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Heat perturbation spreading in the Fermi-Pasta-Ulam-β system with next-nearest-neighbor
coupling: Competition between phonon dispersion and nonlinearity
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We employ the heat perturbation correlation function to study thermal transport in the one-dimensional
Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a
system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion
and nonlinearity that can strongly affect the heat correlation function’s shape and scaling property. Specifically, for
small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in
good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we
observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central
peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum
perturbation correlation function and find a transition process with the same turning point of the anharmonicity
as that shown in the heat correlation function. This suggests coupling between the momentum transport and the
heat transport, in agreement with the theoretical arguments of mode cascade theory.
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I. INTRODUCTION

Despite decades of research, our understanding of anoma-
lous heat transport in one-dimensional (1D) momentum-
conserving systems is still scarce [1–3]. There are various
theoretical models and three main numerical approaches that
are devoted to solving this issue. The theoretical techniques
include the mode coupling theory [4,5], the renormalization
group method [6], the mode cascade assumption [7–10], the
phenomenological Lévy walk model [11,12], the nonlinear
fluctuating hydrodynamics theory [13,14], etc. The first two
numerical approaches are based on either the direct nonequi-
librium molecular dynamics simulations [15–19] or the Green-
Kubo formula [20–22]. In the former, the ends of the system
are first connected to heat baths with a small temperature dif-
ference for a long time. After a steady state has been obtained,
one then observes the heat current flowing across the system
and finally derives the thermal conductivity. In the latter, one
usually examines the long time asymptotic behavior of the heat
current autocorrelation function (or power spectra) and then
uses the Green-Kubo formula to get the heat conductivity. In
this respect, the first three theoretical models [4–10] are just
devoted to the prediction of the time-scaling behavior of the
heat current autocorrelation function. In particular, the mode
cascade theory suggested that one should take the coupling
between the momentum transport and the heat transport into
account and demonstrated that, due to this coupling, to obtain
an accurate prediction, the heat current power spectra at
sufficiently low frequencies should be probed [7–10].

The third numerical approach is based on the perturbation
correlation functions. This is inspired by the idea of diffusion
of energy in the lattice systems. As is well known, in such
many-body systems, particles are located mainly around their
equilibrium positions. So there is no sense to talk about
the diffusion of energy of the associated particles. Whereas
the collective system dynamics creates a “tissue,” which
can react to small local perturbations affecting its dynamics.
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Eventually, the propagation of perturbations defines the overall
information of transport [11,23–26].

With such an idea in mind, understanding the energy
and heat transport processes via their perturbation correlation
functions is a relevant fascinating topic of theoretical research
[11–14,27–37]. The early numerical works indicated that, for
general 1D nonlinear nonintegrable momentum-conserving
systems, a quasisuperdiffusive Lévy walk profile of the energy
perturbation correlation function can always be observed
[12,27–29], which is the evidence of anomalous heat transport.
Viewing this fact, such superdiffusive transport has subse-
quently been understood from the single particle’s Lévy walk
model in the superdiffusive regime after considering the par-
ticle’s velocity fluctuations [11,12], although the connection
between them is only phenomenological [11]. Later, a more
detailed mechanism has been considered in a broad context
of hydrodynamics [13,14] where the authors developed a
nonlinear version of the hydrodynamics theory and explained
the observed Lévy walk profile as a combination of the heat and
sound modes’ correlations [13,14,29]. The main achievement
of this hydrodynamics theory is that it can be used to predict
the scaling property of the heat and momentum perturbation
spreading correlation functions in certain nonlinear systems
and thus is greatly helpful for our understanding of anomalous
heat transport [30]. This is because the heat and the sound
modes’ correlations usually are conjectured to correspond to
the heat and the momentum perturbation correlation functions,
respectively [29]. In particular, for generic systems of nonzero
pressure, such as the Fermi-Pasta-Ulam-α-β (FPU-α-β) model
with an asymmetric (odd) interparticle potential, the prediction
for the sound modes’ correlation is Kardar-Parisi-Zhang (KPZ)
scaling [38]; whereas for the particular FPU-β system with
symmetric (even) interparticle potential, it is not KPZ but
Gaussian scaling [13,29]. This is consistent with the argument
that the momentum current power spectrum does (does not)
diverge at low frequencies for systems with odd (even)
interparticle potentials [4,7–10].

Despite these achievements, an unclear point from the
nonlinear hydrodynamics theory may be that we still do not
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know to what extent of the strength of the nonlinearity it
would be applicable. Since the theory aims at dealing with
the nonlinear systems, it requires the system’s dynamics to be
sufficiently chaotic so as to have good mixing in time [14]. So it
is quite possible that, for certain linear integrable systems, the
nonlinear hydrodynamics theory is not valid anymore [34].
As for the latter systems, a recent concept called “phonon
random walks” might be worthwhile [39], based on which the
linear system’s ballistic heat perturbation spreading correlation
function can instead be understood by a quantumlike wave
function’s modulus square where the different systems’ dis-
tinct phonon dispersion relations are a key factor. In addition, in
this theory the momentum perturbation correlation function is
proved to be the corresponding wave function’s real part [39].

Combining the above reviewing progress, one may rec-
ognize that the coupling between the heat transport and the
momentum transport should naturally exist and this coupling
will be exhibited quite differently in various systems. This
then leads to the fact that different theoretical models would
be applicable to different systems or to the same system
under different strengths of the nonlinearity. In particular,
for the strongly nonlinear systems where the effects of
nonlinearity dominate, the nonlinear hydrodynamics theory
[13,14] could present some universal predictions; whereas as
for the linear systems without including the nonlinearity, the
phonon dispersion relation now plays a major role [39], and
there is no mode and mode’s coupling [40]. Therefore, to
provide a complete picture of thermal transport, such as the
normal, ballistic, and superdiffusive types, and to understand
the coupling between the heat transport and the momentum
transport in different situations, both the effects of nonlinearity
and the phonon dispersion relation are crucial and necessary to
take into account. Motivated by this and in view of the fact that
almost all of the above literature only focused on the systems
with nearest-neighbor (NN) interaction, we here consider a 1D
FPU-β system with both the NN and the next-nearest-neighbor
(NNN) interactions. The advantage of this system is that
it bears a peculiar phonon dispersion relation. With this
advantage, we then can adjust the strength of the nonlinearity
to see how such a particular phonon dispersion relation
could, together with the nonlinearity, affect the system’s heat
transport and its scaling property. Such a research strategy
also will help us to reveal the detailed coupling between the
heat transport and the momentum transport in this particular
system, which may provide insight into further developing
a theory to bridge our present understanding of linear and
nonlinear systems’ thermal transport after combining both
factors of the phonon dispersion relation and nonlinearity.

The rest of this paper is structured in the following way:
In Sec. II we introduce the reference model and emphasize its
peculiar phonon dispersion relation. Section III describes the
simulation method to derive the corresponding perturbations
correlation functions. In Sec. IV we present our main results,
and Sec. V is devoted to a discussion of the mechanism. Finally
we close with a summary in Sec. VI.

II. MODEL

As mentioned, in what follows we focus on a 1D FPU-
β lattice with both NN and NNN interactions [41]. Such a

FIG. 1. The phonon dispersion relation for the FPU-β chain with
both NNN and NN couplings (λ = 0.25), which is compared to the
counterpart harmonic chain of λ = 0 (the dashed line). The horizontal
dotted line indicates ωq = 2 near the Brillouin zone boundary.

system’s Hamiltonian is

H =
L∑

k=1

[
p2

k

2
+ V (rk+1 − rk) + λV (rk+2 − rk)

]
, (1)

with rk as the displacement of the kth particle from its
equilibrium position and pk as its momentum. The potential
takes the FPU-β type of V (ξ ) = ξ 2/2 + βξ 4/4 with β to be
adjustable and representing the nonlinearity. The parameter λ

controls the comparative strength of the NNN coupling to the
NN coupling, and if it is fixed at λ = 0.25 reproducing a special
phonon dispersion relation (under harmonic approximation),

ωq =
√

4 sin2 (q/2) + sin2 (q), (2)

as shown in Fig. 1. Here q is the wave number, and ωq is the
corresponding frequency. From Fig. 1 we know that such a
phonon dispersion relation has a main feature, i.e., the group
velocity vg = dωq/dq is very close to zero in a wider q domain
near the Brillouin zone boundary. This unusual property can
favor the formation of a special highly localized excitation
[intraband discrete breathers (DBs)] [42] in the presence of
appropriate nonlinearity and thus is conjectured to greatly
influence thermal transport [41]. In addition, we note that some
recent works have indicated that the FPU-β lattice including
such kinds of long range interactions beyond the NN couplings
can lead to some unusual effects on thermal transport [43] and
thermal rectification [44]. All of these understandings are also
the motivations that we choose to study in such a system.

III. METHOD

We will employ the equilibrium fluctuation-correlation
method [27,29] to investigate the propagation of heat pertur-
bation. This approach has first been proposed by Zhao [27] for
studying the site-site total energy fluctuations spreading and
then extended to be applicable to investigate the space-space
fluctuation spreading [29]. For further detailed implementa-
tion, one also can refer to Ref. [45]. Due to the apparent
advantage of avoiding the emerging statistical fluctuations
[11,12], such a popular efficient simulation method has widely
been used in many publications [12,28,31–33,35–37].
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To make a comparison with the prediction of hydrody-
namics theory [13,14], we will focus on the following two
space-space correlation functions of the heat perturbations and
momentum perturbations [29], i.e.,

ρQ(m,t) = 〈�Qj (t)�Qi(0)〉
〈�Qi(0)�Qi(0)〉 , (3)

and

ρp(m,t) = 〈�pj (t)�pi(0)〉
〈�pi(0)�pi(0)〉 , (4)

respectively. Here m = j − i; 〈·〉 denotes the spatiotemporal
average. To describe the space-space correlation, one can
divide the 1D lattice into several equivalent bins, and thus, i and
j are the labels of the bins. In practice, we will set the averaged
number of particles in each bin to be Ni = (L − 1)/b with b

as the total number of the bins. Under such a space descrip-
tion, �Qi(t) ≡ Qi(t) − 〈Qi〉 and �pi(t) ≡ pi(t) − 〈pi〉 then
define the heat perturbations and momentum perturbations in
the ith bin at time t , respectively, with Qi(t) and pi(t) as
the corresponding heat energy and momentum densities. pi(t)
is easy to calculate, and one just needs to sum the related
single particle’s momentum pk(t) within the bin, namely,
pi(t) ≡ ∑

k pk(t). To compute Qi(t), we employ the definition
of Qi(t) ≡ Ei(t) − (〈E〉+〈F 〉)Mi (t)

〈M〉 [46,47] from thermodynam-
ics, where Ei(t) ≡ ∑

k Ek(t),Mi(t) ≡ ∑
k Mk(t), and Fi(t) ≡∑

k Fk(t) are the total energy, number of particles, and internal
pressure in that bin, respectively, with Ek(t),Mk(t), and Fk(t)
as the corresponding single particle’s energy, density, and
pressure. From the perspective of hydrodynamics theory,
ρQ(m,t) and ρp(m,t) might represent the heat mode’s and
sound modes’ correlations, respectively [13,14,29], based on
which one might be able to construct the corresponding energy
and particle perturbation correlation functions [29]. Therefore,
our following study of ρQ(m,t) and ρp(m,t) also is partially
motivated by this connection.

The simulations of both correlation functions are performed
as follows: Initially we contact the system with a Langevin
heat bath [1,2] of temperature T = 0.5 (fixed throughout the
paper) to get an equilibrium state. Then after this thermalized
equilibrium state has been prepared, we utilize the Runge-
Kutta integration algorithm of seventh to eighth order with a
time step of h = 0.05 to evolve the system. During such an
evolution, we then sample the relevant data and calculate the
corresponding correlation functions.

To perform the simulations, we apply the following settings:
periodic boundary conditions with a size of L = 4001–6001
is adopted, which will allow a perturbation of heat and
momentum located at the center of the chain to spread out
for a long time up to t = 900 for different β’s. β is adjusted in
a wide range from β = 0 (linear case) to β = 1.5 (representing
the highly nonlinear case). The number of the bin is fixed at
b ≡ (L − 1)/2 and has been verified to be efficient to derive the
space-space correlation information. The size of the ensemble
for detecting both correlation functions is about 8 × 109.

FIG. 2. (a) and (b) Profiles of ρQ(m,t); (c) and (d) rescaled
ρQ(m,t) under formula (6). Here, three long times t = 300 (dotted
lines), t = 600 (dashed lines), and t = 900 (solid lines) and two β

values β = 0.025 and β = 1.5 are considered for comparison.

IV. RESULTS

A. Scaling for linear and highly nonlinear cases

We start with studying the following two limiting cases.
The first one is the linear system with β = 0 for which one
can use the formula from the theory of phonon random walks
[39],

ρQ(m,t) �
∣∣∣∣ 1

2π

∫ π

−π

ei(mq−ωq t)dq

∣∣∣∣
2

(5)

to predict ρQ(m,t). Inserting the phonon dispersion (2) into
formula (5), one then gains the prediction of ρQ(m,t), which
has been verified well by simulations [39]. The second is
the highly nonlinear case. For such systems, the nonlinear
hydrodynamics theory [13,14] has predicted the heat mode’s
correlation function to be the Lévy distribution and satisfying
the following scaling property [11,12]:

t1/γ ρQ(m,t) � ρQ

( m

t1/γ
,t

)
, (6)

with γ = 3/2 as the predicted scaling exponent. Note that such
a prediction of the γ value requires the associated potential of
the system to be symmetric and the internal averaged pressure
〈F 〉 to be zero, and our focused system here naturally bears
such a property.

With such theoretical understanding, now let us turn to the
simulation results. Figure 2 presents the profiles of ρQ(m,t)
and their scaling properties for three typical times and two
β values, among which, β = 0.025 denotes the system close
to the linear case; whereas β = 1.5 we employ to represent
the highly nonlinear case. As expected, on one hand, at the
relatively small β value, the profile of ρQ(m,t) is mainly
dependent on the phonon dispersion relation (2) determined
by formula (5) and following the ballistic scaling (γ = 1)
[see Figs. 2(a) and 2(c)] if compared to the prediction of
Ref. [39], especially, we can see a highly localized peak on
the origin (m = 0). Such a localized peak of ρQ(m,t) mainly
stems from the special phonon dispersion relation [Eq. (2)
and Fig. 1] where as we already have mentioned that there
is a wider q domain with zero group velocities near the
Brillouin zone boundary. On the other hand, the situation for
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FIG. 3. Profiles of ρQ(m,t) for three long times t = 300 (solid
lines), t = 600 (dashed lines), and t = 900 (dotted lines) and four
β values in the intermediate range: (a) β = 0.1, (b) β = 0.25,
(c) β = 0.5, and (d) β = 1.

the cases of relatively large nonlinearity is quite different:
The highly localized central peak now disappears, instead, a
common quasisuperdiffusive (γ = 1.54) Lévy walk profile can
be observed [see Figs. 2(b) and 2(d)]. This seems to indicate
that the nonlinearity can cause the delocalization of ρQ(m,t)
in a certain domain induced by the phonon dispersion relation.
Therefore, it would be interesting to study in more detail such a
delocalization process, which may help us to fully understand
both roles of phonon dispersion and nonlinearity.

B. Multiscaling in the intermediate range of nonlinearity

Before going on, let us first see some typical profiles of
ρQ(m,t) in the intermediate range of β values to gain a
preliminary impression. Figure 3 presents such a result from
which a detailed crossover from localization to delocalization
of the central peak of ρQ(m,t) can clearly be identified.
Since such an unusual localized shape is exhibited in the
center, one can expect that the scaling formula (6) is now
no longer valid, but whatever one can first use that scaling
formula with γ = 1 to rescale the profiles to see how the
ballistic transport (mainly induced by the phonon dispersion
dispersion) can be destroyed by increasing the nonlinearity.
For such a purpose, in Fig. 4 we plot the result of rescaled
ρQ(m,t) under ballistic scaling (γ = 1). As can be seen, with
the increase in β, indeed, the distortion of ballistic scaling first
originates from the central part and then walks towards the
direction of the front parts, whereas it should be noted that,
if one only looks at the front peaks, the ballistic scaling still
seems available. Viewing this fact, it is reasonable to conjecture
that ρQ(m,t) should at least bear two-scaling behaviors: γ = 1
for the front peaks and γ �= 1 for the others. To further
verify this multiscaling property, we here follow Refs. [48–50]
to study the s (s > 0) order momentum of ρQ(m,t), i.e.,
〈|m(t)|s〉 = ∫ ∞

−∞ |m(t)|sρQ(m,t)dm from which for the strong
anomalous diffusion process 〈|m(t)|s〉 has been conjectured to
follow 〈|m(t)|s〉 ∼ t sν(s) with ν(s) as a s-dependent exponent
[50]; whereas for the ballistic (normal) transport, it is easy
to find that ν(s) will be close to 1 (1/2). Therefore, this
s-dependent scaling exponent sν(s) is useful to characterize

FIG. 4. Rescaled ρQ(m,t) according to formula (6) with γ = 1
for three long times t = 300 (dotted lines), t = 600 (dashed lines),
and t = 900 (solid lines) and four β values in the intermediate range:
(a) β = 0.1, (b) β = 0.25, (c) β = 0.5, and (d) β = 1.

anomalous superdiffusive thermal transport, distinct from both
ballistic and normal cases.

Figure 5 depicts the results of sν(s) versus s calculated
from ρQ(m,t) for several typical β values from small to large.
As can be seen, with the increase in β, sν(s) first shows a
single linear scaling with s [see Fig. 5(a)], indicating ν(s) ≈ 1
and suggesting the ballistic heat transport; then at about β =
0.1 this single-scaling behavior is destroyed for low order s,
eventually, a bilinear scaling behavior starts to appear [see
Fig. 5(b)]; finally, for the relatively large β values, we see a
scaling exponent for the low order s, denoted by νL(s), close
to νL(s) ≈ 0.6 to 0.7 [see Fig. 5(f)].

It would be worthwhile to note that such a particular bilinear
scaling behavior has recently been addressed theoretically in
the Lévy walk model within the superdiffusive regime [its
density follows the scaling formula (6) with 1 < γ < 2], where
γ is explained as the power-law exponent from the waiting time
distribution φ(τ ) ∼ τ−1−γ of the model (see Refs. [48,49] for
details). In the Lévy walk model, νL(s) is predicted to be
1/γ [48,49]. Therefore, essentially νL(s) involves important

FIG. 5. sν(s) versus s for indicating the multiscaling property of
ρQ(m,t) for (a) β = 0.025, (b) β = 0.1, (c) β = 0.25, (d) β = 0.5,
(e) β = 1, and (f) β = 1.5, respectively.
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FIG. 6. The fitting values of νL(s) versus β where the horizontal
(vertical) dashed line represents ν(s) = 1 (βc � 0.02).

information for describing superdiffusive transport. For this
reason, we further examine the result of νL(s) versus β in
Fig. 6. As can be seen, a detailed crossover from ballistic
[νL(s) = 1, thus γ = 1] to superdiffusive [1/2 < νL(s) < 1,
thus 1 < γ < 2] transport at a critical point of βc � 0.02 can
clearly be identified. This critical point of βc is consistent with
the same value of βc found in the FPU-β system with NN
coupling only [35] where it has been conjectured to be related
to the strong stochasticity threshold of the system [51].

For the highly nonlinear case (β = 1.5, for example),
bearing in mind both predictions of νL(s) = 1/γ from the
Lévy walk model [48,49] and γ = 3/2 from the nonlinear
hydrodynamics theory [13,14], now we make a comparison
of our data with the predictions. From Fig. 5(f) we know
νL(s) = 0.69, hence γ is about 1.45 according to Refs. [48,49].
In view of the measurement errors, this result is consistent with
the prediction of γ = 3/2 [13,14] and the result of γ = 1.54
from the scaling analysis as shown in Fig. 2(d).

C. Delocalization of the central peak

After studying the whole scaling property of ρQ(m,t), let
us consider the delocalization process of the central peak. In
fact, since a peculiar phonon dispersion relation is exhibited
in the domain near the Brillouin zone boundary (see Fig. 1),
it can be expected that the scaling behavior of this central
peak is more complicated. Based on this fact, the competition
between phonon dispersion and nonlinearity can be revealed in
more detail. To further demonstrate this point, we first employ
the result of Fig. 2(c) once again, i.e., the rescaled ρQ(m,t)
under β = 0.025 to give more emphasis on the central peak’s
scaling. As shown in Fig. 7, clearly, although the whole shapes
of ρQ(m,t) for different t’s can be nearly perfectly rescaled by
ballistic scaling (γ = 1) [see Fig. 2(c)], the scaling of just this
central peak shows some deviations.

Viewing this fact, next we investigate how the decay of
this central peak would depend on the nonlinearity. Generally,
we find that ρQ(0,t) decays with t in a power law, i.e.,
ρQ(0,t) ∼ t−η with η as a time-scaling exponent. Such relevant
results for several typical β values are plotted in Fig. 8 among
which we note that the result of β = 0 is derived from the
theoretical formula of Eq. (5) suggesting the fact of η = 1/2
[see Fig. 8(a)]. Interestingly, compared to the whole scaling
property of ρQ(m,t), Fig. 8 indicates that the picture of the
decay of ρQ(0,t) for different t’s is richer, i.e., with the

FIG. 7. Rescaled ρQ(m,t) under the ballistic scaling (γ = 1) for
β = 0.025 to indicate that, for the central peak, the ballistic scaling
is not perfectly valid.

increase in β, ρQ(0,t) first decays with one single η value
[see Figs. 8(a) and 8(b)]; then at about β = 0.05, an additional
η value in the range of long t emerges [see Fig. 8(c)]; after
that, if one increases β further, a total of three η values can be
observed [see Fig. 8(d)]; whereas eventually, for the highly
nonlinear case, the third scaling exponent in a long time,
denoted by ηL, seems to dominate [see Fig. 8(f)]. A careful
examination of the turning point from one- to two-scaling
exponents suggests a critical point of βc � 0.02, which is
similar to that demonstrated in Fig. 6. This implies that the
time-scaling exponent η of the central peak of ρQ(m,t) also
involves key information for characterizing anomalous thermal
transport.

Finally, as one usually is concerned with the long time
asymptotic behavior of the heat transport property, in Fig. 9
we further plot the result of ηL versus β. One can see that, as
β increases from 0.025 to 1.5, ηL increases first, then reaches
its maximum value at about βtr � 0.25, and finally decreases
down to ηL ≈ 3/2 with the similar value of the scaling expo-
nent γ shown in Fig. 2(d). Obviously, such an asymptotic decay
behavior of the central peak with β is nonmonotonic, which
is consistent with the same nonmonotonic variation of the
size-dependent scaling exponent of the heat conductivity with

FIG. 8. ρQ(0,t) versus t for indicating the scaling property of the
central peak: (a) β = 0, (b) β = 0.025, (c) β = 0.05, (d) β = 0.5,
(e) β = 1, and (f) β = 1.5, respectively.
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FIG. 9. ηL versus β where the horizontal (vertical) dashed line
denotes ηL = 0.5 (βtr � 0.25).

temperature in the same model [41], thus further supporting
the fact that the heat conduction of this system is nonuniveral,
dependent on certain system’s parameters [41].

V. DISCUSSION

We are particularly interested in the underlying mechanism
of the observed nonmonotonic delocalization process of
ρQ(m,t). From the microscopic point of view, this can be
understood by the property of intraband DBs [41], which is
nonmonotonically dependent on the temperature, hence it is
nonmonotonically dependent on the nonlinearity. Eventually
if the heat transport can be understood by the picture of
phonons scattered by such intraband DBs, a nonmonotonic
delocalization of ρQ(m,t) with β could be expected [41].
We here aim to explore this scattering process of phonons
from a macroscopic point of view. Keeping this in mind,
in the following we will employ the correlation function of
momentum perturbations to reveal the information of such a
scattering process.

The momentum spread described by its perturbation corre-
lation function ρp(m,t) contains useful information for under-
standing the heat transport of momentum-conserving systems.
As mentioned in Sec. III, ρp(m,t) may correspond to the sound
modes’ correlation in hydrodynamics theory [13,14,29]. A
diffusive momentum spread has been conjectured to be the
origin of the normal heat transport observed in coupled rotator
systems [52]. This nonballisitic spread of momentum has also
been revealed in another special system with a double-well
interparticle potential [36]. In the phonon random walk theory,
the momentum correlation function in linear systems has been
proved to be a quantumlike wave function’s real part, whereas
this quantum wave function’s modulus square can represent
the heat perturbation correlation function [39]. A more recent
work [53] developed an effective linear stochastic structure
theory to derive the momentum spreading correlation function
in the long time limit and demonstrated that anomalous thermal
transport is dominated by the long wavelength renormalized
waves [54–56].

We begin with presenting some typical results of ρp(m,t) in
Fig. 10. Here, three long times and four β values, the same as
those in Fig. 3, are considered. As can be seen, all the profiles
of ρp(m,t) suggest nondiffusive ballistic behaviors, which are
the evidence of anomalous heat transport. In particular, three
points can be revealed: First, the moving velocities of the front

FIG. 10. Profiles of ρp(m,t) for three long times t = 300 (dotted
lines), t = 600 (dashed lines), and t = 900 (solid lines) and four
β values in the intermediate range: (a) β = 0.1, (b) β = 0.25,
(c) β = 0.5, and (d) β = 1.

peaks are increased with the increase in β, which is a natural
property of the systems with hard-type anharmonicity [37],
and can be understood from the renormalized wave theory
[54–56]. Second, as β increases, a slight broadening of the
side peaks can be identified. This broadening is related to the
sound attenuation [29]. In the hydrodynamic theory [4,5,7–
10,13,14], it has usually been suggested that there is a mode-
dependent damping coefficient �q ∼ D|q|δ in the small wave-
number’s limit, where D is a damping constant and δ is a
scaling exponent. Then, the constant D can be inferred from
this broadening [53].

Finally, for each β value, the front peaks of ρp(m,t) decay
with t in a power law: h ∼ t−δ , and here h is the height of
the peaks. This power-law exponent δ has been conjectured
to correspond to the exponent shown in �q [53]. It also may
correspond to both the scaling exponents of the sound modes’
correlation function predicted by the nonlinear hydrodynamics
theory [13,14] and of the heat current power spectra suggested
by the mode coupling [4,5] or mode cascade [7–10] theory.
For this reason, we here examine, in detail, the decay of this
ballistic front peak of ρp(m,t) in some intermediate ranges of
β values (see Fig. 11). Remarkably, we find that this decay
behavior also shows a sensitive dependence of β. In particular,

FIG. 11. The height h of the front peaks of ρp(m,t) decays with
t : (a) β = 0.1, (b) β = 0.25, (c) β = 0.5, and (d) β = 1.
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around a turning point of βtr � 0.25, there is a crossover from
two-scaling exponents (for small β) to a one-scaling exponent
(for large β). Eventually, for the relatively large β values, the
values of δ seem to converge to a value of 0.5 to 0.6 [see
Figs. 11(c) and 11(d)], which is almost consistent with the
value of δ = 1/2 predicted by the relevant theories in the long
time limit [4,5,7–10,13,14]. However, for the relatively small
β values in this intermediate range, obviously, it seems to show
some deviations.

Given the same turning point of βtr = 0.25, it is reasonable
to conjecture that there should be a close relationship between
the delocalization of the central peak of ρQ(m,t) and the decay
of the side peaks of ρp(m,t). Such a relation revealed here is
amazing since the central peak of ρQ(m,t) is contributed by
phonons with high wave numbers, whereas the side peaks
of ρp(m,t) are represented by those with low q in view of
their different group velocities. So, even though there are
some couplings between ρQ(m,t) and ρp(m,t), such couplings
should naturally arise at the same locations with the same q

(the same group velocities) [34]. However, our results here
seem to violate this natural intuition.

Turning back to the related theoretical models, the nonlinear
hydrodynamics theory [13,14] claimed that, for sound modes,
the correction from the coupling of the heat mode will vanish
in the long time limit, but it decays very slowly, so at
the intermediate time scales, one could see some physically
interesting information of the heat and the sound modes’
coupling. But obviously, the nonlinear hydrodynamics theory
did not tell us that the coupling between the sound and the
heat modes’ correlation can be so unusual. As to this point,
we note that the assumption of the mode cascade theory
[7–10] may present a correct picture. The central argument
the authors suggested is that the thermal conductivity at any
(sufficiently low) frequency can be determined entirely by
the thermal conductivity and bulk viscosity (represented by
the momentum transport) at much higher frequencies. This
sort of unusual coupling between the heat transport and the
momentum transport, which is the explicit basis of the mode
cascade theory [7–10], seems to be supported by our present
results here, although the argument is still difficult to examine
in more detail.

VI. CONCLUSION

To summarize: We have employed the heat perturbation
correlation function ρQ(m,t) to investigate anomalous thermal
transport in a 1D FPU-β lattice including both the NN and
the NNN interactions. After choosing an appropriate coupling
ratio, we have obtained a peculiar phonon dispersion relation
which then enables us to examine both roles of phonon
dispersion and nonlinearity in more detail. It has been found
that, for relatively small and large nonlinearities, the transports
are ballistic and Lévy walk types, respectively, which can be
well understood from the predictions of the concept of phonon
random walks [39] and the theory of nonlinear fluctuating

hydrodynamics [13,14]. Whereas more interesting things take
place in the intermediate range of the nonlinearity where we
emphasize that there, both the phonon dispersion relation and
the nonlinearity can play roles. In this intermediate range, we
have found that: (i) there is a transition from the single scaling
to multiscaling for the whole profiles of ρQ(m,t) with a critical
point of βc � 0.02; (ii) the delocalization of the central peak
of ρQ(m,t) shows a nonmonotonic dependence of nonlinearity
with another turning point of βtr � 0.25.

The first critical point of βc � 0.02 indicates a crossover
from ballistic to nonballistic transport and might be related
to the strong stochasticity threshold of the focused FPU-β
systems, either or not yet including the NNN interactions [35].
The second turning point of βtr � 0.25 is a special feature
of such systems and seems to be related to the nonuniversal
heat conduction observed previously in the same system [41].
In those previous publications [41], we have conjectured
that the microscopic underlying mechanism is caused by the
scattering of phonons by intraband DBs. Here instead, we use
the momentum perturbation correlation function ρp(m,t) to
explore this phonon’s scattering process from a macroscopic
point of view, which makes this conjecture more convincing.
Remarkably, we find that the time decay behavior of the side
peaks of ρp(m,t) follows a similar nonmonotonic β-dependent
manner as those shown in ρQ(m,t).

Finally, we would like to point out that such a coincidence
of the properties of ρQ(m,t) and ρp(m,t) suggests the very
slowly decoupling process of the heat and the sound modes’
correlations claimed by the nonlinear hydrodynamics theory
[13,14], in particular, for the cases in the intermediate range
of the nonlinearity (or at the intermediate time scales). It
also supports the assumption of the mode cascade theory
proposed by Lee-Dadswell et al. [7,8] and Lee-Daswell [9,10],
i.e., the unusual coupling between the heat transport and the
momentum transport should be taken into account. This is
because the heat mode and the sound modes naturally are
considered as contributed by the relatively high and low
wave-number phonon modes with the relatively high and low
frequencies, respectively.

In short, the results presented here might provide further
useful information for our understanding of anomalous heat
transport and its coupling to the momentum transport, particu-
larly from the perspective of the phonon dispersion relation and
nonlinearity, although understanding the detailed underlying
mechanism still requires effort.
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