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We study numerically a two-dimensional random-bond Ising model where frustration can be tuned by varying
the fraction a of antiferromagnetic coupling constants. At low temperatures the model exhibits a phase with
ferromagnetic order for sufficiently small values of a, a < af . In an intermediate range, af < a < aa , the system
is paramagnetic, with spin-glass order expected right at zero temperature. For even larger values, a > aa , an
antiferromagnetic phase exists. After a deep quench from high temperatures, slow evolution is observed for any
value of a. We show that different amounts of frustration, tuned by a, affect the dynamical properties in a highly
nontrivial way. In particular, the kinetics is logarithmically slow in phases with ferromagnetic or antiferromagnetic
order, whereas evolution is faster, i.e., algebraic, when spin-glass order is prevailing. An interpretation is given
in terms of the different nature of phase space.
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I. INTRODUCTION

When a system is brought across a phase-transition toward
a state where the initial symmetry is spontaneously broken,
a slow nonequilibrium evolution sets in. A paradigm is
represented by binary systems [1], such as ferromagnets,
cooled from above to below the critical temperature Tc. In
the clean case, namely in the absence of any kind of quenched
disorder or inhomogeneities, the kinetics is characterized by
a coarsening process that is nowadays quite well understood.
Domains of the symmetry-related equilibrium phases at the
final temperature Tf form and their typical size L(t) grows in
time. This process is endowed with a scaling symmetry such
that configurations visited at different times are statistically
equivalent provided lengths are measured in units of L(t). The
growth law of the domains’ size is generally algebraic L(t) ∼
t1/z. The dynamical exponent z is temperature independent
and varies only among different dynamical universality classes
which—in turn—are determined by the symmetry of the order
parameter, i.e., if scalar or vectorial, and by the character
of the dynamics, e.g., in the presence of conservation laws,
hydrodynamics, etc.

Phase-ordering can occur in disordered ferromagnets as
well. In these systems an amount of quenched randomness is
present, but its effects are sufficiently weak not to spoil the
basic structure of the equilibrium state. A disordered phase at
high temperature and a low temperature one are still present
and the symmetry breaking mechanism is akin to that of clean
magnets—e.g., up-down (or Z2) symmetry is spontaneously
broken for a scalar order parameter. Examples are magnetic
models in the presence of random external fields, coupling con-
stants with a stochastic component, or quenched vacancies [2].

If disorder is sufficiently weak not to change the equilibrium
structure, its presence is by far much more important as
dynamical properties are concerned. Indeed, one observes that
even the smallest amount of randomness usually slows down

dramatically the asymptotic growth law of the domains. This
is because quenched disorder pins the dynamics introducing
energetic barriers, which can only be exceeded by rare thermal
fluctuations. Therefore, at variance with the clean systems, the
dynamical features are strongly temperature dependent.

While equilibrium properties are sometimes quite under-
stood, thanks also to some general results such as the Harris
criterion, understanding of the off-equilibrium evolution is by
far incomplete. Concerning the growth law of the domains’
size, either logarithmic or temperature-dependent power laws
have been reported both in experiments [3–6] and in model
systems [7–28], and there is yet no clear indication of a
simple classification—e.g., on the basis of some dynamical
universality classes—of the behavior of different disordered
magnets. Moreover, despite the fact that disorder is responsible
for pinning and slowing down of the kinetics, the simple idea
that the more disorder is present in a system the slower the
evolution will be, has been recently shown [24–26] to be
incorrect in quite a number of cases. Considering, for instance,
the Ising model with random dilution (namely a fraction d

of sites or bonds on the lattice are missing), it was shown
that, although for sufficiently small values of d, the kinetics
is slowed down upon increasing d, as naively expected, after
a certain threshold increasing d produces a faster growth. As
it is explained in Refs. [24,25], this happens because adding
more disorder—in this case parametrized by d—not only one
introduces more pinning sources but, more importantly, the
topological properties of the system are also changed. Indeed,
when d gets close to the value dc, where the set of nondiluted
sites (or bonds) is at the percolation threshold, the fractal
properties of the network play an important role in speeding
up the evolution, because the pinning barriers are softened.

This very effect, the nonmonotonous behavior of the speed
of growth versus the amount of disorder, is observed not
only in diluted systems but also for Ising spins with random
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ferromagnetic couplings [24], the kind of model that will be
generalized with the addition of frustration in this article.

All the systems described insofar are nonfrustrated. When
it is impossible to simultaneously satisfy all the interactions
between the microscopic constituents, as in the paradigmatic
example of the antiferromagnetic Ising model on the triangular
lattice, frustration arises. The slow evolution of disordered
frustrated systems is by far a much more complicated problem.
This is because even the basic structure of the low-temperature
equilibrium states in finite-dimensional systems is still de-
bated. The absence of a clear-cut indication on the static
properties hinders the interpretation of what is dynamically
observed. Indeed, in a droplet theory scenario, one would
expect a kind of coarsening reminiscent of what was previously
discussed for ferromagnetic systems, while if a picture inspired
to the mean-field solution applies, something very different
should happen [29].

The aim of this paper is to gradually near the study of the
kinetics of disordered systems with frustration from the side
of nonfrustrated ones, where a better understanding has been
to some extent achieved. In order to do that we consider an
Ising model with a fraction a of antiferromagnetic coupling
constants, and the remaining ones are ferromagnetic. We study
the model numerically in two dimensions as the value of a is
varied in [0,1]. Clearly, by changing the parameter a, one can
gradually tune the amount of frustration present in the system.
Not enough, in order to soften as possible the crossover from
a situation without frustration to one where it is relevant, we
consider the case where the ferromagnetic interactions are
much stronger than the antiferromagnetic ones. This allows
us to stay as close as possible—so to say—to the simpler and
better understood ferromagnetic situation.

In the low-temperature equilibrium phase-diagram of the
model, as a is progressively increased, one moves from a
ferromagnetic phase, where frustration plays a minor role, to a
strongly frustrated paramagnetic phase which, right at T = 0,
is expected [30] to exhibit spin glass order [31]. For even
larger values of a, an antiferromagnetic region is entered.
Therefore, considering the evolution of the present model
after a deep quench to a small finite temperature Tf > 0,
one has the opportunity to study how different amounts of
frustration influence the off-equilibrium kinetics. In doing that
we find that in the magnetic phases—either ferromagnetic
or antiferromagnetic—a usual coarsening is observed char-
acterized by a logarithmic increase of the domains’ size L(t),
in agreement with previous studies on related Ising models
with random bonds [32]. Upon increasing frustration, the
speed of phase-ordering changes in a nonmonotonous way.
This behavior, which is analogous to the one discussed above
for nonfrustrated systems, can be interpreted along similar
arguments based on topology. Indeed, the geometry of the
growing domains becomes fractal as a is increased and the
transition to the paramagnetic region is approached, similar to
what happens in the nonfrustrated diluted systems previously
considered when the percolation threshold is approached. Also
in this case, the fractal topology speeds up the evolution.

This shows that an off-equilibrium evolution getting faster
and more efficient with the addition of disorder is of a quite
general nature and occurs both in systems with and without
frustration. At variance with the logarithmically slow evolution

observed in the ferro- or antiferromagnetic phases, a faster
kinetics characterized by algebraic behaviors is found along
the whole paramagnetic region, where frustration plays a
prominent role. In this region, although neither ferromagnetic,
antiferromagnetic, or spin-glass order [31] are present at finite
temperatures, a quench to Tf > 0 exhibits slow evolution
as due to the proximity of the spin-glass ground state at
Tf = 0 [30]. Due to that, the faster evolution observed in this
phase (as compared to the logarithmic one in the ferro- and
antiferromagnetic regions) can be perhaps ascribed to the spin
glass structure with many quasi isoenergetic levels and softer
barriers as opposed to those present in a ferromagnetic phase
with two profound free energy minima.

This paper is organized as follows: In Sec. II, we introduce
the model, set the notation, and discuss the structure of the
bond network in Sec. II A. Section III is devoted to the study of
the low-temperature phase-diagram of the system. The results
concerning the kinetics of the model after deep quenches
to various final temperatures are presented and discussed in
Sec. IV. Finally, we summarize and draw our conclusions in
the last Sec. V.

II. THE MODEL

We consider the Ising model with Hamiltonian

H({si}) = −
∑

〈ij〉
Jij sisj , (1)

where the si = ±1 are spin variables, the sum runs over
nearest-neighbors couples 〈ij 〉 of a lattice, and the coupling
constants are Jij = J0 + ξij , where J0 > 0 and the ξij are
uncorrelated random variables extracted from a bimodal
distribution,

P (ξ ) = a δξ,−K + (1 − a) δξ,K, (2)

where δ is the Kronecker function and 0 � a � 1 and K are
parameters. In a previous paper [24], we studied the kinetics
of this model without frustration, with K < J0, namely with
only ferromagnetic interactions. Here, instead, we set

K > J0, (3)

meaning that the fraction a of bonds with ξij < 0 are
antiferromagnetic and the remaining ones are ferromagnetic.
We will also denote with J− = J0 − K and J+ = J0 + K the
strength of such bonds, respectively. We will consider a square
lattice in d = 2 with periodic boundary conditions.

Next to the ferromagnetic local order parameter si , the spin,
it is useful to introduce the antiferromagnetic one,

σi = (−1)i si , (4)

or staggered spin. In Eq. (4) it is stipulated that the index i runs
over the lattice sites in such a way that two nearest neighbors
always have an opposite value of (−1)i .

A classification of the low-temperature equilibrium states
will be made in Sec. III in terms of their spontaneous
magnetization,

m = 1

N

∑

i

si , (5)
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FIG. 1. In the upper stripe, four typical bond configurations are
pictorially shown, corresponding to 0 < a < a∗, a∗ < a � ap , ap �
a < 1 − a∗, and 1 − a∗ < a < 1, from left to right, respectively.
Ferromagnetic bonds are drawn in blue, antiferromagnetic ones in red.
The bar below the configuration stripe describes the physical phases
of the systems as a is varied, e.g., if ferromagnetic, paramagnetic,
etc. The graph in the lower part of the figure is a schematic
representation of the behavior of the typical lengths characterizing
the bond configuration and the physical properties (see text).

and of the staggered magnetization,

M = 1

N

∑

i

σi . (6)

A. The geometry of the bond network

It is useful to discuss the geometrical properties of the network
of bonds of the model, which is pictorially illustrated in the
upper stripe of Fig. 1. With a = 0 the system is the usual clean
Ising ferromagnet, since all the coupling constants are positive.
Moving to a finite a amounts to adding some antiferromagnetic
bonds. If a is small, these will be separated apart by a typical
distance,

λa ∼ a−1/d . (7)

This situation is schematically represented in the leftmost
box on the upper stripe of the figure. Here the blue color
corresponds to regions where the bonds are ferromagnetic,
while antiferromagnetic ones are drawn in red. The behavior
of λa is shown by a dashed blue line in the lower graph of
Fig. 1. It decreases as a raises, meaning that at some point
it becomes of the order of the lattice spacing and groups of
antiferromagnetic bonds start to coalesce. Indeed, we know

that for a = ap = 1/2 such bonds form a percolating cluster,
since the bond percolation threshold is precisely ap. Due
to this, right at ap the size �a of the regions of clustered
antiferromagnetic bonds is �a = ∞ and, for a smaller but
not to far from a = ap one has the well-known percolative
behavior,

�a = (ap − a)−ν, (8)

with ν = 4/3, which is shown by a dotted-dashed blue line
in the lower part of Fig. 1. A pictorial representation of
the bond configuration in the region a � ap is shown in the
second (from the left) box in the upper part of the figure.
The transition between the region with isolated and clustered
antiferromagnetic bonds occur at a value a = a∗, which can
be roughly identified as the point where λa � �a . The actual
value of a∗ is located [24] between a = 0.2 and a = 0.3.

Clearly, as we move in the region a > ap the situation
mirrors that for a < ap upon exchanging the roles of ferro-
magnetic and antiferromagnetic bonds and substituting the
lengths λa,�a with the corresponding ones λf ,�f relative to
the ferromagnetic bonds, for which one has

λf = (1 − a)−1/d , (9)

and

�f = (a − ap)−ν . (10)

III. THE STRUCTURE OF THE EQUILIBRIUM STATES

When J0 > 0 the symmetry of the bond geometry for
a < ap and a > ap is spoiled because the actual absolute value
of positive and negative bonds is different. Furthermore, the
simultaneous presence of positive and negative couplings may
introduce frustration and make the system highly nontrivial as
in the notable case of a spin glass, which can be obtained in
the present model by letting J0 = 0. In this paper, we focus on
the somewhat simpler case, with

K <
z

z − 2
J0, (11)

where z is the coordination number of the lattice. Equation
(11) is a ferromagnetic-always-wins condition. Indeed, it can
be simply checked that, when Eq. (11) holds, a spin to which
at least a ferromagnetic bond is attached will always lower
its energy by pointing along the direction of the majority
(if a majority exists) of spins to which it is connected by
ferromagnetic bonds. For instance, a spin attached to a single
ferromagnetic bond will decrease its energy by aligning with
the spin on the other side of that bond, irrespective of the
configuration of the other z − 1 neighboring spins. Still being
frustrated, a system conforming to the condition Eq. (11)
has a simpler structure—although not trivial at all—of the
low-temperature equilibrium states, as we will see shortly.
Notice also that the spin glass do not obey Eq. (11) (since
J0 = 0). All the numerical data that will be presented in the
following refer to the case J0 = 1, K = 5/4, which obviously
obeys Eq. (11).

Let us now discuss the structure of the low-temperature
equilibrium states of the model as a is changed.
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FIG. 2. |m| and |M| at T = 0 for different values of a.

A. Ground states

In the following, we will focus on the ground states, namely
the equilibrium configurations at T = 0. We found these states
by a generalization [33] to systems with periodic boundary
conditions of the algorithm introduced in Ref. [34]. With
this technique the ground state can be found in polynomial
time. We will postpone the discussion of the effects of a finite
temperature to Sec. III B.

The global order parameters m and M defined above,
computed in the ground states of the model for different values
of a, are shown in Fig. 2. We will classify the ground states
according to m and M in the different regions of the parameter

a in the following sections. This classification is reported in
the upper bar of Fig. 1 and, similarly, in the lower bar of Fig. 2.

1. Ferromagnetic (0 � a < a f )

Let us start discussing the ferromagnetic phase, which can
be split in the two sectors with 0 � a < a∗ and a∗ � a < af ,
which will be considered separately below.

Sector 0 < a < a∗
As discussed above in Sec. II A, in this region there are

basically only isolated antiferromagnetic links in a sea of
ferromagnetic ones. At T = 0 spins in this sea necessarily
align in a ferromagnetic state. Condition Eq. (11) implies that
also the spins attached to the antiferromagnetic bonds must be
aligned with those in the sea. Hence, the ground state is akin to
a usual ferromagnetic system. Of course, as a increases, there
is a finite probability to find some antiferromagnetic bonds
nearby and this can cause some spin reversal with respect to
a completely ordered configuration, but for a < a∗ these are
quite few. Since the presence of antiferromagnetic bonds is
largely irrelevant in this parameter region, we expect |m| � 1
and M = 0. We see in Fig. 2 that this is indeed the case.

A representation of a real ground state for a = 0.2 < a∗
(let us recall that a∗ is expected to be located between a = 0.2
and a = 0.3) is shown in the upper left panel of Fig. 3, which
confirms the description above.

Sector a∗ � a < af

Figure 2 shows that ferromagnetic order extends up to
a certain a = af (with af � 0.4), which is well beyond
a∗. Ferromagnetic ordering occurring beyond a∗ does not
come as a surprise, since in the whole region a < ap the
number of ferromagnetic bonds is larger than that of the

FIG. 3. Configurations of the ground state for a system of size L = 512 for different values of a. Spins up are plotted in black, spins down
in white.
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antiferromagnetic ones and also because of the ferromagnetic-
always-wins condition Eq. (11). Notice, however, that this
does not guarantee that ferromagnetic order is sustained up
to a = ap or beyond, for the reasons that will be explained in
Sec. III A 2, but only up to a lower value a = af < ap.

In the region a∗ < a < af there is still a prevalence of
ferromagnetic order, namely the fraction of—say—up spins
prevails over the reversed ones, but since antiferromagnetic
bonds can coalesce, regions with down spins may be found
locally, as it can be seen in Fig. 3 for a = 0.3 and a = 0.4
(upper central and right panel). This is why we call this
situation defective ferromagnet. Clearly, the islands where
spins are reversed increase upon raising a, as it can be
checked in Fig. 3. Here one sees that the size ξf of these
regions grows dramatically as a gets close to af , a fact that is
pictorially sketched in Fig. 1, as in the presence of a continuous
phase-transition. The presence of extended regions opposite
to the dominant order clearly depletes the magnetization
of the system, so when a < a∗ < af one has 0 < |m| < 1
(decreasing upon raising a) and M = 0, as it can be observed
in Fig. 2. The magnetization m vanishes at the transition point
a = af .

2. Paramagnetic phase (a f � a � aa)

We discuss separately the two subregions with af < a < ap

and ap < a < aa below.
Sector af < a < ap

Here the ferromagnetic bonds still prevail and form a sea
that spans the system. The difference with the ferromagnetic
region is that antiferromagnetic bonds, besides being grouped
together, can form sufficiently connected paths as to destroy
the ferromagnetic state. This is discussed in Appendix A.

A real configuration of the system in this region looks like
the one for a = 0.5 in Fig. 3 (bottom raw, left). Notice also that,
upon comparing this configuration with the one at a = 0.7, one
sees that the size ξf of the locally magnetized regions increases
as a decreases toward af , suggesting that ξf diverges also on
this side of af , as it is sketched in Fig. 1.

Given the structure of the ground state discussed above,
one has m = 0. Clearly, it is also M = 0, since negative bonds
are a minority and there cannot be antiferromagnetic ordering.
This is confirmed in Fig. 2. For this reason we generically
denote the region with af � a � aa as paramagnetic. Let us
anticipate, however, that right at T = 0 some spin-glass order
is expected, as we will further discuss in Sec. IV A 2.

Sector ap < a < aa

In this region there is a sea of antiferromagnetic bonds. If a

is larger but sufficiently close to ap there are also ferromagnetic
islands inside which spins are aligned. However, these islands
are disconnected and hence they order incoherently. Therefore,
we expect m = 0 throughout the region a > ap. This is
observed in Fig. 2. The presence of a spanning sea of
antiferromagnetic bonds is not sufficient to guarantee that
a global antiferromagnetic order will establish, not even if
a is so large that ferromagnetic bonds are isolated, which
happens for a > 1 − a∗ (we recall that a∗ lies between 0.2
and 0.3). Indeed, we see in Fig. 2 that the property M = 0
extends up to a = aa , where aa is located around a � 0.95.
The development of antiferromagnetic order cannot be easily

observed by representing the value of the spins, as done in
Fig. 3, since on a large scale one gets a uniform gray plot. On
the other hand, it can be clearly seen by plotting the staggered
spin σi instead of si , as it is done in Fig. 4. In this figure, local
antiferromagnetic order results in black or white regions, and
|M| > 0 corresponds to a majority of one of the two colors.

The very reason why antiferromagnetic order cannot estab-
lish up to such large fraction of antiferromagnetic interactions
as a = aa is obviously related to the ferromagnetic-always-
wins condition Eq. (11), as it is discussed in Appendix B.
Beyond aa the antiferromagnetic order sets in. This region
will be discussed below (Sec. III A 3).

It is nowadays quite well established [30] that for the two-
dimensional spin-glass model (corresponding to the choice
J0 = 0 in our notation) a zero temperature spin-glass phase
exists, which, however, cannot be sustained at any finite
temperature (i.e., Tc = 0 for this model). It is reasonable to
think that a similar spin-glass order occurs in our model
for J0 �= 0, provided we are in the paramagnetic region
af < a < aa . Although the dynamical results that will be
presented below are clearly independent on any assumption
regarding the nature of the ground state, we will later conform
to the idea that a spin-glass phase exists to interpret the kinetic
behaviors.

3. Defective antiferromagnet (aa � a � 1)

In the region with a > aa there are very few and far apart
ferromagnetic bonds. Due to the condition Eq. (11), the couples
of spins attached to these bonds will be aligned. This represents
a defect in the otherwise perfectly ordered antiferromagnetic
state. Therefore, in this region the system is an antiferromagnet
with a fraction 1 − a of isolated defects; the name defective
antiferromagnet is due to this. One then has m = 0 and M �= 0
in this region, as it can be seen in Fig. 2. We see from Fig. 4
that the local antiferromagnetic order parameter σi organizes
in large regions as the critical point aa is approached, similarly
to what si does as the ferromagnetic transition at a = af

is narrowed. This suggests that the size ξa of such regions
diverges at a = aa , as it is sketched in Fig. 1, and that a
continuous transition occurs.

B. Equilibrium states at finite temperature

Since we will consider the evolution of a system quenched
to Tf > 0, it is worth discussing briefly the modifications to
the above equilibrium picture at T = 0 introduced by a finite
temperature. We must first keep in mind that the ferromagnetic-
always-wins condition Eq. (11) implies

J+ > |J−|. (12)

For instance, with our choices of the parameters we have J+ =
2.25 and |J−| = 0.25. In a standard system with a definite value
J of the coupling constant it is Tc ∝ J . Although in the present
model J is not uniform, upon raising the temperature one
expects that the antiferromagnetic ordering will be destroyed
before the ferromagnetic one.

Let us now consider the region with a < af , where
ferromagnetic order prevails. In this region the critical tem-
perature is expected to drop from the Ising value Tc(a =
0) � 2.269J+ � 5.105, to Tc(a = af ) = 0 (here and in the
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FIG. 4. Configurations of the ground state for a system of size L = 512 for different values of a. We plot the staggered spin σi defined in
Eq. (4). σi = 1 are plotted in black, σi = −1 in white.

following temperature is measured in units of the Boltzmann
constant). Clearly, on the antiferromagnetic sector a > aa

the corresponding critical temperature, which we will still
denote with Tc, will drop from Tc(a = 1) � 2.269J− � 0.567
to Tc(aa) = 0 upon decreasing a.

In the paramagnetic region, the spin-glass phase is expected
to be destroyed by thermal fluctuations, no matter how small.
Hence, Tc = 0 in this phase. However, as we will discuss
further below, the existence of spin-glass order at T = 0
may strongly influence the dynamical properties at finite
temperatures.

IV. KINETICS

The system is prepared in a fully disordered initial state
with uncorrelated spins pointing randomly up or down,
corresponding to an equilibrium configuration at T = ∞, and
is then quenched at t = 0 to a low final temperature Tf . We
evolve the model by means of single spin flips governed by
the Glauber transition rates.

The main observable that we will consider is the inverse
excess energy

L(t) = [E(t) − E∞]−1, (13)

where E∞ is the energy of the equilibrium state at T = Tf .
The latter has been obtained from the corresponding ground
state by evolving it at T = Tf until stationarity is achieved. For
comparison, we have also found the equilibrium state directly
by means of parallel tempering techniques. The values of E∞
found with the two methods are consistent.

When the system has a simple ferromagnetic or antiferro-
magnetic order, as in clean or weakly disordered systems, the
quantity in Eq. (13) can be straightforwardly identified with
the size of the growing ordered regions. This is because in a
coarsening process the interior of domains is in equilibrium
and the excess energy is stored on the interface, so E(t) −
E(∞) is proportional to their total length. This in turn is given
by the length of a single domain’s boundary [∝ L(t)d−1] times
the number of such domains (∝ L−d ), from which the relation
Eq. (13) between the size L(t) of domains and the excess
energy is obtained.

Notice that the above identification of L(t) with an ordering
length relies on a number of assumptions: domains can be
straightforwardly defined, they are equilibrated in their inte-
rior, and they are compact objects (i.e., they have an euclidean
dimension, not a fractal one). While such assumptions are
appropriate in a standard coarsening scenario, they cannot
apply to the present model for any choice of a. Notably, the
identification above almost surely fails in the paramagnetic
region af � a � aa . In these cases, L(t) should prudentially
be regarded simply as the inverse distance from the equilibrium
energy.

Of course, the typical size of the growing structures can be
measured—besides as in Eq. (13), also in many other ways. For
example, in the ferromagnetic phase it can be easily extracted
from the equal time spin correlation function 〈si(t)si+r (t)〉,
where i and i + r are two sites at distance r . Analogously,
in a spin-glass phase one might use the equal time overlap
correlator 〈qi(t)qi+r (t)〉, where

qi = si(t)s
GS
i (14)
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is the overlap with the ground state. However, already in
the ferromagnetic region, the result need not to be the same
using different methods. Indeed, in a situation like the one
of the ground state at a = 0.4 (upper right panel of Fig. 3),
for instance, there are many islands with a finite extension.
Then upon extracting a typical length from the correlation
function at late times, one weights a lot the many small
islands, which at long times are already equilibrated (hence
coarsening is interrupted in their interiors) together with a
comparatively smaller number of large islands. The latter are
the only nonequilibrated regions within which phase-ordering
is still active. Instead, using Eq. (13) one only focuses on
those parts of the system where coarsening is still active, since
inside the small equilibrated islands E(t) ≡ E∞ by definition.
Hence, Eq. (13) is more suited to qualify how phase-ordering
proceeds in the regions where it is still at work, while from the
correlation function one obtains the average size of domains,
irrespective of their state, weather in equilibrium or not. Since
in this paper we are more interested to address the dynamical
mechanisms driving the kinetics, we focus on the definition
Eq. (13).

The difference between the value of L obtained from the
definition Eq. (13) or from the spin-spin correlation function
can be appreciated by looking to the inset of the lower panel
of Fig. 5. Here, for a quench to Tf = 0.75, the typical length
computed as in Eq. (13) is plotted for several values of a

in the main picture, while the one obtained from the spin-
spin correlation is reported in the inset (only for values of a

in the ferromagnetic region). The latter determination grows
much slowly than the former at a = 0.4, precisely because the
ground states contains many small islands.

Let us now say a few words on the role of the final
temperature Tf . Here we are interested in a situation where
Tf is very small. This is because usually the kinetics of
magnetic systems is more easily interpreted in this limit, and
also because low temperatures guarantees Tf < Tc(a)—the
situation we are interested in—in a wider range of a [see
previous discussion about Tc(a) in Sec. III B]. Setting Tf to
very small values, however, has the undesirable consequence
that the kinetics becomes so sluggish that no appreciable
growth of L(t) can be detected in the range of simulated times.
In the following we will consider, out of many values Tf used
in the simulations, the two choices Tf = 0.4 and Tf = 0.75,
which were found to represent a good compromise between
the two contrasting issues discussed above. Notice that both
these temperatures are much below the critical temperature
Tc(a = 0) of the clean ferromagnet. On the other hand, while
the former is smaller than that of the clean antiferromagnet
Tc(a = 1), the latter is above. Let us stress that, in any case,
since Tc(af � a � aa) = 0, for some values of a the quench
is necessarily made above the critical temperature. We will
comment further below on the implications of this.

A. Simulations

We now discuss the outcomes of our numerical simulations,
splitting the presentation in Secs. IV A 1, IV A 2, and
IV A 3 for quenches in the ferromagnetic, paramagnetic, and
antiferromagnetic region, respectively. The general behavior
of L(t), in the whole range of values of a, is shown in Fig. 5, for

10
0

10
2

10
4

10
6

t

10
0

10
1

10
2

10
3

L
(t

)/
L

(4
)

a=0
a=0.1
a=0.2
a = 0.3
a=0.4
a=0.5
a=0.6
a=0.7
a=0.8
a=0.9
a=0.93
a=0.95
a=0.97
a=0.99
a=1

t
1/2

(a)

10
0

10
2

10
4

10
6

t

10
0

10
1

10
2

L
(t

)/
L

(4
)

a=0
a=0.1
a=0.2
a=0.25
a=0.3
a=0.4
a=0.5
a=0.6
a=0.7
a=0.8
a=0.9
a=0.95
a=0.97

1 10
2

10
4

10
6

0.1

1

10

t
1/2

(b)

FIG. 5. L(t) is plotted against time for a quench at Tf = 0.4 ((a),
upper part) and at T = 0.75 ((b), lower part), for different values of a,
in a double logarithmic plot. The black dashed line is the power-law
t1/2. The inset of the lower panel shows, for a quench to Tf and
values of a restricted to the ferromagnetic region, the behavior of the
characteristic length extracted from the spin correlation function (see
text).

Tf = 0.4 and Tf = 0.75 (upper and lower panel, respectively).
Notice that we plot L(t)/L(t = 4) to better compare different
curves.

As a general remark, we notice that at low temperature, such
as for Tf = 0.4, L(t) exhibit an oscillating behavior on top of
the neat growth (namely the kind of growth that one would
have if such oscillations were smoothed out in some way). This
is quite commonly observed in disordered or inhomogeneous
systems at low Tf [24,26,35] and is usually interpreted as due
to the stop and go mechanism due to the pinning of interfaces.
Indeed, an interface gets trapped in the configurations where
it passes through weak bonds J = J−. For instance, the
smallest energetic barrier �E encountered by a piece of
interface occurs when it has to move from a position where
it intersects a single antiferromagnetic bond to one where it
crosses only ferromagnetic ones. This situation is likely to be
observed when there are few antiferromagnetic bonds around,
namely for small a. In this case, �E = J+ − J− = 2K . The
associated Arrhenius time to escape the pinned state is τ �
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FIG. 6. Configurations of spins for a system of size L = 512 quenched to Tf = 0.4 for a = 0.2 (upper row), a = 0.3 (central row), and
a = 0.4 (lower raw). First columns report configurations at t = 104, the central one at t = 106, and the left one at t = 107. Spins up are plotted
in black, spins down in white.

exp[−�E/(KBT ). With the parameters of our simulations one
has τ � 518 for Tf = 0.4 and τ � 28 for Tf = 0.75. One sees
in Fig. 5 that, for Tf = 0.4, this value is very well compatible
with the time where L(t), after becoming very slow, starts
growing faster again (a rough agreement is found also for
Tf = 0.75, although in this case the oscillatory phenomenon
is only hinted).

Oscillations shadow the genuine growth law, and it is
therefore almost impossible to come up with any quantitative
statement about the neat growth, e.g., if it consistent with a
power law or a logarithm or else. As the final temperature
is raised, the stop and go mechanism, although still present,
is less coherent, and the oscillations are smeared out. This
is observed at Tf = 0.75. Moreover, the speed of ordering
increases upon raising Tf , as it is expected in the presence of
activated dynamics.

1. Ferromagnetic region 0 � a � a f

Snapshots of the system’s configuration at different times
after a quench to Tf = 0.4, and for three different choices
of a, are shown in Fig. 6. For any value of a one clearly
observes a coarsening phenomenon with domains of the two

phases growing in a self-similar way in time. Upon increasing
a, domains look more jagged and indented, presumably due to
the nearing of the critical point at a = af where, as usual in
second-order phase-transitions, a fractal structure is expected
to appear.

Concerning the size L(t) of such growing structures (Fig. 5),
starting from the pure case with a = 0 (black curve with
circles), where the expected behavior L(t) ∝ t1/2 is well
represented, the growth law slows down upon rising a, but
this occurs only up to a certain value a, which we interpret
as a = a∗ and is located around a = 0.2. Upon increasing
a beyond a∗, the phase-ordering process speeds up again,
up to af . This is very well observed both for Tf = 0.4 and
Tf = 0.75. The value of a∗, at these two temperatures, is
comparable, as it is expected since this quantity was previously
defined in a purely geometrical way.

In previous papers [24–26], we have shown that the growth
rate r = dL/dt of L(t), namely the speed of growth, varies in
a nontrivial way as the amount of disorder in a ferromagnetic
model is changed. Specifically, in a system where a fraction
d of lattice sites or bonds is randomly removed, the speed of
growth is at its maximum for the pure system at d = 0. As d
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is increased, disorder pins the interfaces and r decreases. The
larger is d, the larger is the pinning effect, and the smaller is
r . However, this is only true for moderate values of d, namely
for d � d∗. Raising d above d∗ one observes that r starts to
increase again up to the largest possible value of d, namely d =
dp, where dp = 1 − pc, pc being the critical threshold of ran-
dom percolation. For d > dp the network where the spins live
becomes disconnected and the ferromagnetic properties are
lost. It turns out that d∗ is roughly in the middle between d = 0
and d = dp. The interpretation of this non monotonic behavior
of r , given in Refs. [24–26], is the following: besides the
pure case, where the speed of growth is at its maximum, the
other network where L(t) grows relatively fast (but slower
than in the pure case) is the percolation fractal at d = dp. This
is argued to be due to the critical properties of such network,
which in turn are responsible of the fact that, right at d = dp,
the transition temperature of the model Tc(d = dp) vanishes.
Indeed the fractal properties of the structure at d = dp soften
the energetic barriers that pin the interfaces, making in this
way the evolution faster. Since there are a global and a relative
maximum of r at d = 0 and d = dp, respectively, there must
be a minimum somewhere in between. This value is d∗. This
explains why r is a non monotonic function of a.

Also in the present model the geometric properties of
the system are such that there is a point, namely a = af ,
where Tc(a = af ) vanishes (actually the same occurs at
a = aa , where an analogous discussion is expected to hold).
Therefore, upon repeating the argument above (with the
obvious replacements d → a and dp → af ), one could expect
r to be at its global maximum at a = 0, to decreases as a

increases up to a value a∗ located in between a = 0 and
a = af , and then to rise again up to a = af . This is precisely
what we see in Fig. 5. The nonmonotonic dependence of the
speed of growth on disorder, therefore, qualifies as a rather
general property of ferromagnetic systems and a common
interpretation for different models can be provided.

Let us also mention that in Refs. [24–26] not only the
nonmonotonic behavior discussed insofar was shown, but a
quantitative conjecture was put forth: the asymptotic growth
law should be of the logarithmic type in the whole disordered
region 0 < d < dp, while it ought to be algebraic L(t) ∝ t1/z

both in the clean case d = 0 (with z = 2) and at d = dp (with
z > 2 and Tf -dependent). For d close to d = 0 (or to dp)
the logarithmic growth is shadowed preasymptotically by the
algebraic behavior induced by the proximity of the clean point
d = 0 (or the percolative one d = dp). Notice that, in some
cases, algebraic preasymptotic behaviors have been shown to
leave room to a truly logarithmic growth only after huge times,
a notable example being the random bond Ising model with
a continuous distribution of ferromagnetic coupling constants
[32]. This originated a lot of contradicting conclusions in the
past.

If a mechanism akin to the one discussed above is at work
also in the present model one would expect an asymptotic
logarithmic behavior (after a—possibly slow—crossover) for
any 0 < a < af , and a power-law behavior of L(t) right at
a = af . While nothing can be said, as discussed above, for
quenches to Tf = 0.4 due to the oscillating nature of the
curves, this conjecture can be tested to some extent in the data
for Tf = 0.75. This can be done by computing the effective

exponent zeff, defined as

1

zeff(t)
= d[ln L(t)]

d[ln t]
. (15)

This quantity is plotted in Fig. 7. For a = 0 it approaches
the expected asymptotic value 1/zeff = 1/2 starting from
relatively early times t � 103. As a is progressively increased
from a = 0 to a = 0.4 � af , the effective exponent becomes,
for a given late time, initially smaller (in the range 0 �
a � a∗ � 0.2) and then rises again (moving a in the range
a∗ � a � af ).

Concerning the time evolution of 1/zeff our data clearly
show that it keeps steadily decreasing in the late regime with
t � 104 for all the values of a in the range 0 < a � 0.3.
The decrease is rather slow but reliable. This implies that
the growth law of L(t) is slower than algebraic. Although
the curves for L(t) span a vertical range that is too limited
to allow a precise determination of such law (furthermore, a
weak oscillation is present up to times of order 104), we can
at least conclude that the decrease of 1/zeff agrees with the
expectation of a logarithmic behavior. Data for a = 0.4 � af ,
on the other hand, are quite well consistent with a constant
behavior of 1/zeff � 0.19 at late times, and this also agrees
with the conjecture discussed above. Finally, the effective
exponent looks rather constant also for a = 0.37. This can
be ascribed to the preasymptotic algebraic behavior induced
by the proximity of the percolation point a = af . We expect,
therefore, that a decrease of 1/zeff would be observed also for
a = 0.37 if sufficiently long times could be accessed in the
simulations.

Notice that an algebraic law is also observed in the
whole paramagnetic region, an interpretation of which will be
provided in the next section. Therefore, the different asymp-
totic behavior—i.e., algebraic versus logarithm—observed at
a = af with respect to the rest of the ferromagnetic region
0 < a < af can also be interpreted upon thinking af as
the lower limit of the paramagnetic region where algebraic
behaviors are observed. We will comment further on this point
below.
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FIG. 7. The effective exponent 1/zeff(t) is plotted against time for
a quench at T = 0.75, for different values of a, in a double logarithmic
plot.
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2. Paramagnetic region a f < a < aa

In two-dimensional spin glasses (corresponding to J0 = 0
in our model), it was shown [36–38] that the existence of a
spin-glass phase at T = 0 rules the kinetic in a long-lasting
preasymptotic regime. The situation is akin to what was ob-
served in the clean Ising model at the lower critical dimension
dL = 1 after a quench to a finite but low enough temperature.
In this case, it can be shown [39,40] that the kinetics proceeds
as in a quench to Tf = 0 until L(t) � ξ , where ξ = e2J0/Tf is
the equilibrium coherence length. Since this quantity is huge,
the preasymptotic regime where nonequilibrium kinetics is
observed extends to very long times at low Tf . Afterwards,
aging is interrupted and the system equilibrates. In the d = 2
spin glass, it is found that as long as the preasymptotic stage is
considered, a growing length can be identified which exhibits
an algebraic behavior [37].

In the present model, assuming that a kind of spin-glass
order is developed at Tf = 0 in the paramagnetic region
af < a < aa , we expect to observe a similar phenomenon.
This can be already appreciated at a qualitative level in Fig. 8.
In this set of figures we plot the local overlap [Eq. (14)]

between the actual dynamical spin configurations and the
ground state, for different times after a quench to Tf = 0.4,
and for three different choices of a. Interestingly, also in this
paramagnetic phase, for any value of a, one clearly observes
a coarsening phenomenon with domains of the two phases
growing in a self-similar way in time, although quite slowly.
This agrees with what was observed in Ref. [37]. Moreover,
there is no signal of equilibration at any time, nor does the
growth seem to be interrupted. As a further comment, we
notice that configurations appear much more rugged for larger
values of a.

The study of the approach to equilibrium can be made more
quantitative by inspection of Fig. 5, where L(t) for the various
cases is plotted. Here one sees that, as already anticipated,
data for Tf = 0.75 are consistent with an algebraic growth
L(t) ∝ t1/z, with an a-dependent exponent, in agreement
with Ref. [37]. Data for a � 0.7 clearly bend downwards
at late times, indicating that equilibration is starting to be
achieved. The algebraic increase of L(t) is further confirmed
by inspection of the effective exponent zeff in Fig. 7. This
quantity stays basically constant, besides some noisy behavior,

FIG. 8. Configurations of the overlap, as defined in Eq. (14), for a system of size L = 512 quenched to Tf = 0.4 for a = 0.5 (upper row),
a = 0.8 (central row), and a = 0.95 (lower raw). First columns report configurations at t = 104, the central one at t = 106, and the left one at
t = 107. Positive overlaps are plotted in black, negative ones in white.
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FIG. 9. Configurations of the staggered spin, as defined in Eq. (4), for a system of size L = 512 quenched to Tf = 0.4 for a = 0.97 for
times t = 104, t = 106, t = 107. Positive σi’s are plotted in black, negative ones in white.

in the late time regime t � 103–104. Notice also that 1/zeff

raises as a is increased. This can be ascribed, at least partly,
to the fact that the largest barriers encountered are associated
to the positive couplings [since condition Eq. (12) holds], and
the number of the latter is reduced upon increasing a.

A power-law for L(t) in this paramagnetic region, as op-
posed to the logarithmic one in most disordered ferromagnetic
models, including the one at hand for 0 < a < af , can perhaps
be read into the different structure of the low-energy states. For
a ferromagnet there are two degenerate ground states separated
by an energetic barrier. A common picture of a frustrated
system is, instead, one with many quasiequivalent low-energy
states. Taking advantage of entropic effects, the system can
move among these states lowering in this way the free-energy
barriers. This could speed up the evolution from logarithmic
to algebraic.

3. Region with antiferromagnetic order a � aa

In Fig. 9 we plot the configurations of the staggered spin
σi—see Eq. (4)—at different times, which clearly show the
coarsening phenomenon. In this region with antiferromagnetic
order we expect a situation mirroring the one discussed in
the ferromagnetic region, with the obvious correspondences
a = 0 ↔ a = 1 and a = af ↔ a = aa . Since in this case
Tc(a = 1) � 0.567, as already discussed, there is no room left
to observe coarsening for Tf = 0.75 for any value of a < 1
(indeed for Tf = 0.75—in the lower panel of Fig. 5—L(t)
flattens very soon, saturating to the equilibrium value). Let us
then focus only on the upper panel of Fig. 5, where data for
Tf = 0.4 are presented. Here one observes the nonmonotonic
behavior of the speed of ordering r already discussed when
considering the ferromagnetic phase. Upon decreasing a from
the clean value a = 1, the kinetics quickly becomes much
slower in going to a = 0.97, and then r increases again until the
border of the paramagnetic phase is touched at a = aa � 0.95.

V. CONCLUSIONS

In this paper, we have studied numerically a two-
dimensional random bond Ising model where a fraction
1 − a of coupling constants is positive J = J+ > 0 and the
remaining ones are negative, J = J− < 0. The choice of J+
and J− has been made according to a ferromagnetic-always-

wins condition, which strongly favors ferromagnetic ordering.
We have classified the low-temperature equilibrium states
according to the values taken by the magnetization m and the
staggered magnetization M . We have shown the existence of a
ferromagnetic and an antiferromagnetic phase for a < af and
a > aa . In between, for af < a < aa , there is a paramagnetic
phase at any temperature T , presumably with spin-glass order
at T = 0.

The main focus of the paper has been on the off-equilibrium
evolution of the model after a quench from an infinite tempera-
ture disordered state to low temperatures. In the ferromagnetic
and antiferromagnetic phases the process amounts to the much
studied coarsening phenomenon in the presence of quenched
disorder, which is characterized by the everlasting increase of
the typical domains’ size L(t).

Also in the present model, we find that the speed of the
nonequilibrium evolution varies in a nonmonotonic way as the
amount of disorder a is increased, similar to what was observed
in other disordered ferromagnets [24–26]. Specifically, there
exists a value a∗ ∼ 0.2 where the kinetics is slower than for any
other value of a. We have also been able to show that the growth
law of L(t) is slower than algebraic, i.e., of a logarithmic type,
in the whole ferromagnetic (and antiferromagnetic) region 0 <

a < af (or aa < a < 1). Interestingly enough, this is true both
for 0 � a � a∗ and for a∗ � a < af , irrespective of the fact
that the structure of the ferromagnetic state is different in
these two sectors, because the system is a perfect ferromagnet
(i.e., m2 = 1 at T = 0) in the former range while it contains a
number of defects (antiferromagnetic inclusions) in the latter
(so that m2 < 1 at T = 0).

Similar considerations can be made in the paramagnetic
region. Here we find that L(t), the inverse excess energy, grows
algebraically in the whole phase, irrespective of the fact that
the geometrical properties of the bond network greatly change
as a is varied in [af ,aa].

These results seem to indicate that L(t) is able to discern
between systems with a ferromagnetic phase extending below
a finite critical temperature Tc > 0 from the others. In the
former L(t) grows in a logarithmic way, whereas a power-law
is observed otherwise. The results of this paper show that this
property, which was already found in models of disordered
magnets without frustration [24–26], extends its validity to
the realm of frustrated systems, pointing toward a general
robustness.
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APPENDIX A: SUPPRESSION OF FERROMAGNETIC
ORDER FOR a � a f

For a � af , the amount of negative bonds is sufficient to
spoil the ferromagnetic order. This may happen, for instance,
when the spanning sea of ferromagnetic bonds have a thin
part, like the horizontal path within the two dashed orange
lines in the left panel of the schematic Fig. 10, along which
spins cannot keep the same orientation without increasing the
total energy. In the situation sketched, it is easy to check that
the represented configuration minimizes the energy.

This picture has been presented to easily grasp the proper-
ties of the ground state, but it is not appropriate to describe
the situation with a < ap. Indeed, for such values of a there
cannot be a spanning path of antiferromagnetic bonds, while it
is present in Fig. 10 (along the dashed orange lines). However,
one can easily check that the ground state does not change
if a certain fraction f � 1/z (in this case f � 1/4) of the
antiferromagnetic bonds crossing the dashed orange lines are
turned into ferromagnetic ones. In this new situation there
are no spanning clusters of antiferromagnetic bonds, but the
ground state is still split into four pieces with discording
magnetization.

A computation of af looks very difficult, since this amount
to evaluate the smallest probability a such that a spanning
object formed by a fraction 1 − f of antiferromagnetic bonds
exists. An (admittedly very rough) estimation is the following:
We know that at a = ap a spanning path of antiferromagnetic

bonds exists. If the probability is decreased to (1 − f )ap, a
fraction f of such antiferromagnetic bonds will be converted
to ferromagnetic ones. This provides af � (1 − f )ap. In our
two-dimensional case this yields af � 3/8 = 0.375, to be
compared with the observed value af � 0.4.

APPENDIX B: SUPPRESSION OF ANTIFERROMAGNETIC
ORDER FOR a � aa

The reason why antiferromagnetic order cannot establish
up to fractions of negative bonds as large as aa � 0.95 can
be easily understood by looking at the schematic ground state
situation of the right panel of Fig. 10. In this picture it is
seen that also a small amount of ferromagnetic bonds can
induce an interface (of the antiferromagnetic type—marked
by a dashed magenta line) in the system. Indeed, it is easy
to check that, due to the condition Eq. (11), the situation
where such an interface is removed corresponds to an higher
energy. Because of the interface, the system is split in regions
with mismatched staggered magnetization and hence M = 0.
Clearly, the formation of the interface in the right panel of
Fig. 10 becomes energetically unfavorable if the density of
ferromagnetic bonds (basically the distance between blue
bonds in Fig. 10) becomes too small. A rough estimation
of the value of a where this occurs is the following. The
average distance between ferromagnetic bonds is λf . Along
an interface, such as the one plotted in Fig. 10, there is a
ferromagnetic bond of strength J+ every λf antiferromagnetic
ones (of strength J−). Hence, the interface cannot be sustained
if λf |J−| > J+, namely for

(1 − a)−d >
J+
|J−| , (B1)

where we have used Eq. (9). With the choice J0 = 1, K = 1.25
adopted in our simulations, this would predict the interface
instability at a = aa = 0.7. This is only a lower bound

(a)
(b)

FIG. 10. Schematic representations of the ground states of the system in the regions af < a < ap ((a), left part) and ap < a < aa ((b), right
part). Antiferromagnetic and ferromagnetic bonds are drawn in red and blue, respectively. Spins up and down are colored in green and brown,
respectively. In the left panel, the two dashed orange lines indicate paths of antiferromagnetic bonds. In the right panel, the dashed magenta
line is an interface in the antiferromagnetic order.

062136-12



EQUILIBRIUM STRUCTURE AND OFF-EQUILIBRIUM . . . PHYSICAL REVIEW E 95, 062136 (2017)

to the value of aa , since it is clear that besides having
condition Eq. (B1) obeyed, other conditions must apply. For
instance, an antiferromagnetic bond must be guaranteed next

to the ferromagnetic ones. Indeed, we see in Fig. 2 that the
paramagnetic phase extends much beyond a = 0.7, at least up
to aa ∼ 0.95.
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