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We consider diffusion-controlled evolution of a d-dimensional A-particle island in the B-particle sea at
propagation of the sharp reaction front A + B → 0 at equal species diffusivities. The A-particle island is formed
by a localized (point) A-source with a strength λ that acts for a finite time T . We reveal the conditions under
which the island collapse time tc becomes much longer than the injection period T (long-living island) and
demonstrate that regardless of d the evolution of the long-living island radius rf (t) is described by the universal
law ζf = rf /rM

f = √
eτ | ln τ |, where τ = t/tc and rM

f is the maximal island expansion radius at the front turning
point tM = tc/e. We find that in the long-living island regime the ratio tc/T changes with the increase of the
injection period T by the law ∝ (λ2T 2−d )1/d , i.e., increases with the increase of T in the one-dimensional (1D)
case, does not change with the increase of T in the 2D case and decreases with the increase of T in the 3D case. We
derive the scaling laws for particles death in the long-living island and determine the limits of their applicability.
We demonstrate also that these laws describe asymptotically the evolution of the d-dimensional spherical island
with a uniform initial particle distribution generalizing the results obtained earlier for the quasi-one-dimensional
geometry. As striking results, we present a systematic analysis of the front relative width evolution for fluctuation,
logarithmically modified, and mean-field regimes, and we demonstrate that in a wide range of parameters the
front remains sharp up to a narrow vicinity of the collapse point.
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I. INTRODUCTION

In recent decades, the reaction-diffusion systems A + B →
0, where unlike species A and B diffuse and irreversibly
annihilate in the bulk of a d-dimensional medium, have
attracted great interest owing to the remarkable property of
effective dynamical repulsion of unlike species ([1–4]). In
systems with initially spatially separated reactants this prop-
erty results in the formation and self-similar propagation of a
localized reaction front which, depending on the interpretation
of A and B (chemical reagents, quasiparticles, topological
defects, etc.), plays a key role in a wide range of applications
from Liesegang patterns formation [5–7] to electron-hole
luminescence in quantum wells [8–10]. The simplest model
of a planar reaction front, introduced by Galfi and Racz (GR)
[11], is the quasi-one-dimensional model,

∂a/∂t = DA∇2a − R, ∂b/∂t = DB∇2b − R, (1)

for two initially separated reactants which are uniformly
distributed on the left side (x < 0) and on the right side
(x > 0) of the initial boundary. Taking the reaction rate in the
mean-field form R(x,t) = ka(x,t)b(x,t) (k being the reaction
constant), GR discovered that in the long time limit kt � 1
the reaction profile R(x,t) acquires a universal scaling form
with the width w ∝ (t/k2)1/6, so that on the diffusion length
scale LD ∝ t1/2 the relative width of the front asymptotically
contracts unlimitedly w/LD ∼ (kt)−1/3 → 0 as kt → ∞.
Based on this fact a general concept of the front dynamics, the
quasistatic approximation (QSA), was developed ([12–16]).
The key property of the QSA is that w(J ) depends on t only
through the time-dependent boundary current, JA = |JB | = J ,
the calculation of which is reduced to solving the external
diffusion problem with the moving absorbing boundary
(Stefan problem) R = Jδ(x − xf ). Following this approach,
in most subsequent works the use of the QSA was traditionally

restricted by the GR sea-sea problem with unlimited number
of A and B particles where the stage of monotonous quasistatic
front propagation is always reached asymptotically.

In the recent Refs. [17–24] it has been shown that based
on the QSA the scope of the A + B → 0 problems which
allow for analytic description can be appreciably broadened
including the systems with finite number of particles and
nonmonotonous front propagation where asymptotically the
QSA is violated. In Rapid Communication Ref. [17], the
problem of the death of an A-particle island in the uniform
B-particle sea at equal species diffusivities was considered. It
has been established that at sufficiently large initial number
of A particles, N0, and a sufficiently large reaction constant k

the death of majority of island particles N (t) proceeds in the
universal scaling regime,

N = N0G(t/tc), (2)

where tc ∝ N2
0 is the lifetime of the island in the limit k,N0 →

∞. This result was obtained under the assumption that the
reaction front propagates quasistatically and is sustained to be
quite sharp, w/xf 	 1 until the collapse time t ≈ tc, so that
the law of the motion of the front center xf (t) governs the
island width evolution. It has been shown that while dying, the
island first expands to a certain maximal amplitude xM

f ∝ N0

and then begins to contract by the law

xf = xM
f ζf (t/tc), (3)

so that on reaching the maximal expansion amplitude xM
f (the

turning point of the front),

tM/tc = 1/e, NM/N0 = 0.19886..., (4)

and, therefore, irrespective of the initial particle number, ≈ 4/5
of the particles die at the stage of the island expansion and the
remaining ≈ 1/5 at the stage of its subsequent contraction.
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According to Ref. [17], the rapid island contraction is accom-
panied by the rapid growth of the front width w and, therefore,
in some vicinity of the collapse pointT = (tc − t)/tc ∼ TQ the
reaction front becomes “blurred” (w/xf ∼ 1) and the QSA is
no longer applicable. In Ref. [17], it has been shown that for
the mean-field front at small T ,

w/xf ∝ (TQ/T )2/3, (5)

where

TQ ∝ 1/N0

√
k,

so that TQ → 0 at large k,N0 → ∞.
It should be emphasized, however, that as well as in

the case of GR problem these results have been obtained
for quasi-one-dimensional geometry (flat front), whereas in
numerous applications the urgent need of their generalization
for the islands possessing circular (ring-shaped front) or
spherical (spherical front) symmetry arises [25–27]. Moreover,
in Ref. [17] the evolution of the formed island with uniform
initial distribution of A particles has been regarded, whereas
in many applications the A-particle island appears in the
uniform d-dimensional B-particle sea from a localized (point)
source that forms asymptotically the d-dimensional radially
symmetric island with particle distribution dependent on
intensity and duration of the source action (electron-hole
luminescence in quantum wells with localized laser injection
of holes into a uniform electron sea is a prominent illustration
of such systems [8–10]). The regularities of the d-dimensional
radially symmetric island growth from a continuous in time
localized (point) source for the physically most important
situation when both A and B particles are mobile were
studied in Ref. [18]. In the assumption of sharp reaction front
formation (QSA) it was established that in the one-dimensional
(1D) case the island grows unlimitedly at any reduced source
strength λ, and the dynamics of its growth does not depend
asymptotically on the diffusivity of B particles. In the 3D case
the island grows only at λ > λc, achieving asymptotically a
stationary state (static island). In the marginal 2D case the
island grows unlimitedly at any λ but at λ < λ∗ the time of its
formation becomes exponentially large.

In this paper, alongside with generalization of the results
[17] for the d-dimensional sphere, as the main goal we study
in the frameworks of the QSA the regularities of evolution
and collapse of the d-dimensional A-particle island after
switching-off a localized source acting for some finite time
T . In the assumption of sharp reaction front formation we
reveal the complete picture of evolution of front trajectory and
particle distribution in the island at change in intensity and
duration of the source action at equal species diffusivities. We
focus chiefly on the situation when the island collapse time tc
becomes much longer than the injection period T (long-living
island) and demonstrate that, in qualitative contrast to a radical
change in the island growth laws [18] at the change in the
system dimension, the evolution of the long-living island
radius regardless of d is described by the universal law

ζf = rf /rM
f =

√
eτ | ln τ |,

where τ = t/tc and rM
f is the radius of the island maximal

expansion at the front turning point tM = tc/e. We reveal the

conditions of long-living island formation and discover that
in the long-living island regime the ratio tc/T changes at the
increase in the injection period T by the law ∝ (λ2T 2−d )1/d ;
i.e., it increases at the increase of T in the 1D case, does not
change at the increase of T in the 2D case, and decreases at the
increase of T in the 3D case. We show that in the long-living
island regime by the time moment of source switching-off
the majority of injected particles survive and derive scaling
laws of particle death in the island. We also demonstrate that
asymptotically these laws describe the evolution of the d-
dimensional spherical island with uniform initial particle dis-
tribution. Finally, we analyze self-consistently the regularities
of the reaction front relative width evolution for fluctuation,
logarithmically modified, and mean-field regimes.

II. EVOLUTION OF THE d-DIMENSIONAL SPHERICAL
ISLAND WITH UNIFORM INITIAL PARTICLE

DISTRIBUTION

We start with generalization of the Ref. [17] results
obtained for quasi-one-dimensional geometry. Let the uniform
d-dimensional spherically symmetrical A-particle island with
a radius L (r ∈ [0,L)) be “submerged” into the uniform
d-dimensional sea of particles B (r ∈ (L,∞)) with initial
concentrations a0 and b0, respectively (it is clear that in the
1D case the interval r ∈ [0,∞) represents a half of radially
symmetric distribution r = |x|). Particles A and B diffuse
with nonzero diffusion constants DA,B and upon contact
annihilate with some nonzero probability, A + B → 0. In
the continuum version, this process can be described by the
reaction-diffusion Eqs. (1), where a(r,t) and b(r,t) are the
mean local concentrations of A and B, which, by symmetry,
we assume to be dependent only on the radius, and R(r,t) is
the macroscopic reaction rate. We shall assume, as usual, that
species diffusivities are equal DA = DB = D. This important
condition, due to local conservation of difference concentra-
tion a − b, leads to a radical simplification that permits to
obtain an analytical solution for arbitrary front trajectory (we
shall note that at different species diffusivities DA 
= DB an
analytical solution of the Stefan problem is possible only for
a stationary or a monotonically moving front [22]). Then,
by measuring the length, time, and concentration in units of
L,L2/D, and b0, respectively, and defining the ratio a0/b0 = c,
we come from Eq. (1) to the simple diffusion equation for the
difference concentration s(r,t) = a(r,t) − b(r,t),

∂s/∂t = ∇2s, (6)

at the initial conditions

s0(r ∈ [0,1)) = c, s0(r ∈ (1,∞]) = −1, (7)

with the boundary conditions

∇s|r=0 = 0, s(∞,t) = −1. (8)

As well as in Ref. [17], we shall assume that the ratio of
concentrations island/sea is large enough, c � 1 (concentrated
island). Below it will be shown that in the limit of large c � 1
the “lifetime” of the island tc ∝ c2/d � 1, so the majority of
the particles die at times t � 1, when the diffusive length
exceeds appreciably the initial island radius. As well as in
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Ref. [17], the evolution of the island in such a large-t regime
is of principal interest to us here.

Asymptotics of the exact solution of the problem Eqs. (6)–
(8) for d = 1,2,3 at large t and r/t 	 1 has the form

s(r,t) = γN0

(4πt)d/2
e−r2/4t (1 − χd ) − 1, (9)

where N0 = μdc(μ1 = 2,μ2 = π,μ3 = 4π/3) is the initial
number of particles in the island in units of b0L

d, γ =
(c + 1)/c, and

χd = αd (1 − r2/2dt)/t + . . . ,

with α1 = 1/12, α2 = 1/8, and α3 = 3/20. According to the
QSA for large k → ∞ at times t ∝ k−1 → 0, there forms
a sharp reaction front w/rf → 0 so that in neglect of the
reaction front width the solution s(r,t) defines the law of
its propagation s(rf ,t) = 0 and the evolution of particle
distributions a = s(r < rf ) and b = |s|(r > rf ). Substituting
to Eq. (9) the condition s(rf ,t) = 0 and assuming that χf

d 	 1,
we find the law of the front motion in the form

rf = 2(1 + αd/dt)

√
t ln

[
γN0(1 − αd/t)

(4πt)d/2

]
. (10)

From Eq. (10), it follows that at any d in the limit of large
t,N0 � 1 the island first expands reaching some maximal
radius rM

f , and then it contracts disappearing in the collapse

point tc ∝ N
2/d

0 . Taking rf (tc) = 0, we find from Eq. (10)

tc = (γN0)2/d
[
1 − O

(
N

−2/d

0

)]
4π

, (11)

whence neglecting the terms O[max(1/c,1/c2/d ]), we obtain

tc = (N0)2/d/4π. (12)

Neglecting further the terms αd/t , we finally find from Eq. (10)

rf =
√

2dt ln(tc/t), (13)

whence it follows immediately that in the front turning point
ṙf (tM ) = 0,

tc/tM = e (14)

and

rM
f =

√
2dtM = (N0)1/d

√
d/2πe. (15)

Introducing the scaling variables ζ = r/rM
f and τ = t/tc,

we come to the result announced above that in the limit of
large t,N0 � 1 regardless of the system dimension, the front
trajectory is described by the universal law

ζf (τ ) = rf /rM
f =

√
eτ | ln τ |. (16)

It should be noted that taking into account Eq. (13) in the limit
of large tc the condition χ

f

d 	 1 reduces to the more rigid
requirement t � αd ln(tc/t). Assuming that this condition is
fulfilled and neglecting the reaction front width, at the same
approximation as above for particle distribution in the island,
we find from Eq. (9)

a(ζ,τ ) = s(ζ,τ ) = (e−ζ 2/eτ /τ )d/2 − 1. (17)

Calculating further the number of particles in the island
N = gd (rM

f )d
∫ ζf

0 a(ζ,τ )ζ d−1dζ (here g1 = 2,g2 = 2π and
g3 = 4π ), we obtain immediately the scaling laws of particles
death in the island

N = N0Gd (τ ), (18)

where

G1(τ ) = erf(
√

| ln τ |/2) −
√

2τ | ln τ |/π,

G2(τ ) = 1 − τ (1 + | ln τ |),
G3(τ ) = erf(

√
3| ln τ |/2) −

√
6τ 3| ln τ |/π (1 + | ln τ |).

From Eqs. (17) and (18) we conclude that in the front turning
point τM = 1/e, regardless of the initial number of A particles,
their concentration in the center of the island is

a(0,τM ) = ed/2 − 1, (19)

and the fraction of the particles that survived in the process of
the island expansion is

NM/N0 =
⎧⎨
⎩

0.19886..., d = 1,

0.26412..., d = 2,

0.29986..., d = 3.

(20)

Assuming that the front remains sharp enough up to a narrow
vicinity of the collapse point T = (tc − t)/tc 	 1, we find
from Eqs. (16) and (18) that at smallT 	 1 at the final collapse
stage particles death proceeds by the law

N/N0 = cdT (d+2)/2 = cd (ζf /
√

e)d+2, (21)

where c1 = √
2/π/3, c2 = 1/2, and c3 = 3

√
6/π/5. In Fig. 1

are shown the dependencies ζf (τ ) and Gd (ζf ) that demonstrate
the key features of evolution of 1D, 2D, and 3D islands in the
limit of large N0 → ∞.

One of the central points of our analysis is revealing of
applicability limits for the assumption that the formed reaction
front remains sharp enough, η = w/rf 	 1, up to a narrow
vicinity of the collapse point. The detailed discussion of
this problem will be presented in Sec. IV. Completing this
section we shall reveal the regularities for the evolution of the
boundary current density J = −∂a/∂r|r=rf

that according to
the QSA determines the evolution of the reaction front width
w(J ). From Eqs. (16) and (17) we find easily

J (τ ) = J/JM =
√

| ln τ |
eτ

, (22)

where JM = d/rM
f = √

2πed/(N0)1/d . Thus, we conclude
that as well as the front trajectory Eq. (16) the boundary current
evolution is described by the universal law Eq. (22) regardless
of the system dimension that predetermines the universality of
the mean-field front relative width evolution.

III. EVOLUTION OF THE d-DIMENSIONAL ISLAND
FORMED BY A LOCALIZED SOURCE

Let us proceed now to the analysis of formation regularities
of the d-dimensional A-particle spherical island from a
localized (point) A-particle source and the consequent island
evolution after switching-off this source. Let particles A be
injected at t � 0 with a rate � at the point r = 0 of the
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FIG. 1. (a) Universal trajectory of the reduced front radius ζf (τ )
Eq. (16) (line). The island area is colored. (b) Scaling functions
Gd (ζf ) = N/N0 calculated according to Eqs. (16) and (18) for d = 1
(circles), d = 2 (squares), and d = 3 (hexagons). Straight lines show
the small-ζf asymptotes according to Eqs. (21).

uniform d-dimensional sea of particles B, distributed with
a density ρ. The source is acting for some finite time T ,
and then it is switched-off. As above, particles A and B

diffuse with nonzero diffusion constants DA,B = D and upon
contact annihilate with some nonzero probability, A + B → 0.
In the continuum version this process can be described by
the reaction-diffusion Eqs. (1) with an additional source
term �δ(r)�(T − t)�(t) for particles A (� denotes here the
Heaviside step function) where a(r,t) and b(r,t), by symmetry,
we assume to be dependent only on the radius with the initial
conditions a(r,0) = 0,b(r,0) = ρ, and the boundary condition
b(∞,t) = ρ. The initial density of the sea, ρ, defines a natural
scale of concentrations and a characteristic length scale of the
problem—the average interparticle distance � = ρ−1/d . So,
by measuring the length, time, and concentration in units of
�, �2/D, and ρ, respectively, we introduce the dimensionless
source strength λ = ��2/D and the dimensionless reaction

constant κ = kρ�2/D. Defining then the difference concentra-
tion s(r,t) = a(r,t) − b(r,t), we come to the simple diffusion
equation with source

∂s/∂t = ∇2s + λδ(r)�(T − t)�(t), (23)

at the initial and boundary conditions

s(r,0) = s(∞,t) = −1. (24)

According to Eq. (23), in the course of injection in the
vicinity of the source there arises a region of A-particle excess,
s(r,t) > 0, which expands with time. Following Ref. [18], we
shall assume that, by analogy with the Galfi-Racz problem, a
narrow reaction front has to form at this region boundary, for
which the law of motion, rf (t), according to the QSA, can be
derived from the condition s(rf ,t) = 0.

The exact solution of the problem Eqs. (23), (24) at the
injection stage 0 < t � T has the form

s + 1 = λ

(4π )d/2

∫ t

0
dθe−r2/4(t−θ)/(t − θ )d/2, (25)

whereas after source switching-off, at t > T , we find

s + 1 = λ

(4π )d/2

∫ T

0
dθe−r2/4(t−θ)/(t − θ )d/2. (26)

We shall start with the discussion of the key features of the
d-dimensional island formation and growth at the injection
stage, reproducing here partially the Ref. [18] results for the
completeness.

A. Formation and growth of the d-dimensional A-particle
island at the injection stage 0 < t � T

Integrating Eq. (25) for d = 1,2,3, we find immediately

s + 1 =
√

λ2t ierfc

(
r

2
√

t

)
, d = 1, (27)

s + 1 = −(λ/4π )Ei

(
− r2

4t

)
, d = 2, (28)

s + 1 =
(

λ

4πr

)
erfc

(
r

2
√

t

)
, d = 3, (29)

whence, assuming the front to be formed (w/rf 	 1) and ne-
glecting its width, from the condition s(rf ,t) = 0 we obtain the
laws for the island radius (the front center radius) growth rf (t),

ierfc(rf /2
√

t) = 1/
√

λ2t, d = 1, (30)

Ei
( − r2

f /4t
) = −4π/λ, d = 2, (31)

erfc(rf /2
√

t) = 4πrf /λ, d = 3, (32)

where ierfc(u) = ∫ ∞
u

erfc(v)dv = e−u2
/
√

π − uerfc(u) and
Ei(−u2) = − ∫ ∞

u2 dve−v/v is the exponential integral.
Calculating further the number of A particles surviving in the
injection process

N = gd

∫ rf

0
s(r,t)rd−1dr, (33)

we conclude from Eqs.(27)–(33) that at d 
= 2 the growth of
the island radius rf (t) and the number of surviving A particles
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N (t) are described by the scaling laws

rf = λd−2Rd (λ2/(2−d)t), (34)

N = λd/(d−2)Nd (λ2/(2−d)t). (35)

As a consequence, the fraction of surviving A particles is
described by the scaling law

q = N/λt = Qd (λ2/(2−d)t). (36)

Following Ref. [18], below we focus on the key features of the
d-dimensional island growth for each dimension separately.

1. One-dimensional island

In the 1D case from Eq. (27) it follows that an excess
of A particles in the source vicinity forms in a time t� =
π/λ2 (s(0,t�) = 0). It is, however, clear that a hydrodynamic
approximation comes into play at times t � max(1,1/λ);
therefore, at early island formation stages one can distinguish
two qualitatively different island growth regimes: (a) λ 	 1,
when the island formation proceeds under conditions of death
of the majority of injected particles, and (b) λ � 1, when
a multiparticle “cloud” forms long before the beginning
of noticeable annihilation and, therefore, the stage of the
developed reaction, t � 1(� t�), is preceded here by a stage
of purely diffusive expansion of the cloud, 1/λ 	 t 	 1 [18].
In the long-time limit t � max(1,t�) at any λ we obtain from
Eqs. (27), (30), and (33) the exact asymptotics,

rf =
√

2t ln �(1 − ln ln �/ ln � + · · · ), (37)

N = λt[1 − O(
√

ln �/�)], (38)

where � = t/t�. So, we conclude that forming in qualitatively
different regimes from q 	 1(λ 	 1) to 1 − q 	 1(λ � 1)
the 1D island at any λ crosses over to the universal growth
regime Eqs. (37) and (38) with an unlimited decay of the dying
particle fraction 1 − q ∝ √

ln �/� → 0 as � → ∞. Figure 2
shows the dependencies λrf versus λ2t calculated according
to Eqs. (30) and (37). One can see that asymptotics Eq. (37)
gives an exact description of the front trajectory starting with
λ2t ∼ 103.

2. Two-dimensional island

In the 2D case from Eqs. (28), (31), and (33), we find

rf = 2
√

αt, (39)

N = λt(1 − e−α), (40)

where α is the root of the equation Ei(−α) = −λ∗/λ, λ∗ = 4π

and has the asymptotics α = e−λ∗/λ/γ (γ = 1.781...) at λ 	
λ∗ and α = ln(λ/λ∗α) at λ � λ∗. We conclude that in 2D the
island growth rate α and the fraction of surviving A particles
q do not vary in time: at large λ � λ∗ the majority of injected
particles survive,

1 − q ∼ ln λ

λ
	 1, λ � λ∗,

whereas at small λ 	 λ∗, the majority of injected particles die,

q ∼ e−λ∗/λ 	 1, λ 	 λ∗.

FIG. 2. Filled circles show the trajectory of the front radius for
the continuous in time point source in the one-dimensional medium
calculated according to Eq. (30) in the scaling coordinates λrf vs
λ2t . Dashed line shows long-time asymptotics [Eq. (37)]. Open
squares show the trajectories of the front radius after the source
switching-off calculated from Eq. (44) for the parameter values
λ2T = 102, 103, 104, and 105 (from bottom to top).

One of the key consequences of Eqs. (39) and (40) consists in
the exponentially strong decrease of the growth rate α and the
fraction of surviving particles q in the region λ 	 λ∗. It means
that though in the 2D case the island unlimitedly growth at any
λ, at small λ 	 λ∗ the 2D island growth is actually suppressed.

3. Three-dimensional island

In the 3D case from Eqs. (29) and (32) it follows that at any
λ in the long-time limit t � ts = (λ/λ∗)2 the front radius by
the law,

rf = rs[1 − O(
√

ts/t)],

reach a stationary value (stationary island),

rf (t/ts → ∞) = rs = λ/λ∗. (41)

According to Eqs. (29), (32), and (33), in this limit the number
of surviving particles is

N = (2π/3)r3
s [1 − O(

√
ts/t)],

whence is follows that in radical contrast to the 1D case in
the 3D case at any injection rate all the injected particles
die asymptotically q = (1/6)(ts/t) → 0 as t/ts → ∞. In
Ref. [18] it is shown that defining a minimal stationary island
through the condition ws/rs ∼ 1, we conclude that in the 3D
case the island forms only when the injection rate exceeds a
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FIG. 3. Filled circles show the trajectory of the front radius for
the continuous in time point source in the three-dimensional medium
calculated according to Eq. (32) in the scaling coordinates rf /λ vs
t/λ2. Dashed line shows the intermediate asymptotics [Eq. (42)].
Open squares show the trajectories of the front radius after the
source switching-off calculated from Eq. (46) for the parameter values
λ2/T = 102, 104, 106, 108, 1010, and 1012 (from top to bottom).

critical value,

λc ∼ λ∗/
√

κ � 1.

One of the key consequences of Eq. (32) is that at high injection
rates λ � λc the stationary state (t � ts) is preceded by an
intermediate stage 1 	 t 	 ts , wherein the island grows by
the law

rf =
√

2t ln(ts/t)[1 − ln(
√

πω)/ω + . . . ], (42)

where ω = ln(ts/t). According to Eqs. (29), (32), and (33), at
this stage the number of surviving particles is

N = λt[1 − O(ω3/2
√

t/ts)], (43)

and therefore the majority of injected particles are still
surviving,

1 − q ∼ ω3/2
√

t/ts 	 1.

In Ref. [18] are presented the details of formation of the
spherical island Eqs. (42) and (43) from a diffusive cloud
which expands in the absence of reaction and it is established
that the formed front condition w/rf 	 1 is realized at
t � ln(ts/t)/κ . Figure 3 shows the dependencies rf /λ versus
t/λ2 calculated according to Eqs. (32) and (42). One can see
that asymptotics Eq. (42) gives an exact description of the front
trajectory up to t/λ2 ∼ 10−5(t/ts ∼ 10−3).

B. Evolution and collapse of the d-dimensional island after
source switching-off t > T

According to Eq. (26), we find that at d = 1,2,3 the
evolution of particles distribution s(r,t) after source switching-

off �t = t − T > 0 is described by the expressions

s + 1 = λ

[√
t ierfc

(
r

2
√

t

)
−

√
�t ierfc

(
r

2
√

�t

)]
, d = 1,

s + 1 = λ

4π
[Ei(−r2/4�t) − Ei(−r2/4t)], d = 2,

s + 1 = λ

4πr

[
erfc

(
r

2
√

t

)
− erfc

(
r

2
√

�t

)]
, d = 3,

whence neglecting the front width w/rf 	 1, we find from
the condition s(rf ,t) = 0 the island radius trajectory rf (t),

√
t ierfc

(
rf

2
√

t

)
−

√
�t ierfc

(
rf

2
√

�t

)
= 1/λ, d = 1, (44)

Ei
(−r2

f /4�t
) − Ei

(−r2
f /4t

) = 4π

λ
, d = 2, (45)

erfc

(
rf

2
√

t

)
− erfc

(
rf

2
√

�t

)
= 4πrf

λ
, d = 3. (46)

Assuming further that the front remains sharp enough up to
a narrow vicinity of the collapse point tc, from the condition
rf (tc) = 0 we obtain

tc = (λT )2(1 + π/λ2T )2/4π, d = 1, (47)

tc = T/(1 − e−λ∗/λ), d = 2, (48)

4π3/2/λ = 1/
√

tc − T − 1/
√

tc, d = 3, (49)

whence for the ratio of the island collapse time tc to the
injection period T it follows immediately,

tc/T = Fd (λ2T 2−d ). (50)

One can easily be convinced that the asymptotics of the scaling
function Fd (z) in the limit of large z � 1 has the form

Fd (z) = z1/d (1 + 2π/z1/d + . . . )

4π
. (51)

Thus, we conclude that (a) at (λ2T 2−d )1/d/4π � 1 the island
lifetime tc becomes much longer than the injection period T

(the long-living island),

tc/T = (λ2T 2−d )1/d/4π � 1,

and (b) in the long-living island regime the ratio tc/T increases
at the increase of T in the 1D case, does not change at the
increase of T in the 2D case and decreases at the increase
of T in the 3D case. Let us consider the consequences of
Eqs. (44)–(49) for each dimension separately.

1. One-dimensional island

According to Eqs. (37) and (38) in the 1D case one of the key
conditions for island formation is the requirement λ2T � 1
that is why the formed 1D island at any λ is long-living.
From Eq. (44) it follows that after source switching-off the
long-living island continues to expand reaching the maximum,

rM
f ∝ λT ,
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whence taking into account Eq. (37), we find

rM
f /rT

f ∝
√

λ2T

ln (λ2T )
→ ∞,

as λ2T → ∞. The trajectories of the 1D island radius
calculated according to Eq. (44) in the scaling coordinates λrf

versus λ2t are shown in Fig. 2, demonstrating the evolution of
these trajectories with the growing parameter λ2T .

2. Two-dimensional island

According to Eq. (45) in the 2D case in the limit of
anomalously slow growth λ 	 λ∗, when the majority of
injected particles die, we find

rM
f /rT

f ≈ 1,

whence taking into account Eq. (48), it follows that regardless
of the injection time after source switching-off the formed
2D island begins to contract immediately disappearing for
exponentially small (in comparison with the injection period)
time interval,

(tc − T )/T ∼ e−λ∗/λ 	 1.

In the opposite limit of the long-living island λ � λ∗ after
source switching-off the island continues to expand reaching
the maximum,

rM
f ∝

√
λT ,

whence taking into account Eq. (39), we find that regardless
of the injection duration,

rM
f /rT

f ∝
√

λ

ln λ
→ ∞,

as λ → ∞.

3. Three-dimensional island

According to Eq. (46) in the 3D case in the limit of the
stationary island T � ts = (λ/λ∗)2, when the majority of the
injected particles die, we find

rM
f /rs ≈ 1,

whence, as expected, it follows that in this limit regardless of
the injection duration after source switching-off the formed
3D island begins to contract immediately disappearing for the
time tc − T ∝ r2

s 	 T . Indeed, from Eq. (49) in the stationary
limit T � ts , we find

tc − T = λ2(1 −
√

λ2/T /2π3/2 + . . . )

16π3
.

In the opposite limit of the long-living island 1 	 T 	 ts after
source switching-off the island continues to expand reaching
the maximum,

rM
f ∝ (λT )1/3,

whence taking into account Eq. (42), we find

rM
f /rT

f ∝
[

λ2

T ln3(ts/T )

]1/6

→ ∞,

as λ2/T → ∞. The trajectories of the 3D island radius
calculated according to Eq. (46) in the scaling coordinates rf /λ

versus t/λ2 are shown in Fig. 3, demonstrating the evolution
of these trajectories with the growing parameter λ2/T .

As was stated in the Introduction, and as it is clear from the
presented analysis, the evolution regularities in the long-living
island regime are of the main interest, which is why below
we shall focus namely on this regime. According to Eqs. (44),
(45), and (46), the maximal volume of d-dimensional island
expansion in the front turning point is proportional to the
number of particles injected by the time of source switching-
off,

�M = μd

(
rM
f

)d ∝ NT = λT .

But according to Eqs. (38), (40), and (43), in the long-living
island regime the majority of injected particles survives up
to the time of source switching-off; i.e., the value of NT

determines the number of A-particles at the moment of source
switching-off. Comparing these results and taking into account
Eqs. (37), (39), and (42), we come to the important conclusion
that in the limit of the long-living island regardless of the
medium dimension and the injection duration the ratio of the
d-dimensional island maximal volume in the front turning
point, �M , to the starting island volume at the moment of
source switching-off, �T , is proportional to the island particles
mean concentration < a >T = NT /�T at the moment of
source switching-off and inversely proportional to the fraction
of the particles died by this moment 1 − qT ,

< a >T ∝ 1

1 − qT

∝ �M

�T

=
(

rM
f

rT
f

)d

. (52)

From Eq. (52) it follows that the long-living island regime is
realized in the limit when at the moment of source switching-
off the island particles mean concentration < a >T becomes
large as compared to the initial sea density. The value of
< a >T increases with the increase of T in the 1D case,
does not change with the increase of T in the 2D case,
and decreases with the increase of T in the 3D case, which
leads to the corresponding behavior of the island expansion
relative amplitude �M/�T and, as a consequence, to the
corresponding behavior of the relative island lifetime tc/T .

Comparing the long-living island evolution after source
switching-off to the evolution of the initially uniform con-
centrated island, we conclude that in both of the problems
the maximal island expansion amplitude �M is determined
unambiguously by the “starting” number of particles in the
island Nst and, as a consequence, in both of the problems the
island collapse time is tc = (Nst)d/2/4π , where Nst = NT or
N0, respectively. This fact gives grounds to assert that in the
long-time limit (t � T and t � 1, respectively), regardless
of the starting particle distribution the island evolution takes a
universal form characterizing island death in the instantaneous
source regime. Below we shall demonstrate the validity of this
statement and reveal the conditions for universalization of the
long-time island evolution.
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C. Self-similar evolution of the long-living island

We shall assume that the island lifetime tc exceeds the
injection period T considerably. Then, in the long-time limit
T 	 t < tc taking into account the additional requirement
r2T/t2 	 1, from Eq. (26) we easily find the long-time
asymptotics of particle distribution,

s + 1 = λT

(4πt)d/2
e−r2/4t [1 + (d − r2/2t)T/4t + . . . ], (53)

whence, neglecting the front width, from the condition s(rf ) =
0 we obtain the long-time asymptotics of front trajectory,

rf = 2(1 − T/4t)

√
t ln

[
λT (1 + dT /4t)

(4πt)d/2

]
, (54)

and in accordance with Eqs. (50) and (51), for the island
collapse point rf (tc) = 0 we find

tc = (λT )2/d [1 + 2π/(λ2T 2−d )1/d + . . . ]

4π
. (55)

Neglecting in Eq. (54) the terms O(T/t), we come exactly
to the long-time front trajectory asymptotics of the initially
uniform island [Eq. (13)],

rf =
√

2dt ln(tc/t),

where now

tc = (NT )2/d/4π,

whence it follows that in the island maximal expansion point,

tc/tM = e,

rM
f =

√
2dtM = (NT )1/d

√
d/2πe. (56)

Thus, we conclude that as well as in the case of the initially
uniform island, i.e., regardless of the initial A-particles
distribution, the long-time front trajectory of the long-living
island regardless of the system dimension is described by the
universal law Eq. (16),

ζf = rf /rM
f =

√
eτ | ln τ |, τ = t/tc.

Satisfying within the island the requirement r2T/t2 �
r2
f T /t2 	 1, we find the key condition for front trajectory

universalization,

τ � (T/tc)max(1,| ln τ |). (57)

As an illustration, Figs. 4(a) and 4(b) demonstrate collapse
of 1D and 3D islands front trajectories to the universal
trajectory Eq. (16) with the growing parameters λ2T and λ2/T ,
respectively.

Assuming that the condition Eq. (57) is fulfilled and
neglecting in Eq. (53) the terms (d − r2/2t)T/4t + . . . , as
well as in the case of the initially uniform island, we come to the
independent of the starting distribution self-similar evolution
of the long-time particles distribution in the island a(ζ,τ ) [Eq.
(17)] and, as a consequence, we obtain the scaling laws of
particles death in the form

N/NT = Gd (τ ), (58)

FIG. 4. Collapse of the front trajectories shown in Figs. 2 and 3
after the source switching-off to the universal trajectory ζf (τ ) [Eq.
(16)] (thick line) in the scaling coordinates rf /rM

f vs t/tc with
growing parameters λ2T and λ2/T , respectively: (a) d = 1, λ2T =
103 (circles), 104 (squares), and 105 (hexagons); (b) d = 3, λ2/T =
108 (circles), 1010 (squares), and 1012 (hexagons).

where scaling functions Gd (τ ) are determined by Eq. (18).
In the limit of large tc/T → ∞, hence, it follows that in the
front turning point τM , regardless of the number of the injected
particles NT = λT , the particles distribution in the island takes
the form

a(ζ,τM ) = ed(1−ζ 2)/2 − 1,

and the fraction of the particles survived at the island expansion
stage NM/NT is determined by Eq. (20). From Eq. (58), it also
follows that at the final island collapse stage the fraction of the
surviving particles N (T )/NT decays according to the power
law Eq. (21). Completing the long-living island evolution
analysis, it should be emphasized that according to Eqs. (16),
(17), and (57), as well as in the case of the initially uniform
island, we conclude that regardless of the system dimension the
reduced boundary current behaviorJ (τ ) = J/JM is described
by the universal law Eq. (22) that predetermines universality
of the mean-field front relative width evolution.
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IV. EVOLUTION OF THE REACTION FRONT

So far we have assumed formally that the reaction front
is sharp enough so that the front relative width η = w/rf

remains negligibly small up to a narrow vicinity of the island
collapse point. In this section, we shall reveal the conditions
for this assumption realization in the long-living island regime.
Supposing that |ζ − ζf |/ζf 	 1, we find from Eqs. (16)
and (17),

s + 1 = e−d| ln τ |(ζ−ζf )/ζf +...,

whence it follows that in the front center vicinity |ζ −
ζf |/ζf 	 min(1,1/d| ln τ |), the quantity s becomes a linear
function of ζ ,

s = −d| ln τ |(ζ − ζf )/ζf + . . . .

It means that the boundary current density Eq. (22) determines
the evolution of the quasistatic reaction front width w(J ) in
fulfilling the requirement

η = w/rf 	 min(1,1/d| ln τ |). (59)

It is not difficult to show that, in accordance with Eq. (22),
the front quasistaticity condition tw/tJ 	 1 [where the value
tJ = −(d ln J/dt)−1 describes the rate of the boundary current
change and tw ∼ w2 is the equilibration time of the reaction
front] takes the form

tw/tJ ∼ dη2(1 + | ln τ |) 	 1,

whence it follows self-consistently that in fulfilling the
requirement Eq. (59) the reaction front becomes quasistatic
automatically.

In Refs. [13–16] it is established that at d > dc = 2 in the
dimensional variables the dependence of the quasistatic front
width on the boundary current density is described by the
mean-field law,

wMF ∼ (D2/kJ )1/3, (60)

whereas in the 1D case in the diffusion-controlled limit
the quasistatic front width becomes k-independent and it is
determined by the fluctuation law,

wF ∼
√

D/J . (61)

At upper critical dimension d = dc = 2 in the diffusion-
controlled limit in the mean-field law Eq. (60) a logarithmic
correction appears (logarithmically modified front), wL ∝
(| ln J |/J )1/3 [14,28,29]; its full form will be presented
below. At first we shall consider the evolution of the 1D
fluctuation front width, then we shall analyze the behavior
of the modified two-dimensional front width, and finally we
shall reveal the regularities of the mean-field front width
evolution for quasi-one-dimensional, quasi-two-dimensional,
and three-dimensional geometry.

A. Fluctuation front

According to Eq. (61), in the units that we have accepted,
the fluctuation front width reads

wF ∼ 1/
√

n0J ,

where n0 = b0L for the initially uniform island and n0 = ρ� =
1 for the island formed by the localized source. Substituting
here Eq. (22), we find

wF = wM
F (eτ/| ln τ |)1/4, (62)

where wM
F ∼

√
rM
f /n0. From Eqs. (62) and (16) it follows that

the fluctuation front relative width ηF = wF/rf changes by the
law

ηF = ηM
F /(eτ | ln3 τ |)1/4, (63)

where in accordance with Eqs. (15) and (56) the relative width
amplitude in the front turning point is

ηM
F ∼ 1/

√
n0r

M
f ∼ 1/

√
N , (64)

and N is the initial number of particles in the originally
uniform island N = n0N0 or the number of injected particles
N = NT . According to Eq. (63), at the island expansion
stage, the value ηF is decreasing relatively slowly reaching
the minimum min(ηF) ≈ 0.72ηM

F at τm = 1/e3 and then, at
the island contraction stage at T = 1 − τ = (tc − t)/tc 	 1,
it begins to increase fast by the law

ηF ∼ (TQ/T )3/4,

where TQ ∼ 1/N 2/3 → 0 as N → ∞. Thus, we conclude
that at sufficiently large initial number of particles N , the
fluctuation front remains sharp enough up to a narrow vicinity
of the island collapse point. According to Eqs. (59), (63), and
(64) at the island expansion stage far from the collapse point
(τ 	 1) the front becomes sharp ηF| ln τ | < ε 	 1 under the
condition

τ/| ln τ | > 1/(ε2N )2.

It should be emphasized that in contrast to the front width
the amplitude ηM

F determining characteristic scale of the
fluctuation front relative width does not depend on the sea
density.

B. Modified front at d = dc = 2

Following Krapivsky’s approach [29] along with the argu-
ments of Ref. [12], for the modified two-dimensional front
width in the diffusion-controlled limit we find (in dimensional
variables)

wL ∼
[(

D

J

)
ln

(
D

Jr3
a

)]1/3

,

where ra is the reaction radius and D/Jr3
a � 1 according

to the requirement wL � ra . Substituting here Eq. (22), we
obtain

wL = wM
L

[1 + ln(
√

eτ/| ln τ |)/ ln φ]1/3

(| ln τ |/eτ )1/6
, (65)

whence in accordance with Eqs. (15), (16), and (56), it follows
that the front relative width ηL = wL/rf changes by the law

ηL = ηM
L

[
1 + ln(

√
eτ/| ln τ |)/ ln φ

eτ ln2 τ

]1/3

, (66)
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where the relative width amplitude in the front turning point is

ηM
L ∼

[
ln φ(N )

N

]1/3

,

φ(N ) = (�/ra)3
√
N , (67)

and N is the initial number of particles in the originally uni-
form island N = b0L

2N0 or the number of injected particles
N = NT . According to Eq. (66), at the island expansion stage,
the value ηL is decreasing relatively slowly reaching at large
enough φ the minimum min(ηL) ≈ 0.88(1 − 0.28/ ln φ +
. . . )ηM

L at τm = e−2(1 − 3/2 ln φ + . . . ), and then at the island
contraction stage at T 	 1, it begins to increase fast by the
law

ηL ∼ (TQ/T )2/3,

where TQ ∼ [ln(φ/
√
T )/N ]1/2 → 0 as N → ∞ at fixed T .

From Eqs. (59) and (66) it follows that at the island expansion
stage far from the collapse point (τ 	 1) the front becomes
sharp ηL| ln τ | < ε 	 1 under the condition

τ/| ln τ | >
ln(φ

√
eτ/| ln τ |)
ε3N ,

with the additional requirement τ/| ln τ | � φ−2. Thus, we
conclude that at sufficiently large “starting” number of
particles N , the modified two-dimensional front becomes
sharp at early stages of the island expansion and remains
sharp up to a narrow vicinity of the collapse point. Let
us note that in contrast to the fluctuation front the relative
width amplitude ηM

L increases logarithmically slowly at the
decrease of the sea density. As an illustration, assuming that
ra ∼ 10−8 cm,b0 = 1012 cm−2,L = 0.1 cm, and c = 103, we
find N ≈ 3 × 1013, ln φ ≈ 30, and ηM

L ≈ 10−4.

C. Mean-field front

According to Eq. (60), in the units that we have accepted,
the mean-field front width reads

wMF ∼ 1/(κJ )1/3,

where κ = kb0L
2/D for the originally uniform island and

κ = kρ�2/D for the island formed by the localized source.
Substituting here Eq. (22), we find

wMF = wM
MF(eτ/| ln τ |)1/6, (68)

where wM
MF ∼ (rM

f /dκ)1/3. From Eqs. (68) and (16) it fol-
lows that the relative mean-field front width ηMF = wMF/rf

changes by the law

ηMF = ηM
MF/(eτ ln2 τ )1/3, (69)

where in accordance with Eqs. (15) and (56) the relative width
amplitude in the front turning point is

ηM
MF ∼ (√

dκrM
f

)−2/3 = m

(
D�d−2

k

)1/3

N−2/3d , (70)

where m = (2πe/d2)1/3 and N is the initial number of
particles in the originally uniform island N = b0L

dN0 or
the number of the injected particles N = NT . According to

Eq. (69) at the island expansion stage the value ηMF is de-
creasing relatively slowly reaching the minimum min(ηMF) ≈
0.88ηM

MF at τm = 1/e2 and then, at the island contraction stage
at T 	 1, it begins to increase fast by the law

ηMF ∼ (TQ/T )2/3,

where TQ ∼ (ηM
MF)3/2 ∝ N−1/d → 0 as N → ∞. From

Eqs. (59) and (69) it follows that at the island expansion stage
far from the collapse point (τ 	 1) the front becomes sharp
ηMF| ln τ | < ε 	 1 under the condition

τ/| ln τ | >
(
ηM

MF/ε
)3 ∝ ε−3N−2/d .

Barkema, Howard, and Cardy have shown analytically and nu-
merically [15] that in the 1D case the fluctuation front is formed
under the condition wF/wMF � 1(k/

√
JD � 1), while in the

opposite limit wF/wMF 	 1 (k/
√

JD 	 1) the front width
is determined by the mean-field law Eq. (60). Comparing
Eqs. (63) and (69), we find ηF/ηMF = (ηM

F /ηM
MF)(eτ/ ln τ )1/12

whence by virtue of weak dependence on τ it follows that
as a characteristic crossover point from the mean-field to
the fluctuation regime (MF → F) it is reasonable to accept
the ratio ηM

F /ηM
MF ∼ 1. Substituting here Eqs. (64) and (70),

for the fluctuation regime area we find

k � kF ∼ D/�
√
N ,

whence it follows that with the increase in the initial number
of particles in the island and the decrease of the sea density
the fluctuation regime domain expands indefinitely (kF → 0
as �

√
N → ∞). Determining further the lower bound of the

sharp mean-field front regime by the condition ηM
MF < ε 	 1,

we find from Eq. (70)

k > kε
MF ∼ (D/�)/ε3N 2,

whence it follows

kF/kε
MF ∼ (ε2N )3/2,

and we conclude that the area of the island death in the
sharp mean-field front regime kε

MF < k 	 kF appears under
the condition N > ε−2(ηM

F < ε) and expands fast with the
increase of N .

Repeating the presented above argumentation, for the
crossover from the mean-field to the logarithmically modified
front (MF → L) at d = dc = 2 we find from Eqs. (67) and
(70)

k � kL ∼ D/ ln φ(N ),

whence it follows that with the increase of the starting number
of the particles in the island and the decrease of the sea
density the LM regime area expands logarithmically slowly.
Determining the lower bound of the sharp mean-field front
regime by the condition ηM

MF < ε 	 1, we find from Eq. (70)

k > kε
MF ∼ D/N ε3,

whence it follows

kL/kε
MF ∼ ε3N / ln φ(N ),

and we conclude that the area of the island death in the
sharp mean-field front regime kε

MF < k 	 kL appears under
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the condition N / ln φ > ε−3(ηM
L < ε) and expands fast with

the increase of N .
According to Eq. (70), in the 3D case with the growth of the

reaction constant the front relative width amplitude decreases
∝ k−1/3, reaching the minimal value in the diffusion-controlled
limit of the perfect reaction k = kp = 8πDra , where ra is the
reaction radius. Substituting kp into Eq. (70), we find

ηM
MF ∼ mp

(
�

ra

)1/3

N−2/9,

with mp ≈ 0.4, whence taking for illustration ra ∼
10−8 cm,b0 = 1020 cm−3,L = 0.1 cm, and c = 103 we ob-
tain ηM

MF ≈ 3 × 10−5. Thus, we conclude that the three-
dimensional spherical island dies in the sharp front regime
in a wide range of parameters (for instance at the decrease
of the reaction constant by 9 orders of magnitude the front
keeps sharp enough). It should be emphasized that according
to Eq. (70) in the region of the sharp mean-field front existence
at the decrease of the sea density the front relative width
amplitude decreases in the 1D case, does not change in the
2D case, and increases in the 3D case.

D. Quasi-d-dimensional systems

So far we have analyzed the evolution of the d-dimensional
spherical island formed by either the point source or the
initially uniform spherically symmetric particles distribution.
Completing this section we shall consider for completeness
the island evolution in the three-dimensional medium for
the quasi-one-dimensional (planar front) and the quasi-two-
dimensional (cylindrical front) geometry. Let in the uniform
three-dimensional B-particle sea acts (a) a planar two-
dimensional source of A particles with the injection rate �+
particles in a time unit per a source unit area or (b) a linear
one-dimensional source with the injection rate �+ particles
in a time unit per a source unit length. Then, by virtue of
symmetry, a “planar” island with a width 2xf (t) = 2rf (t)
(wherein the concentration changes only along the normal to
the source plane) will be formed around the planar source,
and a cylindrical island with a radius rf (t) (wherein the
concentration changes only along the normal to the source
axis) will be formed around the linear source. It is not difficult
to show that in the units that we have accepted all the results
obtained in Sec. III remain valid for the effective dimension d+
with the only difference that now the reduced source strength
takes the form

λ = �+�2+δ/D,

where δ = 3 − d+ and the effective dimension of the system
is d+ = 1(δ = 2) for the planar source and d+ = 2(δ = 1) for
the linear source (nevertheless as before � = ρ−1/d = ρ−1/3).
Besides it is clear that instead of the number of particles in
the island N in the quasi-one-dimensional and the quasi-two-
dimensional geometry the reduced number of particles appears

N+�δ = gd+

∫ rf

0
s(r,t)rd+−1dr,

where N+ is the number of particles in the island per unit area
(d+ = 1) or per unit length (d+ = 2) of the source, and the

reduced number of injected particles is

NT = λT = N+�δ,

where N+ is the number of injected particles per unit area
(d+ = 1) or per unit length (d+ = 2) of the source. In the
long-living island regime, for the island radius amplitude in
the front turning point we find from Eq. (56)

rM
f =

√
d+

2πe
(N+�δ)1/d+ ,

whence after substitution to Eq. (70), for the front relative
width amplitude we obtain

ηM
MF ∼ m+

(
D�σ

k

)1/3

N+−2/3d+ , (71)

where σ = 3(d+ − 2)/d+ and m+ = (2πe/d2
+)1/3.

Let now the uniform “planar” A-particle island with a
width 2L or the uniform cylindrical A-particle island with
a radius L and the initial concentration a0 = cb0 (c � 1) be
surrounded by the uniform three-dimensional B-particle sea
with the concentration b0. Then, by virtue of symmetry, as
well as in the case with the planar and the linear sources, in
the course of the following evolution a “planar” island should
remain the “planar” one wherein the concentration changes
only along the normal to the front plane (d+ = 1), and a
cylindrical island should remain the cylindrical one, wherein
the concentration changes only along the normal to the cylinder
axis (d+ = 2). It is not difficult to show that in the units that
we have accepted all the results obtained in Sec. II remain
valid for the effective dimension d+ with the only difference
that instead of the reduced number of particles in the island N

evaluated in the units b0L
d , in the quasi-one-dimensional and

the quasi-two-dimensional systems there appears the reduced
number of particles in the island N+ per a front unit area
(d+ = 1) or per a cylinder axis unit length (d+ = 2) evaluated
in the units b0L

d+ with the initial number of particles in the
island N+ = N0b0L

d+ = μd+cb0L
d+ per a unit of area and

length, respectively. In the long-living island regime for the
island radius amplitude in the front turning point we find from
Eq. (15),

rM
f =

√
d+

2πe
(N0)1/d+ ,

whence after substitution to Eq. (70) taking into account the
relation � = b

−1/3
0 we come to Eq. (71) again for the front

relative width amplitude. Substituting further to Eq. (71) the
constant of the diffusion-controlled perfect reaction k = kp =
8πDra , we find

ηM
MF ∼ mp+

(
�σ

ra

)1/3

N+−2/3d+ ,

with mp+ = (e/4d2
+)1/3 whence taking for illustration the same

parameters as for the spherical island ra ∼ 10−8 cm, b0 =
1020 cm−3, L = 0.1 cm, and c = 103, we obtain N+ ≈ 2 ×
1022 cm−2, ηM

MF ≈ 3 × 10−6 for the quasi-one-dimensional is-
land (d+ = 1) and N+ ≈ 3 × 1021 cm−1, ηM

MF ≈ 2 × 10−5 for
the quasi-two-dimensional island (d+ = 2). Thus, we conclude
that at enough large N+ the quasi-one-dimensional and the

062137-11



BORIS M. SHIPILEVSKY PHYSICAL REVIEW E 95, 062137 (2017)

quasi-two-dimensional islands die in the three-dimensional
sea in the sharp front regime in a wide interval of parameters.
One can easily be convinced that this conclusion remains
valid for the quasi-one-dimensional geometry in the two-
dimensional medium (linear one-dimensional source in the
two-dimensional sea with the logarithmically modified front).

V. CONCLUSION

In this paper, we have presented a systematic analytical
study of diffusion-controlled formation and collapse of a
d-dimensional A-particle island in the B-particle sea at
propagation of the sharp reaction front A + B → 0. Our main
purpose was to describe the formation regularities for the
d-dimensional spherical island at A particles injection by a
point source acting for some finite time T and the following
island evolution and collapse after source switching-off. We
have focused mainly on the most interesting case when
the island collapse time tc becomes much longer than the
injection period T (long-living island) and have revealed
the complete picture of the evolution of front trajectory and
particle distribution in the island depending on the intensity
and duration of source action. Generalizing the results obtained
earlier for the quasi-one-dimensional geometry we have also
revealed the long-time evolution regularities for the initially
uniform d-dimensional spherical A-particle island. The main
results can be formulated as follows:

(1) The conditions of the long-living island formation
have been found and it was shown that in the long-living
island regime the ratio tc/T changes with the increase of
the injection period T and the reduced source strength λ

by the law ∝ (λ2T 2−d )1/d , i.e., it increases with the increase
of T in the 1D case, does not change with the increase of
T in the 2D case and decreases with the increase of T in
the 3D case. It has been established that regardless of the
medium dimension and the injection duration, the ratio of
the maximal d-dimensional island volume in the front turning
point �M to the initial island volume at the moment of source
switching-off �T is proportional to the mean concentration of
the island particles at the moment of source switching-off and
is inversely proportional to the fraction of the particles died by
this moment.

(2) It has been established that regardless of the number of
the injected particles and the system dimension the long-time

front trajectory of the long-living island is described by the
universal law

ζf = rf /rM
f =

√
eτ | ln τ |,

where τ = t/tc and rM
f = (NT )1/d

√
d/2πe is the radius of

the island maximal expansion at the front turning point tM =
tc/e. The scaling laws of evolution of the distribution and the
number of particles in the d-dimensional long-living island
have been derived, and it has been shown that regardless of the
system dimension the evolution of the boundary current density
J that determines the quasistatic front width is described by
the universal law

J (τ ) = J/JM =
√

| ln τ |
eτ

.

(3) It has been shown that regardless of the initial particle
distribution, the long-time evolution of the initially uniform
concentrated island as well as the long-time evolution of the
long-living island converge to the unified universal island death
asymptotics in the instantaneous source regime,

a(ζ,τ ) = (e−ζ 2/eτ /τ )d/2 − 1.

(4) The systematic analysis of the reaction front relative
width evolution for the fluctuation, the logarithmically mod-
ified, and the mean-field regimes was presented, and it was
demonstrated that in a wide range of parameters at a large
enough number of injected or initially uniformly distributed
particles the front remains sharp up to a narrow vicinity of the
island collapse point.

In conclusion, it should be emphasized that as well as in
Ref. [17], here the evolution of the island has been considered
at equal species diffusivities. Although we believe that the
regularities discovered reflect the key features of the island
evolution, the study of the much more complicated problem for
unequal species diffusivities remains a challenging problem
for the future.
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