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Thermodynamics of random number generation
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We analyze the thermodynamic costs of the three main approaches to generating random numbers via the
recently introduced Information Processing Second Law. Given access to a specified source of randomness, a
random number generator (RNG) produces samples from a desired target probability distribution. This differs
from pseudorandom number generators (PRNGs) that use wholly deterministic algorithms and from true random
number generators (TRNGs) in which the randomness source is a physical system. For each class, we analyze the
thermodynamics of generators based on algorithms implemented as finite-state machines, as these allow for direct
bounds on the required physical resources. This establishes bounds on heat dissipation and work consumption
during the operation of three main classes of RNG algorithms—including those of von Neumann, Knuth, and
Yao and Roche and Hoshi—and for PRNG methods. We introduce a general TRNG and determine its
thermodynamic costs exactly for arbitrary target distributions. The results highlight the significant differences
between the three main approaches to random number generation: One is work producing, one is work consuming,
and the other is potentially dissipation neutral. Notably, TRNGs can both generate random numbers and convert
thermal energy to stored work. These thermodynamic costs on information creation complement Landauer’s limit
on the irreducible costs of information destruction.
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I. INTRODUCTION

Random number generation is an essential tool these days
in simulation and analysis. Applications range from statistical
sampling [1], numerical simulation [2], cryptography [3],
program validation [4], and numerical analysis [5] to machine
learning [6] and decision making in games [7] and in
politics [8]. More practically, a significant fraction of all the
simulations done in physics [9] employ random numbers to
greater or lesser extent.

Random number generation has a long history, full of
deep design challenges and littered with pitfalls. Initially,
printed tables of random digits were used for scientific
work, first documented in 1927 [10]. A number of analog
physical systems, such as reversed-biased Zener diodes [11]
or even Lava R© Lamps [12], were also employed as sources of
randomness; the class of so-called noise generators. One of
the first digital machines that generated random numbers was
built in 1939 [13]. With the advent of digital computers, analog
methods fell out of favor, displaced by a growing concentration
on arithmetical methods that, running on deterministic digital
computers, offered flexibility and reproducibility. An early
popular approach to digital generation was the linear congru-
ential method introduced in 1950 [14]. Since then many new
arithmetical methods have been introduced [15–20].

The recurrent problem in all of these strategies is demon-
strating that the numbers generated were, in fact, random.
This concern eventually lead to Chaitin’s and Kolmogorov’s
attempts to find an algorithmic foundation for probability
theory [21–26]. Their answer was that an object is random
if it cannot be compressed: random objects are their own
minimal description. The theory exacts a heavy price, though:
identifying randomness is uncomputable [25].
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Despite the formal challenges, many physical systems
appear to behave randomly. Unstable nuclear decay processes
obey Poisson statistics [27], thermal noise obeys Gaussian
statistics [28], cosmic background radiation exhibits a prob-
abilistically fluctuating temperature field [29], quantum state
measurement leads to stochastic outcomes [30–32], and fluid
turbulence is governed by an underlying chaotic dynamic [33].
When such physical systems are used to generate random
numbers one speaks of true random number generation [34].

Generating random numbers without access to a source
of randomness—that is, using arithmetical methods on a
deterministic finite-state machine, whose logic is physically
isolated—is referred to as pseudorandom number generation,
since the numbers must eventually repeat and so, in principle,
are not only not random, but are exactly predictable [35,36].
John von Neumann was rather decided about the pseudoran-
dom distinction: “Any one who considers arithmetical methods
of producing random digits is, of course, in a state of sin” [37].
Nonetheless, these and related methods dominate today and
perform well in many applications.

Sidestepping this concern by assuming a given source of
randomness, random number generation (RNG) [38] is a
complementary problem about the transformation of random-
ness: Given a specific randomness source, whose statistics are
inadequate somehow, how can we convert it to a source that
meets our needs? And, relatedly, how efficiently can this be
done?

Our interest is not algorithmic efficiency, but thermody-
namic efficiency, since any practical generation of random
numbers must be physically embedded. What are the energetic
costs—energy dissipation and power inputs—to harvest a
given amount of information? This is a question, at root, about
a particular kind of information processing—viz., information
creation—and the demands it makes on its physical substrate.
In this light, it should be seen as exactly complementary to
Landauer’s well-known limit on the thermodynamic costs of
information destruction (or erasure) [39,40].
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Fortunately, there has been tremendous progress bridging
information processing and the nonequilibrium thermody-
namics required to support it [41,42]. This information
thermodynamics addresses processes that range from the very
small scale, such as the operation of nanoscale devices and
molecular dynamics [43], to the cosmologically large, such as
the character and evolution of black holes [44,45]. Recent
technological innovations allowed many of the theoretical
advances to be experimentally verified [46,47]. The current
state of knowledge in this rapidly evolving arena is reviewed
in Refs. [48–50]. Here, we use information thermodynamics
to describe the physical limits on random number generation.
Though the latter is often only treated as a purely abstract
mathematical subject, practicing scientists and engineers
know how essential random number generation is in their
daily work. The following explores the underlying necessary
thermodynamic resources.

First, Sec. II addresses random number generation, ana-
lyzing the thermodynamics of three algorithms, and discusses
physical implementations. Second, removing the requirement
of an input randomness source, Sec. III turns to analyze
pseudorandom number generation and its costs. Third, Sec. IV
analyzes the thermodynamics of true random number genera-
tion. Finally, the conclusion compares the RNG strategies and
their costs and suggests future problems and energy use.

II. RANDOM NUMBER GENERATION

Take a fair coin as our source of randomness.1 Each flip
results in a Head or a Tail with 50%–50% probabilities.
However, we need a coin that 1/4 of the time generates Heads
and 3/4 of the time Tails. Can the series of fair coin flips be
transformed? One strategy is to flip the coin twice. If the result
is Head-Head, we report Heads. Else, we report Tails. The
reported sequence is equivalent to flipping a coin with a bias
1/4 for Heads and 3/4 for Tails.

Each time we ask for a sample from the biased distribution
we must flip the fair coin twice. Can we do better? The answer
is yes. If the first flip results in a Tail, independent of the second
flip’s result, we should report Tail. We can take advantage of
this by slightly modifying the original strategy. If the first
flip results in a Tail, stop. Do not flip a second time, simply
report a Tail, and start over. With this modification, 1/2 of
the time we need a single flip and 1/2 the time we need two
flips. And so, on average we need 1.5 flips to generate the
distribution of interest. This strategy reduces the use of the fair
coin “resource” by 25%.

Let’s generalize. Assume we have access to a source of
randomness that generates the distribution {pi : i ∈ A} over
discrete alphabet A. We want an algorithm that generates
another target distribution {qj : j ∈ B} from samples of the
given source. (Generally, the source of randomness {pi} can
be known or unknown to us.) In this, we ask for a single correct
sample from the target distribution. This is the immediate
random number generation problem: Find an algorithm that

1Experiments reveal this assumption is difficult if not impossible to
satisfy. Worse, if one takes the full dynamics into account, a flipped
physical coin is quite predictable [51].

FIG. 1. Thermodynamically embedded finite-state machine im-
plementing an algorithm that, from the source of randomness
available on the input string, generates random numbers on the
output string obeying a desired target distribution and an exhaust
with zero entropy. Input string and output string symbols can come
from different alphabet sets. For example, here the input symbols
come from the set {A,B,C} and the outputs from {D,E}. Exhaust
line symbols all are the same symbols γ .

minimizes the expected number of necessary samples of the
given source to generate one sample of the target.2

The goal in the following is to analyze the thermodynamic
costs when these algorithmically efficient algorithms are
implemented in a physical substrate. This question parallels
that posed by Landauer [39,40]: What is the minimum
thermodynamic cost to erase a bit of information? That is,
rather than destroying information, we analyze the costs of
creating information with desired statistical properties given a
source of randomness.

A. Bounding the energetics

The machine implementing the algorithm transforms sym-
bols on an input string sampled from an information reservoir
to an output symbol string and an exhaust string, using a finite-
state machine that interacts with heat and work reservoirs; see
Fig. 1. The input Randomness Reservoir is the given, specified
source of randomness available to the RNG. The states and
transition structure of the finite-state machine implement the
RNG algorithm. The output string then consists of samples of
the distribution of interest. The exhaust string is included to
preserve state space.

Here we assume inputs Xn are independent, identically
distributed (IID) samples from the randomness reservoir with
discrete alphabet A. The output includes two strings, one with
samples from the target distribution X′

m over alphabet B and
another, the exhaust string. At each step one symbol, associated
with variable Xn, enters the machine. After analyzing that
symbol and, depending on its value and that of previous input

2A companion is the batch random number generation problem:
Instead of a single sample, generate a large number of inputs and
outputs. The challenge is to find an algorithm minimizing the ratio of
the number of inputs to outputs [52–54].
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symbols, the machine either writes a symbol to the output
string or to the exhaust string. Yn denotes the machine’s state
at step n after reading input symbol Xn. The last symbol in
the output string after the input Xn is read is denoted X′

m,
where m � n is not necessarily equal to n. The last symbol
in the exhaust string is X′′

n−m. As a result, the number of
input symbols read by the machine equals the number of
symbols written to either the output string or the exhaust
string. To guarantee that the exhaust makes no thermodynamic
contribution, all symbols written to X′′

i s are the same—denoted
γ . Without loss of generality we assume both the input and
output sample space is A ∪ B ∪ {γ }. In the following we
refer to the random-variable input chain at step n as Xn:∞ =
XnXn+1 · · ·X∞, output chain as X′

0:m = X′
0X

′
1 · · · X′

m−1, and
exhaust chain as X′′

0:n−m = X′′
0X

′′
1 · · ·X′′

n−m−1.
The machine also interacts with an environment consisting

of a Thermal Reservoir at temperature T and a Work Reservoir.
The thermal reservoir is that part of the environment which
contributes or absorbs heat, exchanging thermodynamic en-
tropy and changing its state Zn. The work reservoir is that
part which contributes or absorbs energy by changing its state,
but without an exchange of entropy. All transformations are
performed isothermally at temperature T . As in Fig. 1, we
denote heat that flows to the thermal reservoir by Q. To
emphasize, Q is positive if heat flows into the thermal reservoir.
Similarly, W denotes the work done on the machine and not
the work done by the machine.3

After n steps the machine has read n input symbols and
generated m output symbols and n − m exhaust symbols. The
thermodynamic entropy change of the entire system is [57,
Appendix A]

�S ≡ kB ln 2
(

H
[
X′′

0:n−m,X′
0:m,Xn:∞,Yn,Zn

]
− H[X0:∞,Y0,Z0]

)
,

where H[·] is the Shannon entropy [58]. Recalling the
definition of mutual information I[· : ·] [58], we rewrite the
change in Shannon entropy on the right-hand side as

� H = (H[X′′
0:n−m,X′

0:m,Xn:∞,Yn] − H[X0:∞,Y0])

+ (H[Zn] − H[Z0])

− (I[X′′
0:n−m,X′

0:m,Xn:∞,Yn:Zn] − I[X0:∞,Y0:Z0]).

By definition, a heat bath is not correlated with other
subsystems, in particular, with portions of the environment.
As a result, both mutual informations vanish. The term
H[Zn] − H[Z0] is the heat bath’s entropy change, which can
be written in terms of the dissipated heat Q:

H[Zn] − H[Z0] = Q

kBT ln 2
.

Since by assumption the entire system is closed, the Second
Law of Thermodynamics says that �S � 0. Using these
relations gives

Q � −kBT ln 2(H[X′′
0:n−m,X′

0:m,Xn:∞,Yn] − H[X0:∞,Y0]).

3Several recent works [55–57] use the same convention for Q, but
W is defined as the work done by the machine. This makes sense in
those settings, since the machine is intended to do work.

To use rates we divide both sides by n and decompose the first
joint entropy:

Q

n
� − kBT ln 2

n
(H[X′′

0:n−m,X′
0:m,Xn:∞] − H[X0:∞]

+ H[Yn] − H[Y0] − I[X′′
0:n−m,X′

0:m,Xn:∞:Yn]

+ I[X0:∞:Y0]).

Appealing to basic information identities, several terms on
the right-hand side vanish, simplifying the overall bound. First,
since the Shannon entropy of a random variable Y is bounded
by logarithm of the size |AY | of its state space, we have for
the machine’s states

lim
n→∞

1

n
H[Yn] = lim

n→∞
1

n
H[Y0]

� lim
n→∞

1

n
log2 |AY |

= 0.

Second, recalling that the two-variable mutual information is
nonnegative and bounded above by the Shannon entropy of
the individual random variables, in the limit n → ∞ we can
write

lim
n→∞

1

n
I[X′′

0:n−m,X′
0:m,Xn:∞:Yn] � lim

n→∞
1

n
H[Y0]

= 0.

Similarly, lim
n→∞

1
n

I[X0:∞ : Y0] = 0. As a result, we have

lim
n→∞

Q

n
� −kBT ln 2

n

(
H[X′′

0:n−m,X′
0:m,Xn:∞] − H[X0:∞]

)
.

We can also rewrite the joint entropy as

H[X′′
0:n−m,X′

0:m,Xn:∞] = H[X′
0:m,Xn:∞] + H[X′′

0:n−m]

− I[X′
0:m,Xn:∞:X′′

0:n−m].

Since the entropy of the exhaust vanishes, H[X′′
0:n−m] = 0.

Also, since I[X′
0:m,Xn:∞:X′′

0:n−m] is bounded above by it,
I[X′

0:m,Xn:∞ : X′′
0:n−m] also vanishes. This leads to

H[X′′
0:n−m,X′

0:m,Xn:∞] = H[X′
0:m,Xn:∞].

This simplifies the lower bound on the heat to

lim
n→∞

Q

n
� −kBT ln 2

n

(
H[X′

0:m,Xn:∞] − H[X0:∞]
)
.

Rewriting the right-hand terms, we have

H[X0:∞] = H[X0:n] + H[Xn:∞] − I[X0:n:Xn:∞]

and

H[X′
0:m,Xn:∞] = H[X′

0:m] + H[Xn:∞] − I[X′
0:m:Xn:∞].

These lead to

lim
n→∞

Q

n
� −kBT ln 2

n

(
H[X′

0:m] − H[X0:n]

+ I[X0:n:Xn:∞] − I[X′
0:m:Xn:∞]

)
.

Since the inputs are IID, I[X0:n:Xn:∞] vanishes. Finally,
I[X′

0:m:Xn:∞] is bounded above by I[X0:n:Xn:∞], meaning that
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I[X′
0:m:Xn:∞] = 0. Using these we have

lim
n→∞

Q

n
� kBT ln 2

n
(H[X0:n] − H[X′

0:m]).

This can be written as

lim
n→∞

Q

n
� kBT ln 2

[
H[X0:n]

n
− H[X′

0:m]

m

(
m

n

)]
.

As n → ∞, H[X0:n]/n converges to the randomness
reservoir’s Shannon entropy rate h and H[X′

0:m]/m converges
to the output’s Shannon entropy rate h′. The tapes’ relative
velocity term m/n also converges, and we denote the limit as
1/L̂. As a result, we have the rate Q̇ ≡ lim

n→∞(Q/n) of heat flow

from the RNG machine to the heat bath:

Q̇ � kBT ln 2

(
h − h′

L̂

)
. (1)

Since the machine is finite state, its energy is bounded.
In turn, this means the average energy entering the machine,
above and beyond the constant amount that can be stored, is
dissipated as heat. In other words, the average work rate Ẇ and
average heat dissipation rate Q̇ per input are equal: Ẇ = Q̇.

This already says something interesting. To generate one
random number the average change �W in work done on the
machine and the average change �Q in heat dissipation by
the machine are directly related: �W = �Q = L̂Q̇. More to
the point, denoting the lower bound by QLB ≡
kBT ln 2(L̂h − h′) immediately leads to a Second Law adapted
to RNG thermodynamics:

�Q � QLB. (2)

It can be shown that L̂ is always larger or equal to h′/h

[58] and so QLB � 0.4 This tells us that RNG algorithms are
always heat dissipative or, in other words, work consuming
processes. Random numbers generated by RNGs cost energy.
This new RNG Second Law allows the machine to take
whatever time it needs to respond to and process an input. The
generalization moves the information ratchet architecture [57]
one step closer to that of general Turing machines [59], which
also take arbitrary time to produce an output. We now apply
this generalized Second Law to various physically embedded
RNG algorithms.

B. von Neumann RNG

Consider the case where the randomness resource is a biased
coin with unknown probability p 	= 1/2 for Heads. How can
we use this imperfect source to generate fair (unbiased p =
1/2) coin tosses using the minimum number of samples from
the input? This problem was first posed by von Neumann [37].
The answer is simple but clever. What we need is a symmetry
to undo the source’s bias asymmetry. The strategy is to flip
the biased coin twice. If the result is Heads-Tails we report a
Head; if it is Tails-Heads we report Tails. If it is one of the
two other cases, we neglect the flips and simply repeat from

4This is not generally true for the setup shown in Fig. 1 interpreted
most broadly. For computational tasks more general than RNG, QLB

need not be positive.

FIG. 2. Lower bound on heat dissipation during the process of
single fair sample generation via the von Neumann algorithm versus
the input bias p.

the beginning. A moment’s reflection reveals that using any
source of randomness that generates independent, identically
distributed (IID) samples can be used in this way to produce
a statistically uniform sample, even if we do not know the
source’s bias.

Note that we must flip the biased coin more than twice,
perhaps many more times, to generate an output. More
troublesome, there is no bound on how many times we must
flip to get a useful output.

So what are the thermodynamic costs of this RNG scheme?
With probability 2p(1 − p) the first two flips lead to an output;
with probability [1 − 2p(1 − p)][2p(1 − p)] the two flips do
not, but the next two flips will; and so on. The expected number
of flips to generate a fair coin output is L̂ = 1

p(1−p) . Using
Eq. (2) this costs

QLB = kBT ln 2

[
H(p)

p(1 − p)
− 1

]
, (3)

where H(p) = −p log2(p) − (1 − p) log2(1 − p). Figure 2
shows QLB versus source bias p. It is always positive with
a minimum 3kBT ln 2 at p = 1

2 .
This minimum means that generating a fair coin from a fair

coin has a heat cost of 3kBT ln 2. At first glance, this seems
wrong. Simply pass the fair coin through. The reason it is
correct is that the von Neumann RNG does not know the input
bias and, in particular, that it is fair. In turn, this means we may
flip the coin many times, depending on the result of the flips,
costing energy.

Notably, the bound diverges as p → 0 and as p → 1, since
the RNG must flip an increasingly large number of times. As
with all RNG methods, the positive lower bound implies that
generating an unbiased sample via the von Neumann method
is a heat dissipative process. We must put energy in to get
randomness out.

Consider the randomness extractor [60], a variation on von
Neumann RNG at extreme p, that uses a weakly random
physical source but still generates a highly random output.
(Examples of weakly random sources include radioactive
decay, thermal noise, shot noise, radio noise, avalanche noise
in Zener diodes, and the like. We return to physical randomness
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sources shortly.) For a weakly random source p 
 1, the
bound in Eq. (3) simplifies to −kBT ln p, which means heat
dissipation diverges at least as fast as − ln p in the limit p → 0.

C. Knuth and Yao RNG

Consider a scenario opposite von Neumann’s where we
have a fair coin and can flip it an unlimited number of times.
How can we use it to generate a sample from any desired
distribution over a finite alphabet using the minimum number
of samples from the input? Knuth and Yao were among the
first to attempt an answer [61]. They proposed the discrete
distribution generation tree (DDD-tree) algorithm.

The algorithm operates as follows. Say the target distri-
bution is {pj } with probabilities pj ordered from large to
small. Define the partial sum βk = ∑k

j=1 pj , with β0 = 0. This
partitions the unit interval (0,1) into the subintervals (βk−1,βk)
with lengths pk . Now, start flipping the coin, denoting the
outcomes X1,X2, . . .. Let Sl = ∑l

m=1 Xm2−m. It can be easily
shown that S∞ has the uniform distribution over the unit
interval. At any step l, when we flip the coin, we examine
Sl . If there exists a k such that

βk−1 � Sl < Sl + 2−l � βk, (4)

the output generated is symbol k. If not, we flip the coin again
for one or more times until we find a k that satisfies the relation
in Eq. (4) and report that k as the output.

This turns on realizing that if the condition is satisfied, then
the value of future flips does not matter since, for r > l, Sr

always falls in the subinterval (βk−1,βk). Recalling that S∞ is
uniformly distributed over (0,1) establishes that the algorithm
generates the desired distribution {pj }. The algorithm can be
also interpreted as walking a binary tree,5 a view related to
arithmetic coding [58]. Noting that the input has entropy rate
h = 1 and using Eq. (1) the heat dissipation is bounded by

QLB = kBT ln 2(L̂ − H[{pi}]). (5)

Now, let’s determine L̂ for the Knuth-Yao RNG. Ref. [61]
showed that

H[{pi}] � L̂ � H[{pi}] + 2. (6)

More modern proofs are found in Refs. [54] and [58]. Given
a general target distribution the Knuth-Yao RNG’s L̂ can be
estimated more accurately. However, it cannot be calculated
in closed form, only bounded. Notably, there are distributions
{pj } for which L̂ can be calculated exactly. These include the
dyadic distributions whose probabilities can be written as 2−n

with n an integer. For these target distributions, the DDG-tree
RNG has L̂ = H[{pi}].

Equations (2) and (6) lead one to conclude that the heat
dissipation for generating one random sample is always a
strictly positive quantity, except for the dyadic distributions
which lead to vanishing or positive dissipation. Embedding
the DDG-tree RNG into a physical machine, this means one
must inject work to generate a random sample. The actual
amount of work depends on the target distribution given.

5For details see Ref. [58].

TABLE I. Most efficient map from inputs to outputs when using
the DDG-tree RNG method.

Input Output

00 A

01 B

10 C

110 B

1110 A

11110 A

111110 B

111111 C

Let us look at a particular example. Consider the case that
our source of randomness is a fair coin with half and half
probability over symbols 0 and 1 and we want to generate the
target distribution { 11

32 , 25
64 , 17

64 } over symbols A,B, and C. The
target distribution has Shannon entropy H[{pi}] ≈ 1.567 bits.
Equation (6) tells us that L̂ should be larger than this. The
DDG-tree method leads to the most efficient RNG. Table I
gives the mapping from binary inputs to three-symbol outputs.
L̂ can be calculated using the table: L̂ ≈ 2.469. This is
approximately 1 bit larger than the entropy consistent with
Eq. (6). Now, using Eq. (5), we can bound the dissipated heat:
QLB ≈ 0.625kBT .

D. Roche and Hoshi RNG

A more sophisticated and more general RNG problem was
posed by Roche in 1991 [62]: What if we have a so-called
M-coin that generates the distribution {pi : i = 1, . . . ,M} and
we want to use it to generate a sample from a target distribution
{qj }? Roche’s algorithm was probabilistic. And so, since we
assume the only source of randomness to which we have access
is the input samples themselves, Roche’s approach will not be
discussed here.

However, in 1995 Hoshi introduced a deterministic algo-
rithm [63] from which we can determine the thermodynamic
cost of this general RNG problem. Assume the pi and qj

are ordered from large to small. Define αt = ∑t
i=1 pi and

βk = ∑k
j=1 qj , with α0 = β0 = 0. These quantities partition

(0,1) into subintervals [αt−1,αt ) and Bk ≡ [βk−1,βk) with
lengths pt and qk , respectively. Consider now the operator
D that takes two arguments—an interval and an integer—and
outputs another interval:

D([a,b),t) = [a + (b − a)αt−1,a + (b − a)αt ).

Hoshi’s algorithm works as follows. Set n = 0 and R0 =
[0,1). Flip the M-coin, call the result xn. Increase n by one and
set Rn = D(Rn−1,xn). If there is a k such that Rn ⊆ Bk , then
report k, else flip the M-coin again.

Han and Hoshi showed that [63]

H[{qj }]
H[{pi}] � L̂ � H[{qj }] + f ({pi})

H[{pi}] ,

where

f ({pi}) = ln[2(M − 1)] + H[{pmax,1 − pmax}]
1 − pmax

,
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TABLE II. Immediate random number generation: The most
efficient map from inputs to output to transform fair coin inputs
to biased coin outputs with bias 1

4 .

Input Output

0 0
10 0
11 1

with pmax = max
i=1,··· ,M

pi . Using this and Eq. (2) we see that

the heat dissipation per sample is always positive except for
measure-zero cases for which the dissipation may be zero or
not. This means one must do work on the system independent
of input and output distributions to generate the target sample.
Again, using this result and Eq. (2) there exist input and
output distributions with heat dissipation at least as large as
kBT ln 2f ({pi}).

E. RNG physical implementations

Recall the first RNG we described. The input distribution
is a fair coin, and the output target distribution is a biased
coin with bias 1

4 . Table II summarizes the optimal algorithm.
Generally, optimal algorithms require the input length to differ
from the output length—larger than or equal, respectively.

This is the main challenge to designing physical imple-
mentations. Note that for some inputs, after they are read,
the machine should wait for additional inputs until it receives
the correct input and then transfers it deterministically to the
output. For example, in our problem if input 0 is read,
the output would be 0. However, if 1 is read, the machine
should wait for the next input and then generate an output.
How to implement these delays? Let’s explore a chemical
implementation of the algorithm.

Chemical reaction networks (CRNs) [64,65] have been
widely considered as substrates for physical information
processing [66] and as a programming model for engineering
artificial systems [67,68]. Moreover, CRN chemical imple-
mentations have been studied in detail [69,70]. CRNs are
also efficiently Turing-universal [71], which makes them
appealing. One of their main applications is deterministic
function computation [72,73], which is what our RNGs need.

Consider five particle types—0, 1, A, B, and γ —and a
machine consisting of a box that can contain them. Particles 0
and 1 can be inputs to or outputs from the machine and particle
γ can be an output from the machine. “Machine” particles A

and B always stay in the machine’s box and are in contact
with a thermal reservoir. Figure 3 shows that the left wall is
designed so that only input particles (0 and 1) can enter, but
no particles can exit. The right wall is designed so that only
output particles (0, 1, and γ ) can exit.

To get started, assume there is only a single machine particle
A in the box. Every τ seconds a new input particle, 0 or 1, enters
from the left. Now, the particles react in the following way:

0 + A ⇒ A + 0,

1 + A ⇒ B,

0 + B ⇒ A + 0 + γ,

1 + B ⇒ A + 1 + γ.

FIG. 3. Chemical reaction network (CRN) implementation of an
RNG machine consisting of a box and a particle in it. The left wall
acts as a membrane filter such that only input particles, 0 and 1, can
enter, but no particles can exit through the wall. The right wall is also
a membrane designed such that only output particles, 0, 1, and γ ,
can exit. At the beginning the only particle in the box is “machine
particle” A, which is confined to stay in the box. Every τ seconds
a new input particle enters the box from the left and, depending on
the reaction between the input particle and the machine particle, an
output particle may or may not be generated that exists through the
right wall.

The time period of each chemical reaction is much less than τ .
With this assumption it is not hard to show that if the distribu-
tion of input particles 0 and 1 is { 1

2 , 1
2 } then the distribution of

output particles 0 and 1 would be { 3
4 , 1

4 }, respectively. Thus, this
CRN gives a physical implementation of our original RNG.

Using Eqs. (2) and (5) we can put a lower bound on the
average heat dissipation per output: QLB ≈ 0.478kBT . Since
deriving the bound does not invoke any constraints over input
or output particles, the bound is a universal lower bound over
all possible reaction energetics. That is, if we find any four
particles (molecules) obeying the four reactions above then the
bound holds. Naturally, depending on the reactions’ energetics,
the CRN-RNG’s �Q can be close to or far from the bound.
Since CRNs are Turing-universal [71] they can implement all
of the RNGs studied up to this point. The details of designing
CRNs for a given RNG algorithm can be gleaned from the
general procedures given in Ref. [72].

III. PSEUDORANDOM NUMBER GENERATION

So far, we abstained from von Neumann’s sin by assuming
a source of randomness—a fair coin, a biased coin, or any
general IID process. Nevertheless, modern digital computers
generate random numbers using purely deterministic arith-
metical methods. This is pseudorandom number generation
(PRNG). Can these methods be implemented by finite-state
machines? Most certainly. The effective memory in these
machines is very large, with the algorithms typically allowing
the user to specify the amount of state information used
[74]. Indeed, they encourage the use of large amounts of
state information, promising better quality random numbers
in the sense that the recurrence time (generator period) is
astronomically large. Our concern, though, is not analyzing
their implementations. See Ref. [10] for a discussion of design
methods. We can simply assume they can be implemented
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or, at least, there exist ones that have been, such as the Unix
C-library random() function just cited.

The PRNG setting forces us to forego accessing a source
of randomness. The input randomness reservoir is not random
at all. Rather, it is simply a pulse that indicates that an output
should be generated. Thus, h = 0 and L̂ = 1. In our analysis,
we can take the outputs to be samples of any desired IID
process.

Even though a PRNG is supposed to generate a random
number, in reality after setting the seed [35,36] it, in fact,
generates an exactly periodic sequence of outputs. Thus, as
just noted, to be a good PRNG algorithm that period should be
relatively long compared to the sample size of interest. Also,
the sample statistics should be close to those of the desired
distribution. This means that if we estimate h′ from the sample
it should be close to the Shannon entropy rate of the target
distribution. However, in reality h′ = 0 since h′ is a measure
over infinite-length samples, which in this case are completely
nonrandom due to their periodicity.

This is a key point. When we use PRNGs we are only
concerned about samples with comparatively short lengths
compared to the PRNG period. However, when determining
PRNG thermodynamics we average over asymptotically large
samples. As a result, we have QLB = 0 or, equivalently, �Q �
0. And so, PRNGs are potentially heat dissipative processes.
Depending on the PRNG algorithm, it may be possible to find
machinery that achieves the lower bound (zero) or not. To date,
no such PRNG implementations have been introduced.

Indeed, the relevant energetic cost bounds are dominated
by the number of logically irreversible computation steps in
the PRNG algorithm, following Landauer [39]. This, from
a perusal of open source code for modern PRNGs, is quite
high. However, this takes us far afield, given our focus on
input-output thermodynamic processing costs.

IV. TRUE RANDOM NUMBER GENERATION

Consider situations in which no random information source
is explicitly given as with RNGs and none is approximated
algorithmically as with PRNGs. This places us in the domain
of true random number generators (TRNGs): randomness is
naturally embedded in their substrate physics. For example,
a spin one-half quantum particle oriented in the z+ direction,
but measured in x+ and x− directions, gives x+ and x−
outcomes with 1

2 and 1
2 probabilities. More sophisticated

random stochastic process generators employing quantum
physics have been introduced recently [75–80]. TRNGs have
also been based on chaotic lasers [81,82], metastability in
electronic circuits [83,84], and electronic noise [85]. What
thermodynamic resources do these TRNGs require? We
address this here via one general construction.

A. True general-distribution generator

Consider the general case where we want to generate a
sample from an arbitrary probability distribution {pi}. Each
time we need a random sample, we feed in 0 and the TRNG
returns a random sample. Again, the input is a long sequence
of 0s and, as a consequence, h = 0. We also have h′ = H[{pi}]
and L̂ = 1. Equation (2) puts a bound on the dissipated heat and

FIG. 4. True general-distribution generator: Emit random sam-
ples from an arbitrary probability distribution {pi}, i = 0, . . . ,n − 1
where p1 to pn−1 sorted from large to small. It has one internal state
S, and inputs and outputs can be 0, 1,..., n − 1. All states have energy
zero. The joint states i ⊗ S for i 	= 0 have nonzero energies �Ei .
Heat is transferred only during the transition from state 0 ⊗ S to
states i ⊗ S. Work is transferred only during coupling the input bit to
the machine’s state and decoupling the output bit from the machine’s
state.

input work: QLB = −kBT ln 2 H[{pi}]. Notice here that QLB

is a negative quantity. This is something that, as we showed
above, can never happen for RNG algorithms since they all are
heat-dissipation positive: QLB > 0. Of course, QLB is only a
lower bound and �Q may still be positive. However, negative
QLB opens the door to producing work from heat instead of
turning heat to dissipated work—a functioning not possible
for RNG algorithms.

Figure 4 shows one example of a physical implementation.
The machine has a single state S and the inputs and outputs
come from the symbol set {0,1, . . . ,n − 1}, all with zero
energies. The system is designed so that the joint state 0 ⊗ S

has zero energy and the joint states i ⊗ S, i > 0, have energy
�Ei . Recall that every time we need a random sample we
feed a 0 to the TRNG machine. Feeding 0 has no energy cost,
since the sum of energies of states 0 and S is zero and equal
to the energy of the state 0 ⊗ S. Then, putting the system into
contact with a thermal reservoir, we have stochastic transitions
between state 0 ⊗ S and the other states i ⊗ S. Tuning the
i ⊗ S → 0 ⊗ S transition probabilities in a fixed time τ to
1 and assuming detailed balance, all the other transition
probabilities are specified by the �Eis and, consequently, for
all i ∈ {1,2, . . . ,n − 1}, we have pi = exp (−β�Ei).

The design has the system start in the joint state 0 ⊗ S

and after time τ with probability pi it transitions to state
i ⊗ S. Then the average heat transferred from the system to
the thermal reservoir is −∑n−1

i=1 pi�Ei . Now, independent
of the current state i ⊗ S, we decouple the machine state S

from the target state i. The average work we must pump into
the system for this to occur is

�W = −
n−1∑
i=1

pi�Ei.
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This completes the TRNG specification. In summary, the
average heat �Q and the average work �W are the same
and equal to

∑n−1
i=1 pi�Ei .

Replacing �Ei by −kBT ln pi we have

�Q = kBT

n−1∑
i=1

pi ln pi < 0, (7)

which is consistent with the lower bound −kBT ln 2 H[{pi}]
given above. Though, as noted there, a negative lower bound
does not mean that we can actually construct a machine with
negative �Q, in fact, here is one example of such a machine.
Negative �Q leads to an important physical consequence. The
operation of a TRNG is a heat-consuming and work-producing
process, in contrast to the operation of an RNG. This means
not only are the random numbers we need being generated,
but we also have an engine that absorbs heat from thermal
reservoir and converts it to work. Of course, the amount of
work depends on the distribution of interest. Thus, TRNGs are
a potential win-win strategy. Imagine that at the end of charging
a battery, one also had a fresh store of random numbers.

Let’s pursue this further. For a given target distribution with
n elements, we operate n such TRNG machines, all generating
the distribution of interest. Any of the n elements of the given
distribution can be assigned to the self-transition p0. This
gives freedom in our design to choose any of the elements.
After choosing one, all the others are uniquely assigned to
p1 to pn−1 from largest to smallest. Now, if our goal is to
pump-in less heat per sample, which of these machines is
the most efficient? Looking closely at Eq. (7), we see that
the amount of heat needed by machine j is proportional to
H({pi}) − |pj log2 pj |. And so, over all the machines, that
with the maximum |pj log2 pj | is the minimum-heat consumer
and that with minimum |pj log2 pj | is the maximum-work
producer.

Naturally, there are alternatives to the thermodynamic
transformations used in Fig. 4. One can use a method based
on spontaneous irreversible relaxation. Or one can use the
approach of changing the Hamiltonian instantaneously and
changing it back quasistatically and isothermally [42].

Let’s close with a challenge. Now that a machine with
negative �Q can be identified, we can go further and ask if
there is a machine that actually achieves the lower bound QLB.
If the answer is yes, then what is that machine? We leave the
answer for the future.

V. CONCLUSION

Historically, three major approaches have been employed
for immediate random number generation: RNG, PRNG, and
TRNG. RNG itself divides into three interesting problems.
First, when we have an IID source, but we have no knowledge
of the source and the goal is to design machinery that
generates an unbiased random number—the von Neumann
RNG. Second, when we have a known IID source generating
a uniform distribution and the goal is to invent a machine
that can generate any distribution of interest—the Knuth and
Yao RNG. Third, we have the general case of the second,
when the randomness source is known but arbitrary and the
goal is to devise a machine that generates another arbitrary

distribution—the Roche and Hoshi RNG. For all these RNGs
the overarching concern is to use the minimum number of
samples from the input source. These approaches to random
number generation may seem rather similar and to differ
only in mathematical strategy and cleverness. However, the
thermodynamic analyses show that they make rather different
demands on their physical substrates, on the thermodynamic
resources required.

We showed that all RNG algorithms are heat-producing,
work-consuming processes. In contrast, we showed that TRNG
algorithms are heat-consuming, work-producing processes.
And PRNGs lie in between dissipation neutral (�Q = 0) in
general, and so the physical implementation determines the
detailed thermodynamics. Depending on available resources
and what costs we want to pay, the designer can choose
between these three approaches.

The most thermodynamically efficient approach is TRNG
since it generates both the random numbers of interest and
converts heat that comes from the thermal reservoir to work.
Implementing a TRNG, however, also needs a physical system
with inherent stochastic dynamics that, on their own, can be
inefficient depending on the resources needed. PRNG is the
most unreliable method since it ultimately produces periodic
sequences instead of real random numbers, but thermodynami-
cally it potentially can be efficient. The RNG approach, though,
can only be used given access to a randomness source. It is
particularly useful if it has access to a nearly free randomness
source. Thermodynamically, though, it is inefficient since the
work reservoir must do work to run the machine, but the
resulting random numbers are reliable in contrast to those
generated vis a PRNG.

To see how different the RNG and TRNG approaches can
be, let’s examine a particular example assuming access to a
weakly random IID source with bias p 
 1 and we want to
generate an unbiased sample. We can ignore the randomness
source and instead use the TRNG method with the machine in
Fig. 4. Using Eq. (7) on average to produce one sample, the
machine absorbs |kBTp ln p| ≈ 0 heat from the heat reservoir
and turns it into work. Since the required heat is very small,
this approach is resource neutral, meaning that there is no
energy transfer between reservoir and machine. Now, consider
the case when we use the RNG approach—the von Neumann
algorithm. To run the machine and generate one symbol, on
average the work reservoir needs to provide work energy to
the machine. This thermodynamic cost can be infinitely large
depending on how small p is. This comparison highlights how
different the random number generation approaches can be
and how their usefulness depends on available resources.

The thermodynamic analysis of the main RNG strategies
suggests a number of challenges. Let’s close with several
brief questions that hint at several future directions in the
thermodynamics of random number generation. Given that
random number generation is such a critical and vital task in
modern computing, following up on these strikes us as quite
important.

First, is Szilard’s Engine [86] a TRNG? What are the
thermodynamic costs in harvesting randomness? A recent
analysis appears to have provided the answers [87] and an-
ticipates TRNG’s win-win property. Second, the randomness
sources and target distributions considered were rather limited
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compared to the wide range of stochastic processes that
arise in contemporary experiment and theory. For example,
what about the thermodynamics of generating 1/f noise
[88]? Nominally, this and other complex distributions are
associated with infinite memory processes [89]. What are
the associated thermodynamic cost bounds? Suggestively, it
was recently shown that infinite-memory devices can actually
achieve thermodynamic bounds [90]. Third, the random
number generation strategies considered here are not secure.
However, cryptographically secure random number generators
have been developed [91]. What type of physical systems can
be used for secure TRNG and which are thermodynamically
the most efficient? One possibility is to use superconducting
nanowires and Josephson junctions tuned near where they
generate superconducting critical currents [92]. Fourth, what
are the additional thermodynamic costs of adding security
to RNGs? Finally, there is a substantial advantage when
employing quantum channels to compress classical random
processes [75]. What are the thermodynamic consequences of
using such quantum implementations for RNGs?

Let’s close with several reflections on the results’ practical
impact. They could very well provide significant guidance
in the near future, as we reduce the power consumption of
computation for an energy-sustainable society. One can even
argue they are significant now, as current technology strives to
design ultra low-power devices and as the sciences attempt to
understand information processing in biological process.

Consider the first—the total energy dissipated annually
worldwide for computation. Total energy is directly related
to the number of raw bit manipulations. The energy dissipated
per bit manipulation arises from different sources, such as the
operation of logic circuits, memory arrays, and communication
interfaces. Currently for mainstream technology (e.g., CMOS),
the average energy per one bit manipulation is close to 10−14J ,

which is referred as the benchmark [93]. It is also known
that the computation volume (number of bit manipulations)
increases exponentially every year [94]. These observations
lead one to conclude that at the current benchmark energy
dissipated per bit, global computing will not be sustainable by
2040, when the energy required for computing is projected to
exceed the world’s estimated energy production.

The conclusion is rather direct. We need a radical im-
provement in the energy efficiency of computing and, in
particular, in random number generation which is a significant
component in general computing. Random number generation
is used heavily for many different tasks, much of it outside
of the sciences and technology is found in security validation
and secure communication and storage. Here, in analyzing
the thermodynamic costs for alternative methods of random
number generation, we showed that one method is work
producing, one is work consuming, and the other is potentially
dissipation neutral. In this way, the results highlight the
basic physical trade-offs when implementing energy-efficient
random number generation. Hopefully, these will be useful
guideposts when designing future computing infrastructure.
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