufficient bending at the left- and right-most
points to render the width expressions less useful).

VI. CONCLUDING REMARKS

This article has established a method for characterizing
the impact of stochasticity on curves advected by an un-
steady determinstic two-dimensional flow over a finite time.
Specifically, the focus was on how the random curves “widen”
from the deterministic curve, and the expectation and variance
of this widening was obtained to leading order. The theory
allows for the deterministic flow to be compressible, and for
the stochastic perturbation to be driven by a Wiener process
with spatiotemporally varying diffusion. The width expres-
sions were verified for several examples, by comparing with
numerical simulations of the relevant stochastic differential
equation using the Euler-Maruyama scheme, and excellent
agreement was obtained.

The methodology here is a first step in the pursuit for
understanding how stochasticity impacts large scale emergent
flow structures in unsteady flows—a topic recently flagged for
its importance [26]. In the purely determinstic case, there are
a range of methods (falling under the umbrella of Lagrangian
coherent structures [2–4]), which try to find flow structures
which are pertinent to transport. One future application of
the current method would be to analyze the robustness to
stochasticity of curves which emerge as important transport
entities. Such a curve could, for example, be a stable or
unstable manifold [3], the outermost curve which demarcates
a Lagrangian eddy [27], a strong ridge curve of a finite-
time Lyapunov exponent field [2,28], a curve expressing a
sharp gradient of a relevant observable such as sea-surface
temperature [10], etc. Many of these are usually obtained from
numerical simulations of a deterministic velocity field, and
therefore the methods of this article allow for characterizing
the stochastic uncertainty of such entities. A concurrent study
[29] on quantifying the stochastic uncertainty of stable and
unstable manifolds is underway.

Another direction in which the present approach offers
promise is in the potential for determining the stochastic
susceptibility for entities other than curves (for example,
regions such as the interior of an eddy). This might be
accomplished by examining general points in space and
developing a theory for the widening at each such point in
relation to all local curves passing through it (the statistical

analyses of Figs. 5 and 7 examined only one such curve). This
could establish the notion of the stochastic susceptibility of
each point in space, and promising steps have been made in this
direction (to be reported in a future paper). In these approaches,
the fundamental issue that is being addressed is the interaction
between structures associated with the deterministic dynamics
and stochasticity. Are there particular aspects of deterministic
structures that can be identifiable as being more susceptible
to stochasticity? Are there structures that are particularly
robust? Pursuing these and allied ideas will lead to a better
understanding of the impact of stochasticity (or under-resolved
or unmodeled effects) on transport and coherent structures in
unsteady flows.
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APPENDIX A: PROOF OF RANDOM NORMAL
DISPLACEMENT EQUATION (6)

Fix t ∈ [t1,t2], and let ξ ∈ [t1,t] be the temporal variable
expressing the evolution from time t1 to t . Since xs

ξ is a solution
to Eq. (2),

∂xs
ξ

∂ξ
= u

(
xs

ξ ,ξ
)
.

Differentiating with respect to s leads to

∂

∂ξ

(
∂xs

ξ

∂s

)
= ∇u

(
xs

ξ ,ξ
) ∂xs

ξ

∂s
,

which states that ∂xs
ξ /∂s is a solution to the equation of

variations of Eq. (2). Henceforth in this proof, s shall be fixed,
and the notation

xξ := xs
ξ , yξ := ys

ξ , and Sξ := ∂xs
ξ

∂s

will be adopted (i.e., the superscript s will be dropped). Thus,

ẋξ = u(xξ ,ξ ) and Ṡξ = ∇u(xξ ,ξ ) Sξ . (A1)

Next, define the Itô process

Mξ ( yξ ) := ( yξ − xξ ) · S⊥
ξ = ( yξ − xξ )�S⊥

ξ (A2)

for solutions yξ to the stochastic differential Eq. (3). Upon
defining

J :=
(

0 −1
1 0

)
,

it is clear that the operation ⊥ is equivalent to premultiplication
by J . Thus,

Mξ ( yξ ) = ( yξ − xξ )�J Sξ (A3)
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and moreover from Eq. (4),

Mξ ( yξ ) = Ns
ξ

∣∣∣∣∂xs
ξ

∂s

∣∣∣∣ = Ns
ξ |Sξ |, ξ ∈ [t1,t]. (A4)

Itô’s lemma [16,17] applied to the Itô process Eq. (A3) now
states that

dMξ =
[
∂Mξ

∂ξ
+ (∇Mξ )�u + 1

2
Tr{(εσ )�(∇∇Mξ )(εσ )}

]
dξ

+ (∇Mξ )�(εσ )dW ξ ,

where ∇Mξ represents the derivative of Mξ with respect to its
yξ argument, and ∇∇Mξ is the Hessian with respect to yξ .
Fortunately, Mξ is linear in y, and the Hessian contains only
zero entries. This allows the expression

dMξ =
[
∂Mξ

∂ξ
+ (∇Mξ )�u

]
dξ + (∇Mξ )�(εσ )dW ξ ,

where the spatial argument of every term is yξ and the temporal
argument is ξ . Taking the appropriate derivatives of Eq. (A3)
yields

dMξ = [( y − xξ )�J Ṡξ − ẋ�
ξ J Sξ + (J Sξ )�u]dξ

+ ε(J Sξ )�σdW ξ

= [( y − xξ )�J∇u(xξ ,ξ )Sξ − u(xξ ,ξ )�J Sξ

+ (J Sξ )�u( y,ξ )]dξ + ε(J Sξ )�σ ( y,ξ )dW ξ

= [( y − xξ )�J∇u(xξ ,ξ )Sξ − u(xξ ,ξ )�J Sξ

+ (J Sξ )�u(xξ ,ξ ) + (J Sξ )�∇u(xξ ,ξ )( y − xξ )]dξ

+ ε(J Sξ )�σ (xξ ,ξ )dW ξ + O(ε2),

where Eq. (A1) has been used for the second equality, and
a Taylor expansion of u( y,ξ ) and σ ( y,ξ ) around (xξ ,ξ ) in
the third. Since integration will only be done over a finite-
time, y − xξ is O(ε), and hence the next-order terms in the
Taylor expansion are O(ε2) as long as the second-order spatial
derivatives of u and the first-order spatial derivative of σ are
bounded in � × [t1,t2]. The second and third terms—each
being the dot product between u and J Sξ —cancel. Next, the
identity

b�JA c + (J c)�A b = (Tr A)b�J c (A5)

for 2 × 1 vectors b and c, and any 2 × 2 matrix A, is asserted
[30]. Setting A = ∇u, b = y − xξ and c = Sξ , and realizing
that Tr (∇u) = ∇ · u leads to

dMξ = [(∇ · u)( y − xξ )�J Sξ ]dξ

+ ε(J Sξ )�σ dW ξ + O(ε2)

= [(∇ · u)Mξ ]dξ + ε(J Sξ )�σ dW ξ + O(ε2),

where u and σ are both evaluated at the spatio-temporal values
(xξ ,ξ ). Using the standard integrating-factor approach permits
the rewriting

d
[
e
− ∫ ξ

t1
[∇·u](xη,η)dη

Mξ

]
= εe

− ∫ ξ

t1
[∇·u](xη,η)dη(J Sξ )�σ (xη,ξ )dW ξ + O(ε2).

Now, since at time t1 the curves C and C coincide, Ns
t1

= 0 for
any s. Therefore, from Eq. (A4), Mt1 ( yt1 ) = 0. The integral
formulation of the above at a general time t then becomes

Mt ( yt ) = ε

∫ t

t1

e
∫ t

ξ
[∇·u](xη,η)dη(J Sξ )�σ (xξ ,ξ )dW ξ + O(ε2),

(A6)

where the error remains O(ε2) since the integration is over a
finite time interval. Finally, applying the connection Eq. (A4)
between Mt and Ns

t and reverting to the original notation gives
the result Eq. (6), in which the O(ε2) terms have been omitted.

APPENDIX B: CLARIFICATIONS TO
EQUATIONS (6) AND (9)

First, a very rough estimate is made of the time-interval in
which using Eq. (9), the O(ε) part of the full expression,
could be deemed legitimate. Going through the derivation
in Appendix A, it is clear that when expressing d Mξ , the
O(ε2) terms include both dξ and dW ξ terms. Thus, when
integrated, this would result in bounds of the form C1(t − t1)
and C2

√
t − t1 for constant Ci . In investigating the largest time

validity, the larger of these needs to be taken. Now, it is exactly
this term that gets carried over to the determination of ws

t , and
thus for the O(ε) term of ws

t as given in Eq. (9) to be of greater
relevance than the next-order term, the requirement is

ε
( ∫ t

t1
e

2
∫ t

ξ
[∇·u](xs

η,η)dη
∣∣σ�(

xs
ξ ,ξ

)( ∂xs
ξ

∂s

)⊥∣∣2
dξ

)1/2∣∣ ∂xs
t

∂s

∣∣
	 C1ε

2(t − t1).

Estimating the terms on the left with some constant bound C2

yields

C2ε
√

t − t1 	 C1ε
2(t − t1) ⇒ √

t − t1 � C
1

ε
,

which indicates that the time-validity of the first-order Eq. (9)
goes as t − t1 ∼ ε−2. However, there is a caveat to this: Eq. (9)
also loses validity if the deterministic curve folds unduly,
because in that case the normal vector n̂s

t changes too rapidly
with s for ∪s[xs

t ± εαws
t n̂s

t ] to meaningfully define a curve
widening.

Next, simplifications to the random width Eq. (6) and its
standard derivation Eq. (9) are addressed.

(1) If the fluid is incompressible, ∇ · u = 0, and thus

Ns
t = ε

∫ t

t1

([ ∂xs
ξ

∂s

]⊥)�
σ
(
xs

ξ ,ξ
)
dW ξ∣∣ ∂xs

t

∂s

∣∣ (B1)

and

ws
t = ε

( ∫ t

t1

∣∣σ�(
xs

ξ ,ξ
)( ∂xs

ξ

∂s

)⊥∣∣2
dξ

)1/2∣∣ ∂xs
t

∂s

∣∣ . (B2)

(2) If the Wiener process is derived from a Brownian
motion, which is not modulated by any spatial or temporal
dependence, and with the Brownian motions in the two
coordinate directions uncorrelated, then σ = Id (the identity).
This can be thought of as the situation of constant and isotropic
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diffusion. Then,

Ns
t = ε

∫ t

t1
e
∫ t

ξ
[∇·u](xs

η,η)dη
( ∂xs

ξ

∂s

)⊥ · dW ξ∣∣ ∂xs
t

∂s

∣∣ , (B3)

and moreover the ⊥ sign can be deleted from the w expression,
resulting in

ws
t = ε

( ∫ t

t1
e

2
∫ t

ξ
[∇·u](xs

η,η)dη
∣∣ ∂xs

ξ

∂s

∣∣2
dξ

)1/2∣∣ ∂xs
t

∂s

∣∣ . (B4)

(3) If the fluid is incompressible and the diffusion is
isotropic, then

Ns
t = ε∣∣ ∂x

∂s
(s,t)

∣∣
∫ t

t1

(
∂xs

ξ

∂s

)⊥
· dW ξ , (B5)

ws
t = ε

( ∫ t

t1

(∣∣∣∣∂xs
ξ

∂s

∣∣∣∣
/∣∣∣∣∂xs

t

∂s

∣∣∣∣
)2

dξ

)1/2

. (B6)

It is this last expression that is rewritten in Eq. (11). It
should also be borne in mind that in all the expressions given
for Ns

t and ws
t in this Appendix, there should be an additive

O(ε2) term, which has been omitted for brevity.
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