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Continuous-variable approach to the spectral properties and quantum
states of the two-component Bose-Hubbard dimer
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A bosonic gas formed by two interacting species trapped in a double-well potential features macroscopic
localization effects when the interspecies interaction becomes sufficiently strong. A repulsive interaction spatially
separates the species into different wells while an attractive interaction confines both species in the same well.
We perform a fully analytic study of the transitions from the weak- to the strong-interaction regime by exploiting
the semiclassical method in which boson populations are represented in terms of continuous variables. We find
an explicit description of low-energy eigenstates and spectrum in terms of the model parameters which includes
the neighborhood of the transition point. To test the effectiveness of the continuous-variable method we compare
its predictions with the exact results found numerically. Numerical calculations confirm the spectral collapse
evidenced by this method when the space localization takes place.
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I. INTRODUCTION

Many-boson systems described in the Bose-Hubbard pic-
ture are characterized by density-density interactions whose
nonlinear character determines an extraordinarily rich scenario
of dynamical behaviors and properties. In this framework and
among many interesting aspects, a lot of attention has been
focused on small bosonic lattices since they provide a fertile
ground to investigate the quantum-classical correspondence
and the role of nonlinear interactions [1–13]. While the
semiclassical approaches [14–16] to this class of systems
are generally not problematic, their study at the purely
quantum level remains a considerably difficult task and the
diagonalization of quantum Hamiltonians mainly relies on the
use of numerical techniques.

An effective analytical method which has allowed re-
searchers, in many situations, to circumvent this difficulty
consists in reformulating the dynamics of low-energy bosonic
states in terms of continuous variables (CVs) which represent
the quantum numbers of boson populations. Fock states are
thus transformed in wave functions depending on the CV
while the energy-eigenvalue equation can be reduced, in the
low-energy regime, to the problem of a multidimensional
harmonic oscillator.

This scheme has found many applications in the last
two decades for studying the spatial fragmentation [17]
and the spectral properties [18] of condensates trapped in
a double-well potential, the critical behavior [19] and the
dynamical phase transition [20,21] leading to the emergence
of localized ground states in attractive condensates, and
the collapse and revival [22] of nonlinear tunneling in
Bose-Hubbard (BH) chains.

While the CV approximation can be directly carried out on
the energy-state eigenvalue problem to reduce it to a solvable
differential equation as in Refs. [17–22], a simple but useful
generalization of this method consists in the derivation of an
effective Hamiltonian associated with the original model. This
has been used to reduce the BH chain to a solvable phonon-like
quadratic Hamiltonian [23] and to show how the potential

provided by the effective Hamiltonian completely determines
the ground-state properties of the attractive BH trimer [24] and
of a gas of dipolar bosons in a four-well ring [25].

In this paper we apply the CV method to reproduce the
mechanism governing the spectral collapse of energy levels, a
phenomenon which often marks critical phenomena involving
the transition to new dynamical regimes. This is the case
for nonlinear BH-like models but also for models describing
matter-photon interactions whose nonlinearity is inherent
in the spinor form of their Schrödinger problem. Several
examples are known such as the transition to the super-radiant
phase in the Dicke model, exhibiting the emergence of a
quasicontinuous spectrum [26], and the interaction-induced
spectral collapse characterizing the two-photon quantum Rabi
model [27] in which the Hamiltonian becomes unitarily
equivalent to a noncompact generator of su(1,1) [28].

The same effect distinguishes as well the transition of
single-depleted-well states from stable to unstable regimes
in the BH trimer [11,29], and the emergence from the
delocalization regime of a fully localized ground state in a
double-well system (dimer) with two bosonic components
[30]. The dimer system involving binary mixtures has recently
raised considerable interest, and its dynamical stability [31],
different types of self-trapping solutions [32], the Rabi-
Josephson dynamics [33], low-energy quantum states [34],
and interspecies entanglement properties [35] have been
investigated. A more extensive discussion on the nonlinear
dynamics of multicomponent systems described in terms
of discrete nonlinear Schrödinger equations and of their
modulational instability can be found in Refs. [36–38].

In Ref. [30], the two-component BH dimer has been
investigated, and its exact spectrum has been compared with
the spectrum derived through a Bogoliubov-like scheme.
The derivation of the latter, however, revealed how the
implementation of this semiclassical approximation strongly
depends on the dynamical regime in which is performed.
More specifically, different dynamical regimes involve totally
different sets of microscopic bosonic modes enabling the
diagonalization process. In addition, the complex structure
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of the energy eigenstates resulting from this process is such
that extracting the significant physical information often is a
nontrivial task.

In this paper, the CV method is shown to offer a unified
effective scheme able to determine the spectrum for any choice
of the model parameters, and to supply a complete description
of the spectral collapse emerging in the transition from the
weak to strong-interaction regime. The study of a model
including the occurrence of a known critical phenomenon
allows us to better test the effectiveness of this method, a
central aspect of this work.

After deriving the effective Hamiltonian for the two-
component dimer in terms of continuous variables and the
relevant minimum-energy configurations, we apply the CV
method to reconstruct the energy levels of the systems and
the explicit expression of the corresponding eigenstates.
We demonstrate as well how this methodology effectively
describes, in a fully analytic way, the mechanism of the
transition (heralded by the spectral collapse) from a ground
state with delocalized boson populations to a ground state
where boson populations become strongly localized.

In Sec. II we review the CV method and derive the model
Hamiltonian for the two-component dimer Hamiltonian within
this scheme. Section III is devoted to solving the boson-
population equations incorporating the information about the
minimum-energy configurations. In Sec. IV, we reconstruct
the spectrum and the eigenstates. Finally, Sec. V is devoted to
compare exact results, found numerically, with the spectrum
and the eigenstates derived through the CV method.

A. The two-component dimer model

Ultracold bosons trapped in two potential wells are well
described by the two-mode BH Hamiltonian

Ha = Ua

2 [a†
La

†
LaLaL + a+

R a+
R aRaR] − Ja(a+

L aR + a+
R aL),

where L (R) refers to the left (right) well, and the boson opera-
tors aL, a+

L , aR , a+
R satisfy the standard commutator [aσ ,a+

σ ] =
1 with σ = L,R. Parameters Ua and Ja are the boson-boson
interaction and the hopping amplitude, respectively. In the
presence of two interacting atomic species, the spatial modes
become four, aL, aR , and bL, bR , for the components A and
B, respectively. The microscopic dynamics of the system
is described by the two-species dimer Hamiltonian (TDH)
defined on a two-site lattice

Ĥ = Ha + Hb + W (a+
L aLb+

LbL + a+
R aRb+

RbR), (1)

where Ha and Hb are the single-species Hamiltonians, and
the interspecies interaction W describes the coupling of the
two components. The further hopping parameter Jb and
intraspecies interaction Ub occur in Hb describing the second
component. Since the total boson numbers

Na = NaL + NaR, Nb = NbL + NbR

(Nar = a+
r ar , Nbr = b+

r br , r = L,R) of each bosonic compo-
nent are conserved quantities being [H,Na] = [H,Nb] = 0,
the eigenvalues of Na and Nb represent two further significant
parameters. We shall denote the boson numbers of the two
species with the same symbols Na and Nb of their number
operators.

II. THE CONTINUOUS-VARIABLE METHOD

A useful description of the low-energy scenario of mul-
timode bosonic models can be obtained by observing that
physical quantities depending on the local populations ni (the
eigenvalues of number operators n̂i = ĉ

†
i ĉi) can be reformu-

lated in terms of continuous variables xi = ni/N representing
local densities [17–19]. For boson number N = ∑

i ni large
enough, Fock states |�n〉 = |n1,n2, . . . ,nL〉 ≡ |x1,x2, . . . ,xL〉,
can be interpreted as functions of variables xi , and creation
and destruction processes ni → ni ± 1 correspond to small
variations |x1, . . . ,xi ± ε, . . . ,xL〉 of state |x1, . . . ,xi, . . . ,xL〉,
where ε = 1/N � 1. Such an approach, in addition to sim-
plify the energy-eigenvalue problem associated to a multimode
Hamiltonian H , also leads to a new effective Hamiltonian
written in terms of coordinates xi and of the corresponding
generalized momenta [24]. A well-known example [25] is
provided by the BH Hamiltonian defined on a one-dimensional
lattice

Ĥ = U

2

∑M

i=1
n̂i(n̂i − 1) − J

∑
rs

Ars ĉ
†
r ĉs ,

where M is the lattice-site number, r,s ∈ [1,M], and the
adjacency matrix Ars is equal to 1 for s = r ± 1 and zero
in the other cases. By expanding up to the second order
the quantity Ĥ |E〉 in the corresponding eigenvalue problem
Ĥ |E〉 = E|E〉, the latter takes the CVP form

(−D + V ) ψE(�x) = E ψE(�x) , (2)

including the generalized Laplacian

D = N2Uτ
∑
rs

ε2

2
Ars (∂r − ∂s)

√
xr xs(∂r − ∂s),

with τ = J/(NU ), and the effective potential

V = N2U

M∑
r=1

[
1

2
xr (xr − ε) − 2τ

√
xr xr+1

]
.

The solutions ψE(�x) to problem (2) are easily found by
considering the eigenvalues E close to the extremal points
(minima and maxima) of V where the latter can be reduced
to a quadratic form, namely, to a multidimensional harmonic
oscillator. Once ψE(�x) has been determined, the eigenstates of
the original eigenvalue problem for Ĥ are found to be |E〉 =∑

�x ψE(�x)|�x〉. At the operational level, in addition to obtaining
an approximation of the energy spectrum, which seems to be
effective (this aspect has been explored in Ref. [24] for the
attractive BH model), one can exploit potential V to obtain
significant information about the ground-state configurations
and its characteristic regimes when the model parameters are
varied. In the sequel, we focus our attention on V and on the
relevant extremal-point equations ∂V/∂xi = 0, which allow
us to determine at each lattice site the boson populations
characterizing the ground state.

A. The TDH in the continuous-variable picture

The application of the CV method to the TDH defined by
(1) yields the new eigenvalue equation

HψE(�x,�y) = E ψE(�x,�y), (3)
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where �x = (xR,xL) and �y = (yR,yL) and xk = nk/Na and
yk = mk/Nb with k = L,R describe the populations of species
a and b, respectively, Concerning Na and Nb one should
recall that the total boson number Na = nL + nR and Nb =
mL + mR of the two species are conserved quantities. H
contains the generalized Laplacian D = Dx + Dy in which,
in addition to

Dx = NaJaε
2
a (∂xL

− ∂xR
)
√

xL xR(∂xL
− ∂xR

),

one must include Dy , due to the second component. Dy is
found by replacing NaUaε

2
a with NbJbε

2
b and x with y, where

εr = 1/Nr and r = a,b. Then H becomes

H = τaε
2
a (∂xL

− ∂xR
)
√

xL xR(∂xL
− ∂xR

)

+τbε
2
b (∂yL

− ∂yR
)
√

yL yR(∂xL
− ∂xR

) + V

whose potential V has the form

V = −γ + ua

2

(
x2

L + x2
R

) + ub

2

(
y2

L + y2
R

)
+w(xLyL + xRyR) − 2(τa

√
xR xL + τb

√
yR yL).

In V the new parameters γ = (UaNa + UbNb)/2 and

w = WNaNb, τk = JkNk, uk = N2
k Uk, (4)

with k = a,b, have been used. The conservation of boson
populations Na and Nb, represented by equations 1 = xR +
xL, and 1 = yR + yL implies that two of the four coordinates
xi and yj can be seen as dependent variables. By introducing
the new population-imbalance variables x = xL − xR and
y = yL − yR the bosonic populations are thus described by
xL = (1 + x)/2, xR = (1 − x)/2, yL = (1 + y)/2, and yR =
(1 − y)/2 while the effective Hamiltonian (EH) takes the form

H = −D − γ + ua

4
(1 + x2) + ub

4
(1 + y2)

+w

2
(1 + xy) − (τa

√
1 − x2 + τb

√
1 − y2) (5)

with the Laplacian

D 	 2τaε
2
a

√
1 − x̄2

∂2

∂x2
+ 2τbε

2
b

√
1 − ȳ2

∂2

∂y2
.

The operator D has been approximated by introducing the
quantities x̄ and ȳ representing the values of x and y for which
V reaches one of its extremal values and the EH essentially
reduces to a model of coupled harmonic oscillators.

B. The semiclassical picture of TDH

It is interesting to highlight the link of TDH reduced to the
form (5) with the semiclassical version of TDH which exhibits,
as the most part of multimode boson models, a dynamics typi-
cally described by discrete nonlinear Schrödinger equations
[38]. The semiclassical picture, in which boson operators
ar and br are replaced by local order parameters αr and βr

(r = L,R), and the semiclassical Hamiltonian Hs associated
to (1) are discussed in Appendix A. Hs takes the form (A1)

Hs = ua

4
(1 + x2) + ub

4
(1 + y2) + w

2
(1 + xy)

−[τa

√
1 − x2 cos(2θx) + τb

√
1 − y2 cos(2θy)],

where x = (|αL|2 − |αR|2)/Na , y = (|βL|2 − |βR|2)/Nb are
imbalance variables, and θx , θy the relevant canonically
conjugate angle variables (see Appendix A). The Hamilton
equations are given by ẋ = {x,Hs}, ẏ = {y,Hs}, and, in the
specific case of θx and θy , by the formulas

h̄Naθ̇x = wy

2
+ uax

2
+ xτa cos(2θx)√

1 − x2
,

h̄Nbθ̇y = wx

2
+ uby

2
+ yτb cos(2θy)√

1 − y2
.

The calculation of the minimum-energy states requiring that
θx = θy = 0 shows that such equations exactly reproduce
Eqs. (6), discussed in the next section, determining the
extremal points of V . The search of the minimum-energy
configurations thus appears to be closely related to imposing
the stationarity condition for V , a key intermediate step in the
CV method.

III. BOSON-POPULATION EQUATIONS AND
GROUND-STATE CONFIGURATIONS

The minimum-energy configurations are obtained by im-
posing the stationarity conditions for the potential V , ex-
pressed by equations ∂V/∂x = 0 and ∂V/∂y = 0. These give
the boson-population equations

wy = −uax − 2xτa√
1 − x2

, wx = −uby − 2yτb√
1 − y2

. (6)

The latter allows one to identify the entire set of configurations
(x,y) corresponding to the extremal values of V = V (x,y)
and, in particular, the one describing the ground state.
Determining the expressions of x and y, written in terms of
the model parameters, allows one to derive the spectrum of the
EH.

A. Symmetric solutions with w > 0

The distinctive feature of this case is represented by the
assumptions ua = ub ≡ u and τa = τb ≡ τ leading to the
simplified system

wy = −ux − 2xτ√
1 − x2

, wx = −uy − 2yτ√
1 − y2

. (7)

We assume as well that both the effective interactions w (in-
terspecies) and u (intraspecies) are repulsive. The symmetric
form of Eqs. (7) implies that any solution necessarily satisfies
the condition y = −x. This property allows one to solve the
previous equations analytically. By setting y = −x one finds

wx = +ux + τ
2x√

1 − x2
,

giving the three solutions

x0 = 0 , x1 = ±
√

1 − 4τ 2

(w − u)2
. (8)

To identify the regime in which x0 = 0 = y0 is the ground state
we consider the second-order expansion of V around this point
by means of the coordinate representation x = (q + p)/

√
2
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and y = (q − p)/
√

2 in terms of the local variables q and p

(some details about this calculation are given in Appendix A).
From

V 	 w + u

2
− 2τ − γ + u + 2τ + w

4
q2 + u + 2τ − w

4
p2

one evinces that y0 = x0 = 0 is the ground state only if

u + 2τ > w,

namely, if interspecies interactions are weak enough.
In the opposite case, u + 2τ < w, the point x0 = y0 = 0

becomes a saddle point separating two symmetric minima.
The exploration of the parameter space is then completed by
determining the quadratic approximation of V close to the
two separated minima. The expansion of potential V around
y1 = −x1, with x1 given by (8), can be effected by using
the local parametrization x = x1 + q and y = y1 + p. The
potential takes the form

V 	 u − γ − 2τ 2

w − u
+ 1

4

(
u + w + |w − u|3

4τ 2

)
q2

+1

4

(
u − w + |w − u|3

4τ 2

)
p2, (9)

showing how the solution relevant to x1, y1 is an energy
minimum if u − w + |w − u|3/τ 2 > 0. The latter condition
reduces to w > u + 2τ making it evident that the solutions
associated with x1 indeed represent (symmetric) energy min-
ima. The double-minimum configuration then appears when
the (effective) interspecies interaction w becomes sufficiently
strong. For w − u → 2τ the macroscopic coalescence effect
takes place in which the solution x1 collapses into the origin
x0 = 0.

Summarizing, the weak-interaction regime features the
ground-state solution x = y = 0 with a uniform distribution
xL = xR = 1/2, and yL = yR = 1/2: the two components
are equally distributed in the two wells and thus totally
delocalized. In the strong-interaction regime one finds three
solutions, but x0 = 0 must be excluded. For x1 > 0 one has
the ground-state configurations xL = yR < xR = yL while
xL = yR > xR = yL is found when x1 < 0. These confirm
the effect of separation of the two components that, for w

large enough, tend to occupy different wells thereby resulting
strongly localized.

B. Symmetric case with w < 0

With an attractive (effective) interaction w < 0 Eqs. (7)
become

|w|y = ux + 2xτ√
1 − x2

, |w|x = uy + 2yτ√
1 − y2

,

which entail the simple, but substantial, change that solutions
must satisfy the identity x = y instead of y = −x (as the
repulsive case). Then, in addition to solution x ′

0 = y ′
0 = 0, one

discovers that the two nonuniform solutions are given by

x ′
1 = ±

√
1 − 4τ 2

(w + u)2
.

The derivation of the quadratic approximation of V in the
proximity of points relevant to such solutions (see Appendix
B) shows that x ′

0 = y ′
0 = 0 and x ′

1 = y ′
1 describe the minimum

energy in the regimes

|w| < u + 2τ, |w| > u + 2τ,

respectively. In particular, while solution x ′
0 = y ′

0 = 0 again
entails uniformly distributed and delocalized components as
in the repulsive case, solutions x ′

1 = y ′
1 are associated to the

boson-population distributions

xL = yL < xR = yR , xL = yL > xR = yR, (10)

showing how, for a sufficiently strong |w|, the two components
with attractive interaction tend to share the same well thus
describing populations localized and mixed.

C. Some remarks

The symmetric case includes the situation when the system
is formed by twin species. In this special case the fact that Ja =
Jb, Ua = Ub and Na = Nb implicitly entails that conditions
τa = τb and ua = ub are satisfied. Remarkably, if the twin-
species assumption is relaxed, it is still possible to describe,
within the current symmetric-solution case, infinitely many
situations corresponding to different choices of Nk , W , Uk ,
and Jk . To this end it is sufficient to vary such parameters
without violating the constraints w = WNaNb = const and

N2
a Ua = N2

b Ub , JaNa = JbNb, (11)

entailing the two identities ua = ub and τb = τa . We conclude
by noting how, in the case when ua �= ub and τa �= τb, no
analytic approach is able to provide the explicit solutions of
Eqs. (6), which must be found numerically. Simulations where
slight deviations from the symmetric case are assumed show
that no substantial differences are found in the minimum-
energy scenario. With reference to the twin-species case
mentioned above, in the following we shall associate the case
with strong and weak interactions to inequalities w > u + 2τ

and w < u + 2τ , respectively. The formula

W = 4J/N + U

describes the critical condition w = u + 2τ in terms of Ja =
Jb ≡ J , Ua = Ub ≡ U and Na = Nb = N/2.

IV. SPECTRUM AND EIGENSTATES

A. Weak repulsive interaction W

In this regime, characterized by w < u + 2τ , the minimum
corresponds to x0 = y0 = 0 in the twin-species case. Then
variables x and y of EF (5) represent the natural coordinates
for obtaining its quadratic approximation close to the potential
minimum. By using the new variables x = (q + p)/

√
2, y =

(q − p)/
√

2 in the quadratic approximation of the EH, one
finds

H 	 K − 2τε2�qp + w + u + 2τ

4
q2 + u − w + 2τ

4
p2

(12)
with �qp = ∂2

q + ∂2
p, and K = −γ − 2τ + (w + u)/2.
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For twin boson populations εa = εb so that ε = 2/N2. This
harmonic-oscillator Hamiltonian feature eigenvalues

Ew(n,m) = K +
√

2τε2(u + 2τ + w)(n + 1/2)

+
√

2τε2(u + 2τ − w) (m + 1/2), (13)

and the corresponding eigenstates are given by

�n,m(q,p) = e− 1
2 (q2/λ2+p2/ν2)

√
πλν 2n+mn!m!

Hn

(q

λ

)
Hm

(p

ν

)
(14)

with q = (x + y)/
√

2, p = (x − y)/
√

2 and

λ2 =
√

8τε2

w + u + 2τ
, ν2 =

√
8τε2

u − w + 2τ
.

We note that the standard deviations λ and ν controls the
extension of the Gaussian factors in �n,m(q,p) and thus the
degree of localization of this state in the Fock space described
(within the CV method) by continuous variables x, y. The
amplitude of the quadratic approximation of V contained in
(12) essentially corresponds, at the minimum point, to the
Gaussian curvature of V which, in turn, is proportional to
1/(νλ)4.

The previous approximation is valid for weakly excited
states, namely, for energies relatively close to the ground-state
energy. For the midspectrum states the CV approach is no
longer valid in that the assumption of continuity on which
relies may not hold [24].

B. Strong repulsive interaction W

For w > u + 2τ , the single minimum of potential V splits
into two symmetric minima at x = ±|x1| and y = ∓|x1|.
One easily calculates the quadratic approximation of EH (5)
in terms of the local-minima coordinates ξx = x ± |x1| and
ξy = y ∓ |x1|, in which the double sign is referred to the two
symmetric minima of V . The further coordinate transformation
ξx,ξy → q,p where q = (ξx + ξy)/

√
2 and p = (ξx − ξy)/

√
2

leads to the diagonal, harmonic-oscillator form

H 	 − 4τ 2ε2

|w − u| �qp +
[
u + w

4
+ (w − u)3

16τ 2

]
q2

+
[
u − w

4
+ (w − u)3

16τ 2

]
p2 + u − γ − 2τ 2

w − u
, (15)

whose eigenvalues are given by

Es(n,m) = ε(w − u)

√
1 + 4τ 2(u + w)

(w − u)3

(
n + 1

2

)

+ε
√

(w − u)2 − 4τ 2

(
m + 1

2

)

+u − γ − 2τ 2

w − u
. (16)

The corresponding eigenstates have the form

�n,m(q,p) = e− 1
2 (q2/λ2+p2/ν2)

√
πλν 2n+mn!m!

Hn

(q

λ

)
Hm

(p

ν

)
(17)

with q = (x + y)/
√

2, p = (x − y ± 2|x1|)/
√

2, where the
term ±2|x1| bears memory of the two symmetric minima of
the current case, and

λ2 = 8τ 2ε√
(w − u)[4τ 2(w + u) + (w − u)3]

,

ν2 = 8τ 2ε

(w − u)
√

(w − u)2 − 4τ 2
.

As in the weak-interaction case, such an approximation holds
for weakly excited states and parameters ν and λ, related to
the curvature of V , can be shown to control the localization
character of these states in the Fock space. State (17) actually
corresponds to two independent states associated to the same
eigenvalue Es(n,m), which we denote with

�±
n,m(x,y) = �n,m

(
x + y√

2
,
x − y ± |x1|√

2

)
. (18)

The latter describe the low-energy eigenfunctions localized
in the neighborhood of the two minima of potential V . The
degeneracy of the eigenvalues is a consequence of the partially
semiclassical character of the CV method. It can be removed
by splitting each eigenvalue into a doublet E±

s (n,m) =
Es(n,m) ± δ, where the splitting δ is obtained through the
procedure described in Ref. [39] for the double-well potential.
The simplest approximation of the eigenstates relevant to
Er

s (n,m), r = ±, is simply given by

�r
n,m(x,y) =

(
�+

n,m + r�−
n,m

)
/
√

2. (19)

C. Attractive interspecies interaction

In order to evidence the different features characterizing the
model with an attractive interaction we report the eigenvalue
spectra for ω < 0. These can be computed by following the
same procedure of the repulsive case ω > 0 (the corresponding
Hamiltonians are shown in Appendix B). For |ω| < u + 2τ

(weak interaction) one finds

E′
w(n,m) = K +

√
2τε2(u − |ω| + 2τ )

(
n + 1

2

)

+
√

2τε2(u + |ω| + 2τ )
(
m + 1

2

)
, (20)

where one should remember that K = (u + ω)/2 − 2τ − γ

and γ = UN/2 in the twin-component case. For |ω| > u + 2τ

(strong interaction)

E′
s(n,m) = ε(|ω| − u)

√
1 + 4τ 2(|ω| + u)

(|ω| − u)3

(
m + 1

2

)

+ε
√

(|ω| − u)2 − 4τ 2
(
n + 1

2

)

+u − |ω| − 2τ 2

|ω| − u
− γ. (21)

Figure 1 well illustrates the perfect symmetry characterizing
the energy spectrum when the interspecies interaction w

changes from positive (repulsive case) to negative (attrac-
tive case). This figure (and the subsequent ones) show the
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FIG. 1. First 15 energy levels as a function of interspecies
interaction W for intraspecies interaction U = 0.01 (energy units
in J ) and total boson number N = 60 with Na = Nb. The plots
compare numerical results (continuous lines) with the analytical
eigenvalues (dotted lines) computed within the CV method.

dependence of (E� − E0)/J on W/J . Index � in E� orders
eigenvalues (13), (16), (20), and (21), according to their
increasing values. The reason for considering E� − E0 is that
the eigenvalues E�, � � 0 obtained with the CV method exhibit
a finite shift with respect to the numerical eigenvalues. This
deviation is a typical artifact of the quantization schemes
including a semiclassical approximation [40]. In the present
case the deviations E

ap

� − Eex
� between approximate and exact

eigenstates can be shown to be proportional to 1/N2 (1/N) in
the weak (strong) interaction regime and thus to be negligible
for N large enough.

Figure 1 compares the exact spectrum with the spectrum
obtained through the CV method for a total boson number
N = 60 and Na = Nb. The critical points of the repulsive and
attractive cases are situated at W/J 	 +0.076 and W/J 	
−0.076, respectively. At these values, both Ew(n,m), Es(n,m)
and E′

w(n,m), E′
s(n,m) tend to zero (see the dotted orange

plots), while, in their proximity, the exact eigenvalues (blue
continuous plots) exhibit a significant decrease culminating
in a minimum. Due to the relatively small value of N , the
agreement between the exact an the approximate spectrum
appears only at a sufficient distance from the critical points,
but improves when N is increased. This case is discussed in
the next section where, owing to the spectrum symmetry, we
focus on the case W/J � 0.

V. DISCUSSION

We analyze the limit w → (u + 2τ )±. In this case, it is
straightforward to check that the Hamiltonians (12) and (15)
collapse into a unique one,

HS = HW 	 (u − τ ) − 2τε2

(
∂2

∂q2
+ ∂2

∂p2

)
+ u + 2τ

4
q2,

in which the p2-dependent terms go to zero due to the
vanishing of the frequencies

√
2τε2(u + 2τ − w) in (12), and

√
(u − w)2 − 4τ 2 in (15). This effect causes in the eigenvalues

(13) and (16) the spectral collapse, namely, the vanishing of
the interlevel distance relevant to the quantum number m as
shown by

Ew(n,m) = Es(n,m) 	 u − γ − τ + ε
√

τ (u + 2τ )(2n + 1)

+ε
√

τ |w − u − 2τ |(2m + 1) (22)

for w − u − 2τ → 0. When w reaches the critical point w ≡
u + 2τ , the free-particle term −2τε2∂2

p in the Hamiltonian
entails the spectrum

E(n,k) = u − τ − γ + 2
√

τε2(u + 2τ )

(
n + 1

2

)
+ 2τε2k,

in which the contribution of quantum number m is replaced by
the k-dependent term, while in

�n,k(q,p) ∝ e−q2/(2λ2)Hn(q/λ)eikp

the p-dependent Gaussian becomes a plane wave. The pro-
gressive reduction of the interlevel distance (culminating, at
the critical point, with the transition of the m-dependent energy
band to a continuous energy distribution) then represents the
distinctive trait marking the emergence of a ground state with
a different structure. It is worth recalling that this change
consists in the transition from a ground state with two bosonic
components totally mixed and delocalized (w < u + 2τ ) to
a ground state whose components are completely localized
(w > u + 2τ ). The exact spectrum, determined by means of
numerical simulations, confirms the validity of the scenario
emerging from the CV method as soon as the boson numbers
is sufficiently increased.

Figure 2 describes the first seven energy levels as a function
of interspecies interaction W/J for total boson numbers
N = 60,100,200. The plots compare the eigenvalues obtained
numerically with the eigenvalues computed analytically by
means of the CV method.

At the critical point W/J = U/J + 4/N [derived from
w = u + 2τ by means of the definitions (4) and populations
Na = Nb = N/2] all the eigenvalues determined with the CV
method continuously drop to zero. The vertical dashed line
corresponds to the critical value of the interspecies interaction
W one finds in the thermodynamic limit N → ∞ and with
U = 0.01J (energy units in J ). In this limit one has W = U ,
reproducing the well-known critical value at which, for W

repulsive, the two components separate [41].
Figure 2 clearly shows how, by increasing N , the exact

eigenvalues more and more tend to reproduce the critical
behavior predicted by the CV method, while the critical
value of W/J approaches its limiting value 0.01. We observe,
however, that even for N = 60 the agreement between exact
and CV-picture (CVP) spectrum becomes good right outside
the neighborhood of the critical point.

A. Weakly excited states

We complete the comparison of the exact (numerical)
scheme with the CV method by considering the exact eigen-
states and their CVP counterparts described by formulas (14)
and (19). The latter allow the reconstruction of the approximate
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FIG. 2. First seven energy levels as a function of interspecies
interaction W for U = 0.01 (energy units in J ) and boson number
N = 60 (a), N = 100 (b), and N = 200 (c). The plots compare
numerical results (continuous lines) with the analytical eigenvalues
computed within the CV method (dotted lines). The vertical dashed
line at W = 0.01 shows the critical value (ω = u + 2τ ) where the
transition takes place in the thermodynamic limit.

eigenstates

|�E〉 =
∑
�x,�y

ψE(�x,�y)|xR,xL,yR,yL〉

according with formula (3), where the amplitude ψE(�x,�y)
identifies with �nm(q,p) or �±

nm(x,y) [see formulas (14) and
(19)] when xR , xL, yR , yL are expressed in terms of variables
q, p (or x, y), and states |xR,xL,yR,yL〉 are the continuous
form of Fock states |nR,nL,mR,mL〉.

Figure 3 illustrates the structure of some eigenstates
in the weak-interaction regime U/J = 0.01, W/J = 0.001.
The probabilities |cij |2 obtained from the exact eigenstates
|E〉 = ∑

i

∑
j cij (E)|Na − i,i,Nb − j,j 〉 are compared with

their CVP counterparts |ψn,m|2, where the amplitudes are
ψn,m(xL,yL) = �n,m(q,p) and p = √

2(xL − yL), q =√
2(xL + yL − 1). One should remember that only two of the

four coordinates xα , yα are independent due to the constraints
xR + xL = 1, yR + yL = 1.

In Figure 3, the probability density of the eigenstates
associated to the three eigenvalues forming the second plateau
of Fig. 4 are represented. In Figure 3 and in the subsequent
ones, dark blue stands for a vanishing probability density
while bright yellow denotes its relative maxima. Note that
the presence of the energy plateaux shown in Fig. 4 is only
apparent: The groups of quasidegenerate eigenvalues with
El 	 const for n + m = 0,1,2, . . . are the consequence of
the parameter choice U/J = 0.01 = 10 W/J making the two
harmonic-oscillator frequencies in (13) almost equal.

FIG. 3. Excited-state probability amplitudes |cl
ij |2 calculated

numerically (panels a, c), compared with the probability densities
|�n,m|2 obtained by the CV method (panels b, d). The upper
(lower) row concerns the excited states �2,0(q,p) (�1,1(q,p)) for
the energy level l = 3 (l = 4) for U/J = 0.01, W/J = 0.001, and
Na = Nb = 30. These correspond to two of the three eigenvalues El ,
l = 3,4,5 forming the second plateau in Fig. 4.
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FIG. 4. Energy levels for U/J = 0.01, W/J = 0.001, Na =
Nb = 30, calculated numerically (continuous blue line) and within the
CV picture (CVP). The apparent formation of groups of degenerate
eigenvalues (plateaux) is discussed in the text.

Figure 3 displays the probability density of the eigen-
functions �2,0(q,p) and �1,1(q,p), which feature three and
four peaks, respectively. The state �0,2(q,p) exhibits the
same probability distribution (not shown) as �2,0(q,p) but
the three peaks are placed along the second diagonal of
the box. This figure clearly shows how the exact and CVP
probability densities are almost indistinguishable, a result
further confirmed by other choices of n and m. Therefore
the exact scheme and the CVP exhibit an excellent agreement.

Figure 5 displays the probability density of some eigen-
states in the strong-interaction regime with U/J = 0.01,
W/J = 0.12. As in the weak-interaction case we compare
the |cij |2 with the CVP probabilities |ψn,m|2, but in this regime
ψn,m(xL,yL) = �±

n,m(x,y), the eigenfunctions (19) of energies
Es(n,m). Coordinates x and y are linear functions of xL, yL.
Figure 5 compares the probability density for the excited states
�+

01(x,y) and �+
02(x,y) [with energies Es(0,1) and Es(0,2),

respectively] obtained in the CVP with those found in the
exact scheme. These confirm the remarkable agreement of the
CVP with numerical results.

The corresponding energy eigenvalues are illustrated in
Fig. 6. The CVP eigenvalues are, by construction, degenerate
and form the doublets E2l = E2l+1 (orange dots). The link with
energies (16) is given by E0 = Es(0,0), E2 = Es(0,1), E4 =
Es(1,0), E6 = Es(0,2), E8 = Es(1,1), . . . listed in increasing
order. It is worth remembering that this degeneracy is inherent
in the CV method [see the discussion before Eq. (19)], whereas
the degeneracy of some exact eigenvalue is only apparent.

The important point concerning Fig. 6 is that at least
10 CVP eigenvalues exhibit an excellent agreement with
their numerical counterparts. Visible deviations appear in
an intermittent way along the eigenvalue sequence (see, for
example, E6, E7, and E10, E11) but they remain relatively
small with respect to the trend of the the overall sequence.
The increase of boson number N can be shown to reduce this
effect.

FIG. 5. Excited-state probability amplitudes |cl
ij |2 calculated

numerically (panels a, c), compared with the probability densities
|�+

n,m|2 obtained by the CV method (panels b, d). The upper
(lower) row concerns the excited states �+

0,1(x,y) [�+
0,2(x,y)] for

the energy level l = 2 (l = 8) for U/J = 0.01, W/J = 0.12, and
Na = Nb = 30. These correspond to the eigenvalues E2 = Es(0,1)
(second plateau) and E8 = Es(1,1) (fifth plateau) in Fig. 6.

Figure 7 (upper panels) illustrates the differences affecting
the exact probability distribution and the CVP distribution for
�+

20(x,y), a state whose eigenvalue E10 = Es(2,0) deviates
from its numerical counterpart. Even if, in general, their overall
structure is not too different, the upper left panel features
two internal peaks exhibiting a weak separation, whereas, in
the upper right panel, these peaks are completely separated.

FIG. 6. Energy levels for U/J = 0.01, W/J = 0.001, Na =
Nb = 30, calculated numerically (continuous blue line) and within
the CVP (orange dotted line). The apparent formation of groups of
degenerate exact eigenvalues (plateaus) is commented in the text.

062142-8



CONTINUOUS-VARIABLE APPROACH TO THE SPECTRAL . . . PHYSICAL REVIEW E 95, 062142 (2017)

FIG. 7. Excited-state probability amplitudes |cl
ij |2 calculated

numerically (panels a, c), compared with the probability densities
|�+

n,m|2 obtained by the CV method (panels b, d). The upper
(lower) row concerns the excited states �+

2,0(x,y) [�+
0,3(x,y)] for

the energy level l = 10 (l = 12) for U/J = 0.01, W/J = 0.12, and
Na = Nb = 30. These correspond to the eigenvalues E10 = Es(2,0)
and E12 = Es(0,3) in Fig. 6.

Moreover, the left panel shows two major peaks (at the corners
of the box), which are almost negligible in the right panel.
The two probability densities again, almost perfectly, match
to each other when considering the (non deviating) eigenvalue
E12 = Es(0,3) relevant to the eigenstate �+

03(x,y).
We conclude by showing in Fig. 8 the sequence illustrating

the probability densities of the ground state when W/J ranges
from the weak to the strong interaction regime (up-to-bottom).
For W/J = 0.001 a unique central peaks appears at xL =
yL = 0.5 (→ xR = yR = 0.5) meaning that the configuration
with the maximum probability is that where the two com-
ponents are equally distributed in the two wells. The boson
populations are mixed and delocalized. For W/J = 0.170, the
two peaks emerging from the transition implies that xL 	 0,
yL 	 1 and xR 	 10, yR 	 0, namely, the two component are
fully separated. The agreement of numerical results and CVP
predictions is quite satisfactory.

VI. CONCLUSIONS

We have studied the effectiveness of the CV method by
applying this scheme to the BH-like Hamiltonian describing
a bosonic gas with two components trapped in a double-
well potential. As it is well known, this system exhibits
a macroscopic dynamical phase transition to states with
localized populations when the effective interaction W/U is
large enough. The presence of this transition plays an important
role in our analysis since it makes the application of the
CV method more demanding and thus more significant. We

FIG. 8. Probability densities of the ground state for U/J =
0.01, Na = Nb = 30, and (from top to bottom) W/J =
0.001,0.085,0.093,0.170. Right column: probability density obtained
from states (14) and (19) with m = n = 0, within the CV method.
Left column: probability amplitudes |c0

ij |2 for the exact ground state
calculated numerically.

have analyzed the low energy spectrum and its eigenstates by
considering both the repulsive and the attractive regime of W .

After reformulating, in Sec. II, the TDH within the
continuous-variable picture, we have calculated the energy
eigenvalues and the corresponding eigenstates in Sec. III. In
this section we have also showed that the reduction of the
interlevel distance predicted by the CV method close to the
transition point is confirmed by numerical simulations. These
also succeed in reproducing the spectral collapse for number
of bosons sufficiently large, a condition which well fits the
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basic assumption of the CV method that the local population
fractions ni/N are almost continuous.

To further check the effectiveness of the CV method we
have compared both the weakly excited states and the corre-
sponding energy levels derived within the CV method with
those determined numerically. While in the weak interaction
regime the agreement is excellent, in the strong interaction
regime some eigenvalues exhibit visible but limited deviations
from their numerical counterparts. Such deviations appear in
an intermittent way in correspondence to sufficiently excited
states and, rather reasonably, seem to be related to the intrinsic
degeneracy of the CVP eigenvalues when the minimum of the
potential splits into two separated minima.

The agreement is again considerably good when comparing
the probability density of the exact and the CVP ground
state both in the weak and in the strong interaction regime.
In general, the CVP eigenstates closely mimic the exact
eigenstates whenever a numerical eigenvalue well matches
the CVP eigenvalue.

The previous analysis indeed suggests that the CV method
provides an effective approach for describing the energy
spectrum and the eigenstates of multimode bosonic systems.
The discrepancies which partially affect the spectrum in
certain regimes seem to have negligible effects on the critical
behavior leading to the spectral collapse provided that a large
number of bosons is involved. This is confirmed as well by
the successful application of the CV method for detecting
the critical properties of the self-trapping transition in the
attractive BH trimer [24]. The great feasibility of this method
within multimode bosonic systems promises a wide range of
applications in the field of atomic currents [42–44] and more
in general of atomtronics devices [45,46].

Concluding, the effects discussed in this paper should be ac-
cessible to experimental observations by confining mixtures in
a double-well trap. As is well known, the semiclassical dynam-
ics of a single-component condensate has been successfully
investigated in a double-well device realized by Refs. [47,48],
and has shown the nonlinear oscillations predicted by the
theory and the inherent self-trapping phenomenon. As in
the single-component case, the double-well geometry should
be realized by superposing the (sinusoidal) linear potential
confining mixtures [49,50] in optical lattices with a parabolic
trap of controllable amplitude. Further developments in the
dynamics of mixtures in multiwell systems are expected from
the realization of the ring geometry designed in Ref. [44].

APPENDIX A: SEMICLASSICAL FORM OF THE TDH

The derivation of the semiclassical TDH can be performed
by means of the coherent-state variational method where op-
erators become classical variables within a sort of generalized
Bogoliubov scheme [14,51]. The semiclassical Hamiltonian
associated to (1) is easily found to be

Hs = Ha + Hb + W (|αL|2|βL|2 + |αR|2|βR|2),

where Ha = −Ja(α∗
LαR + c.c.) + Ua

∑
r |αr |4/2 and Hb has

the same form with βr (Jb and Ub) in place of αr (Ja

and Ua). The classical quantities Na = |αL|2 + |αR|2 and
Nb = |βL|2 + |βR|2 can be shown to be conserved quantities
as in the quantum picture. By using the classical version

x = (|αL|2 − |αR|2)/Na and y = (|βL|2 + |βR|2)/Nb of the
operators leading to the EH (5), one obtains, up to a constant
term,

Hs = ua

4

(
1 + x2

)
+ ub

4

(
1 + y2

)
+ w

2
(1 + xy)

−
[
τa

√
1 − x2 cos(2θx) + τb

√
1 − y2 cos(2θy)

]
,

(A1)

where θx = (φL − φR)/2, θy = (νL − νR)/2 are angle vari-
ables canonically conjugate with the action variables x and
y satisfying the Poisson brackets {x,θx} = 1/(h̄Na), {y,θy} =
1/(h̄Nb). Variables φr (νr ) are the phases of the local order
parameters αr = |αr |eiφr (βr = |βr |eiνr ). The Poisson brackets
of |αr |2, |βr |2 with φr , νr can be easily evinced from the
canonical ones {αr,α

∗
r } = 1/(ih̄), {βr,β

∗
r } = 1/(ih̄) supplied

by the coherent-state variational method and reminiscent of
the boson mode commutators, [ar,a

+
r ] = 1, [br,b

+
r ] = 1.

APPENDIX B: QUADRATIC APPROXIMATION
OF V FOR w < 0

We perform the quadratic approximation of V in the
proximity of its local minima, focusing on the attractive case
(the same scheme holds in the repulsive case). The minimum
coordinates are given by

x ′
0 = y ′

0 = 0, x ′
1 = ±

√
1 − 4τ 2/(|ω| − u)2. (B1)

By expanding potential V in the proximity of its minima
one finds that points x ′

0 = y ′
0 = 0 and x ′

1 = y ′
1 describe the

minimum-energy configuration in the regimes |ω| < u + 2τ

and |ω| > u + 2τ , respectively.
In the attractive case ω < 0, the EH is H = V − D, where

D has the same form as in (5), and

V = −γ + u

4
(1 + x2) + u

4
(1 + y2)

−|ω|
2

(1 + xy) − τ (
√

1 + x2 +
√

1 + y2), (B2)

where γ = UN/2. Potential V is represented around the
potential minima by means of its Taylor expansion. The
resulting quadratic form is written in terms of local coordinates
ξx = (x − x̄) and ξy = (y − ȳ) and x̄, ȳ.

1. Weak interspecies interaction

For |ω| < u + 2τ , the minimum coordinates are x̄ = x ′
0 =

0 and ȳ = y ′
0 = 0. In this case

∂2
xV = ∂2

yV = u

2
+ τ, ∂y∂xV = −|ω|

2
.

Setting ξx = (q + p)/
√

2 and ξy = (q − p)/
√

2 the EH be-
comes H = −2τε2(∂2

q + ∂2
p) + V where the expanded poten-

tial reads

V = K ′ + u − |ω| + 2τ

4
q2 + u + |ω| + 2τ

4
p2

with K ′ = (u − |ω| − 4τ − UN )/2. Then the eigenvalues of
the two independent harmonic oscillators occurring in H can
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be easily computed. One finds

EW (n,m) = K ′ +
√

2τε2(u − |ω| + 2τ )
(
n + 1

2

)

+
√

2τε2(u + |ω| + 2τ )
(
m + 1

2

)
. (B3)

2. Strong interspecies interaction

For |ω| > u + 2τ , the coordinates of the potential minimum
are x̄ = x ′

1 and ȳ = y ′
1. In this case

∂2
xV = u

2
+ τ

(1 − x2)
3
2

, ∂2
yV = u

2
+ τ

(1 − y2)
3
2

and ∂x∂yV = −|ω|/2. By setting ξx = (q + p)/
√

2 and ξy =
(q − p)/

√
2, the expanded potential reduces to

V (q,p) = K ′′ + w2
q

2
q2 + w2

p

2
p2 (B4)

with

w2
q = u − |ω|

2
+ (|ω| − u)3

8τ 2
, w2

p = u + |ω|
2

+ (|ω| − u)3

8τ 2
,

and K ′′ = (u − |ω| − 4τ − UN )/2, while the Hamiltonian of
the system takes the form

H = V ′
1 − 4τ 2ε2

||w| − u|
(
∂2
q + ∂2

p

) + w2
q

2
q2 + w2

p

2
p2 (B5)

with V ′
1 ≡ V (x ′

1,y
′
1) = u − |ω| − 2τ 2/(|ω| − u) − UN/2.

Then the eigenvalues can be easily computed by considering
the two independent harmonic-oscillator problems related to
the coordinates p and q, respectively:

ES(n,m) = V ′
1 + ε(|ω| − u)

√
1 − 4τ 2

(|ω| − u)2

(
n + 1

2

)

+ε(|ω| − u)

√
1 + 4τ 2(|ω| + u)

(|ω| − u)3

(
m + 1

2

)
(B6)
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