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We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise. Using
Feynman path-integral technique, we find the optimal input signal distribution maximizing the channel’s per-
sample mutual information at large signal-to-noise ratio in the intermediate power range. The optimal input
signal distribution allows us to improve previously known estimates for the channel capacity. We calculate the
output signal entropy, conditional entropy, and per-sample mutual information for Gaussian, half-Gaussian, and
modified Gaussian input signal distributions. We demonstrate that in the intermediate power range the capacity
(the per-sample mutual information for the optimal input signal distribution) is greater than the per-sample mutual
information for half-Gaussian input signal distribution considered previously as the optimal one. We also show
that the capacity grows as log log P in the intermediate power range, where P is the signal power.
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I. INTRODUCTION

Information theory is an interdisciplinary science that has a
broad range of applications in such fields as complex systems,
statistical physics, computer science, data compression, engi-
neering, genetics, and so on. One of the most important and
practically significant applications of information theory is the
information transmission in communication systems. Due to a
constant demand in the increase of the communication speed
and quality finding a way to maximize the amount of infor-
mation transmitted through a noisy information channel has a
tremendous value for modern communication technology. The
problem of an informational capacity of a linear channel with
a Gaussian noise has been first considered by Shannon in his
seminal work [1]. Shannon introduced the channel capacity as
the maximal amount of information per symbol that can be
transmitted via the noisy channel and demonstrated that the
capacity C can be expressed as

C ∝ log2(1 + Rsn), (1)

where Rsn = P/N is the signal-to-noise power ratio, P is the
signal power, and N is the noise power. This, in particular,
means that for the fixed noise power N , one has to increase
the signal power P in order to increase the capacity.

The interest in nonlinear communication channels has
been growing since the beginning of the 2000s, when fiber
optical communication systems had to extend both bandwidth
and the system’s reach, which required an increase of the
input optical power. The Kerr nonlinearity in optical fibers
strongly affects the information capacity, which has been
studied both analytically and numerically in numerous papers;
see, e.g., Refs. [2–9] and references therein. The information
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transmission in a simplified model of a nondispersive nonlinear
optical fiber channel was considered, e.g., in Refs. [10–14].
The study of nonlinear communication channels where the
transmission is affected by the signal power is a difficult
problem, especially at large Rsn [6]. The analysis of the
capacity of these channels is technically challenging and
new techniques and methods are highly desirable to advance
these studies [3,13,15–17]. In order to address the problem
of information capacity, we consider a simplified model
of a nonlinear channel with zero dispersion. The methods
developed for and tested on such a model channel might
be useful for more complex nonlinear fiber communication
problems. We introduce here a new approach to the calculation
of the conditional probability density function via the path-
integral technique and demonstrate its application using the
considered model channel as a particular example.

The channel capacity C is defined as the maximum of
the mutual information IPX[X] with respect to the probability
density function PX[X] of the input signal X:

C = max
PX[X]

IPX[X], (2)

where the maximum value of IPX[X] should be found subject
to the condition of fixed average signal power:

P =
∫

DX|X|2PX[X]. (3)

The mutual information of a memoryless channel is defined in
terms of the output signal entropy H [Y ] and the conditional
entropy H [Y |X]:

IPX[X] = H [Y ] − H [Y |X], (4)

with

H [Y |X] = −
∫

DXDYPX[X]P [Y |X] log P [Y |X], (5)

H [Y ] = −
∫

DYPout[Y ] log Pout[Y ], (6)

Pout[Y ] =
∫

DXPX[X]P [Y |X], (7)
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where P [Y |X] is the conditional probability density function
(PDF) for an output signal Y when the input signal is X,
and Pout[Y ] is the PDF for an output signal Y . The measure
DY is defined as

∫
DYP [Y |X] = 1, and DX is defined

as
∫
DXPX[X] = 1. The capacity Eq. (2), as defined by

Eqs. (4)–(7), is measured in units of (log 2)−1 bits per symbol
(also known as nats per symbol). The input and output
signals are functions of time where the signal’s spectrum
is restricted to a given bandwidth. In general, a sampling
of the temporal signal should be introduced to define a
discrete-time memoryless channel; however, here we consider
only per-sample quantities.

The channel’s mutual information Eq. (4) depends on
the probability distribution PX[X] of the input signal. The
input signal PDF maximizing the channel’s per-sample mutual
information is called “capacity-approaching” or “optimal”
PDF P

opt
X [X]. Obviously, the problem of finding the optimal

PDF of the input signal for nonlinear optical channels is of a
great practical importance.

In the previous studies of nondispersive nonlinear optical
channels (e.g., Refs. [11,13,14]), the Gaussian and half-
Gaussian input signal PDFs were used as trial functions in
order to put low bound constraint on the channel capacity
or to provide an asymptotic estimate of the capacity in the
regime of a large Rsn. The authors of Ref. [14] argued that the
half-Gaussian PDF, which we denote as P

(1)
X [X],

P
(1)
X [X] = exp{−|X|2/(2P )}

π |X|(2πP )1/2
, (8)

provides the best approximation for the “capacity-
approaching” input signal distribution at a large Rsn. In the
present paper, by solving a variational problem, we show that
it is not the case. We find a true optimal distribution P

opt
X [X]

(which in fact is different from half-Gaussian distribution)
in the regime of large Rsn for intermediate power range. We
explicitly show that in this regime the mutual information
Eq. (4) for our optimal input signal PDF is greater than the
mutual information for the Gaussian and half-Gaussian input
signal distributions.

The estimates for the capacity of nonlinear fiber channels
with a zero dispersion and an additive white Gaussian noise
in the regime of large Rsn were obtained in Refs. [13,14].
The lower bound for capacity of the channel, based on a trial
Gaussian input signal PDF, reads [13]

C � log(Rsn)

2
+ 1 + γE − log(4π )

2
+ O

(
log(Rsn)

Rsn

)
, (9)

where γE ≈ 0.5772 is the Euler constant. Note that the second
term on the right-hand side of Eq. (9) was presented as O(1) in
Ref. [13] but can be easily calculated using Eqs. (23) and (24)
of Ref. [13]. The physical meaning of the prelogarithmic
factor 1/2 in Eq. (9) is that the signal’s phase does not
carry information in the high-power regime; see Ref. [14].
In fact, when the signal power is sufficiently large, i.e.,

P � (Nγ 2L2)
−1

, the signal-dependent phase occupies the
entire phase interval [0,2π ] due to self phase modulation and,
as a result, the phase does not transfer information. Here we
denote γ as the Kerr nonlinearity coefficient and L as the
fiber link length. Capacity estimates in the intermediate power

range N � P � 6π2(Nγ 2L2)
−1

are presented in Ref. [14].
For such a power P , the following estimate of the lower bound
for the capacity, based on the half-Gaussian input signal PDF,
was derived [14]:

C � − log(γNL) + γE − 1 + log(3π )

2
+ O(1/

√
Rsn),

(10)

where instead of O(1/
√

Rsn) the authors presented the explicit
function of the parameter Rsn, which decreases at large Rsn; see
Eq. (40) in Ref. [14]. However, the authors of Ref. [14] did not
take into account the 1/

√
Rsn corrections in the output signal

entropy H [Y ]; therefore, using these explicit functions in the
capacity inequality is beyond the calculation accuracy. It also
means that the result Eq. (40) of Ref. [14] is not a lower bound
on the capacity. It is worth mentioning that in the inequality
Eq. (10) there is an additive term log 2 missing. Also, Eq. (40)
in Ref. [14] does not recover the Shannon limit log Rsn as
γ → 0. Moreover, it is strange that the capacity estimate goes
to infinity when γ tends to zero. So there are obvious flaws in
the inequality Eq. (10). Therefore, to understand the behavior
of the capacity in the intermediate power range, the additional
study is necessary.

The analytical expression for the conditional probability
density function of the channel was obtained in the complex
form of an infinite series [10,13,14] within the Martin-Siggia-
Rose formalism based on quantum field theory methods [18].
In the present paper, we adopt the Martin-Siggia-Rose for-
malism and develop a new method for the approximate
computation of the conditional probability density function
P [Y |X]. Using this method, we obtain the simple analytical
expression for the function P [Y |X] in the leading and next-
to-leading order in the parameter 1/

√
Rsn for the intermediate

power regime,

N � P � (Nγ 2L2)−1. (11)

Our method allows us first to derive the analytical expression
for the mutual information and then the optimal input signal
distribution P

opt
X [X], which is different from the half-Gaussian.

In Ref. [17], a method to calculate the conditional PDF for a
nonlinear optical fiber channel with nonzero dispersion in the
large Rsn limit was introduced. Here, we illustrate this general
approach in the application to a simple nondispersive nonlinear
optical fiber channel as considered in Refs. [10,13,14]. Since
the channel is dispersionless, the temporal signal waveform
does not change during propagation (note, however, that the
signal bandwidth will grow due to the fiber nonlinearity
and signal modulation). Therefore, instead of considering the
evolution of ψ(z,t), we can consider a set of independent
scalar channels [10,14] (per-sample channels) governed by
the following model:

∂zψ(z) − iγ |ψ(z)|2ψ(z) = η(z), (12)

where ψ(z) is the signal function that is assumed to obey
the boundary conditions ψ(0) = X, ψ(L) = Y . The noise
η(z) has zero mean 〈η(z)〉η = 0 and a correlation function
〈η(z)η̄(z′)〉η = Qδ(z − z′) , so that the Rsn = P/QL, where
P and N = QL are the per-sample signal power and the
per-sample noise power, respectively. The connection between
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the model Eq. (12) and the conventional information-theoretic
presentation in the form of an explicit input-output probabilis-
tic model and the appropriate sampling has been discussed in
detail in Refs. [10,13,14]. In order to illustrate our method,
we calculate the conditional probability density function, the
conditional entropy Eq. (5), the output signal entropy Eq. (6),
and the mutual information Eq. (4) for the per-sample channel.
Solving a variational problem for the mutual information, we
find the optimal input signal distribution PX[X] maximizing
the mutual information in the leading order in 1/Rsn.

The paper is organized as follows. In Sec. II, we develop a
“quasiclassical” method for the calculation of the conditional
PDF P [Y |X] for arbitrary nonlinearity in the intermediate
power range Eq. (11) in the leading and next-to-leading order
in 1/

√
Rsn. We find a simple representation for P [Y |X] in this

case. This allows us to calculate the output signal distribution
Pout[Y ]. The optimal signal distribution P

opt
X [X] is found in

Sec. III. Section IV is focused on the calculation and the
comparison of the mutual information for various input signal
distributions. We discuss our results in Sec. V.

II. THE CONDITIONAL PDF P[Y |X] AND OUTPUT
SIGNAL PDF Pout[Y ] AT LARGE Rsn

A. “Quasiclassical” method for the conditional PDF P[Y |X]
calculation

The conditional probability density function can be written
via the path-integral form [13,18,19] in a retarded discretiza-
tion scheme, see, e.g., the Supplemental Materials of Ref. [17],

P [Y |X] = ∫ ψ(L)=Y

ψ(0)=X
Dψ exp

{
− S[ψ]

Q

}
, (13)

and can be reduced to the quasiclassical form, see Ref. [19]:

P [Y |X] = e
− S[�cl (z)]

Q

∫ ψ̃(L)=0

ψ̃(0)=0
Dψ̃ e

− S[�cl (z)+ψ̃(z)]−S[�cl (z)]
Q , (14)

where the effective action S[ψ] = ∫ L

0 dz|∂zψ − iγ |ψ |2ψ |2,
and the function �cl(z) is the “classical” solution of the
equation δS[�cl] = 0, where δS is the variation of our action
S[ψ]. The equation δS[�cl] = 0 (Euler-Lagrange equation)
has the form

d2�cl

dz2
− 4iγ |�cl|2 d�cl

dz
− 3γ 2|�cl|4�cl = 0, (15)

with the boundary conditions �cl(0) = X, �cl(L) = Y .
In order to find P [Y |X], one should calculate the exponent

e
− S[�cl(z)]

Q and the path-integral in Eq. (14). First, we evaluate
the exponent. To find it we have to calculate the function �cl(z)
and then the action S[�cl(z)]. We found the general solution
�cl(z) of Eq. (15) implicitly through the boundary conditions;
see Eqs. (A8)–(A12) and Eq. (A14) in Appendix A. This
form of the solution is inconvenient for further calculations.
Therefore, we adopt a different approach and find the solution
in the leading and next-to-leading order in 1/

√
Rsn, linearizing

Eq. (15) in the vicinity of the solution �0(z). Here, �0(z) is
the solution of Eq. (12) with zero noise and with the boundary
condition �0(0) = X = ρeiφ(X)

. The function �0(z) reads

�0(z) = ρ exp
{
iμ

z

L
+ iφ(X)

}
, (16)

where μ = γLρ2 = γL|X|2. Note that this solution satisfies
only the input boundary condition �0(0) = X = ρeiφ(X)

, and
it is the solution of Eq. (15) as well. Therefore, we look for the
solution of Eq. (15) in the following form:

�cl(z) = [ρ + �(z)] exp
{
iμ

z

L
+ iφ(X)

}
, (17)

where the function �(z) is assumed to be small: |�(z)| � ρ. In
a general case, the ratio |�(z)|/ρ is not necessarily small and it
depends on the output boundary condition �(L). However, the
configurations of �(z) at which �cl(z) significantly deviates
from �0(z) (|�(z)| ∼ ρ) are statistically irrelevant. Indeed, the
expansion S[�0(z) + δ�(z)] ∝ �2(z) starts from the quadratic
term at small �(z), since the action achieves an extremum (the
absolute minimum S[�0(z)] = 0) on the solution �0(z). Thus,

the exponent e
− S[�cl(z)]

Q and, as a result, the conditional PDF
P [Y |X] vanishes exponentially when the typical �(z) is much
greater than

√
QL.

Substituting Eq. (17) into Eq. (15) and retaining only terms
linear in �(z)/ρ, we obtain the following equation, which is
still exact in the nonlinearity parameter μ:

d2�

dz2
− 2i

μ

L

d�

dz
− 4

μ2

L2
Re[�] = 0. (18)

The boundary conditions for the function �(z) read

�(0) = 0, �(L) = Ye−iφ(X)−iμ − ρ ≡ x0 + iy0, (19)

where x0 = Re{�(L)} and y0 = Im{�(L)}. The solution of the
linearized boundary Eqs. (18) and (19) reads

Re[�(z)] =
(

μ
μx0 − y0

1 + μ2/3

z

L
+ (1 − 2μ2/3)x0 + μy0

1 + μ2/3

)
z

L
,

Im[�(z)] =
{

μx0 − y0

1 + μ2/3

(
2μ2z2

3L2
− 1

)

+μ
(1 − 2μ2/3)x0 + μy0

1 + μ2/3

z

L

}
z

L
. (20)

After substitution of the solution Eq. (20) in the action, we
obtain

1

Q
S[�cl(z)] = 1

Q
S
[
(ρ + �(z)) exp

{
iμ

z

L
+ iφ(X)

}]

≈ 1

Q

∫ L

0
dz

∣∣∣∣∂z� − 2i
μ

L
Re[�]

∣∣∣∣
2

= (1 + 4μ2/3)x2
0 − 2μx0y0 + y2

0

QL(1 + μ2/3)
. (21)

Note that here we retain only the terms quadratic in �.
However, it is straightforward to calculate the next correction
to the action Eq. (21), which is of the order of 1/

√
Rsn; see

details in Appendix A. A regular perturbative expansion for
�(z) in powers of 1/

√
Rsn can be obtained using the exact

equation for the function �(z); see Eq. (A19) in Appendix A.
The next step in evaluation of the conditional probability

P [Y |X] is the calculation of the path-integral in Eq. (14).
In order to calculate the path-integral in the leading 1/

√
Rsn

order, we retain only quadratic in ψ̃ terms in the integrand.
Any extra power of ψ̃ or � is suppressed by the multiplicative
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parameter
√

QL, because at small Q the main contribution to
the path-integral comes from ψ̃ ∼ √

QL. Moreover, as soon as
we calculate the path-integral in the leading order in Q, we can
substitute �0(z) for �cl(z) in the action difference S[�cl(z) +
ψ̃(z)] − S[�cl(z)]. To find P [Y |X] in the next-to-leading order
in 1/

√
Rsn, we should keep both �(z) in �cl(z) and higher

powers of ψ̃ in the action difference. Details of the path-
integral calculation in the leading and next-to-leading order in
1/

√
Rsn are presented in Appendix B. Taking into account the

expression for the action Eq. (A28) and the result of the path-
integral calculation Eq. (B22), we obtain the final result for
P [Y |X] with the accuracy of corrections proportional to QL:

P [Y |X] =
exp

[ − (1+4μ2/3)x2
0 −2μx0y0+y2

0
QL(1+μ2/3)

]
πQL

√
1 + μ2/3

{
1 − μ/ρ

15(1 + μ2/3)2
[μ(15 + μ2)x0 − 2(5 − μ2/3)y0]

− μ/ρ

135QL(1 + μ2/3)3

[
μ(4μ4 + 15μ2 + 225)x3

0 + (23μ4 + 255μ2 − 90)x2
0y0 + μ(20μ4 + 117μ2 − 45)x0y

2
0

− 3(5μ4 + 33μ2 + 30)y3
0

]}
, (22)

where x0 and y0 are the functions of X and Y defined in
Eq. (19). The corrections to P [Y |X] proportional to QL can
be found in our paper [20]. Note that the conditional PDF
P [Y |X] was already derived in Ref. [13] in the form of an
infinite series. Our result [Eq. (22)] for the function P [Y |X] is
the analytic summation of this series in the intermediate power
range:

QL � P � (QL3γ 2)−1. (23)

The left inequality in Eq. (23) comes from the condition
of large Rsn, Rsn � 1. The right inequality in Eq. (23) is
the condition for the path-integral corrections (of order of
γ 2L3Q|X|2) to be small: see Eq. (B2) in Appendix B and
Ref. [20]. One can show that the normalization condition∫

DYP [Y |X] = 1 is fulfilled. Also, one can check that the
distribution Eq. (22) obeys the following important property:

lim
Q→0

P [Y |X] = δ[Y − �0(L)]. (24)

Equation (24) is the deterministic limit of P [Y |X] in the
absence of noise. Also, Eq. (22) has the correct limit for the
linear channel (γ → 0):

P (0)[Y |X] = e−|Y−X|2/QL

πQL
, (25)

which is the conditional PDF for the linear nondispersive
channel with Gaussian noise.

B. Output signal PDF Pout[Y ]

Now we proceed to the calculation of the probability density
function of the output signal Pout[Y ]. Let us consider the
integral, see Eq. (7),

Pout[Y ] =
∫

DXP [Y |X]PX[X], (26)

where the function PX[X] is a smooth function that changes
on a scale |X|2 ∼ P , which is much greater than QL. In
this case, we can calculate the integral Eq. (26) up to terms
proportional to the noise power QL by Laplace’s method [21];

see Appendix C. The result has the form

Pout[Y ] =
∫

DXP [Y |X]PX[X] = PX[Ye−iγ |Y |2L]. (27)

This result [Eq. (27)] can be obtained without calculations from
the following reasoning. The function P [Y |X], see Eq. (22),
varies on a scale of order QL, which is much less than the
scale of PX[X] (the function P [Y |X] is essentially narrower
than the function PX[X]). Also P [Y |X] has the δ-function
limit Eq. (24) and therefore in the integral Eq. (26) it can
be replaced with the δ-function. Note that to obtain the result
Eq. (27) we do not require the limit Q → 0 but only the relation
between the scales P and QL to be satisfied. For the case of
the distribution PX[X], which depends only on |X|, we have
Pout[Y ] = PX[|Y |].

For the case when PX[X] depends only on |X|, we can
obtain Pout[Y ] in all orders in QL. In the remainder of this
section, we consider this case. To obtain Pout[Y ], we can use
the P [Y |X] found in Ref. [13]; see Eqs. (11)– (13) therein. In
this case, Pout[Y ] is a function of |Y | = ρ ′,

Pout[ρ
′] = 2e

− ρ′2
QL

QL

∫ ∞

0
dρρe

− ρ2

QL I0

(
2ρρ ′

QL

)
PX[ρ], (28)

where I0(z) is the modified Bessel function of the first kind.
Using this representation, we can obtain the simple relation for
Pout[ρ ′] calculation in the perturbation theory in QL. To this
end, we perform the zero-order Hankel transformation [21],

P̂ [k] =
∫ ∞

0
dρρJ0(kρ)PX[ρ], (29)

of both sides of Eq. (28), then we use the standard integral [22]
with Bessel and modified Bessel functions,∫ ∞

0
dzze−pz2

Jν(bz)Iν(cz) = 1

2p
Jν

(
bc

2p

)
e

c2−b2

4p ,

and arrive at the simple relation between the Hankel images,

P̂out[k] = e−k2 QL

4 P̂ [k]. (30)

Performing the inverse Hankel transformation,

PX[ρ] =
∫ ∞

0
dkkJ0(kρ)P̂ [k], (31)
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we obtain

Pout[ρ] = e
QL

4 ρ PX[ρ], (32)

where ρ = d2

dρ2 + 1
ρ

d
dρ

is the two-dimensional radial Laplace
operator. From the relation Eq. (32), the problem of finding
(QL)n corrections to Pout[ρ] reduces to the exponent ex-
pansion and straightforward calculations of the action of the
differential operator n

ρ on PX[ρ].
Let us consider the widely used example of the modified

Gaussian distribution,

P
(β)
X [ρ] = exp{−βρ2/(2P )}ρβ−2

π�(β/2)(2P/β)β/2
. (33)

For β > 0, the distribution P
(β)
X [ρ] is normalized to unity,

2π
∫ ∞

0 dρρP
(β)
X [ρ] = 1, and has the average power P ,

2π
∫ ∞

0 dρρ3P
(β)
X [ρ] = P . The distribution P

(β)
X [X] general-

izes the half-Gaussian distribution Eq. (8) for β = 1 and the
Gaussian for β = 2:

P
(2)
X [X] = 1

πP
e−|X|2/P . (34)

Inserting Eq. (33) into Eq. (28), we obtain a standard integral,
which can be found in Ref. [22]. The result for the output
signal PDF has the form

P
(β)
out [Y ] = 1F1

(
β

2
; 1;

|Y |22P

QL(2P + βQL)

)

× exp{−|Y |2/QL}
πQL

(
βQL

2P + βQL

)β/2

, (35)

where 1F1( β

2 ; 1; z) is the confluent hypergeometric function
that reduces to ez for the Gaussian case and to ez/2I0(z/2) for
the half-Gaussian case:

P
(2)
out [Y ] = 1

π (P + QL)
exp

{
− |Y |2

P + QL

}
, (36)

P
(1)
out [Y ] = 1

π
√

QL(2P + QL)
I0

( |Y |2P
QL(2P + QL)

)

× exp

{
− |Y |2(P + QL)

QL(2P + QL)

}
. (37)

Note that the result for P
(1)
out [Y ] in Ref. [14], see Eq. (38)

therein, for the half-Gaussian distribution is incorrect. We can
reproduce the general result of Eq. (27) by considering Eq. (37)
in the case QL � |Y |2 ∼ P . For the case, one can obtain

P
(1)
out [Y ] ≈ P

(1)
X [|Y |] (38)

with accuracy of the terms proportional to QL. The result
Eq. (38) coincides with Eq. (27).

III. OPTIMAL INPUT SIGNAL DISTRIBUTION
AT LARGE Rsn

The optimal input signal distribution at large Rsn can
be found calculating the mutual information Eq. (4) and
then maximizing the result with respect to the input signal
distribution function PX[X]. Let us start from the calculation
of the output signal entropy H [Y ], see Eq. (6), at large Rsn.

When the parameter Rsn � 1, we can substitute
PX[Y exp {−iγ |Y |2L}] instead of Pout[Y ] due to the rela-
tion (27)

H [Y ] = −
∫ 2π

0
dφ

∫ ∞

0
dρ ′ρ ′PX[ρ ′eiφ] log PX[ρ ′eiφ]. (39)

In order to obtain Eq. (39), we have performed the change of
the integration variable φ = φ(Y ) + γ |Y |2L. One can see that
the output signal entropy Eq. (39) coincides with the input
signal entropy H [X] up to terms proportional to QL.

The conditional entropy H [Y |X] can be calculated by
substitution of P [Y |X] in the form of Eq. (22) into Eq. (5).
After the substitution, we change the integration variables
DY ≡ dReYdImY to dx0dy0. Then we perform integration
over x0, y0 and obtain

H [Y |X] = 1 + log(πQL) + 1

2

∫ 2π

0
dφ(X)

×
∫ ∞

0
dρ ρ PX[ ρ eiφ(X)

] log

(
1 + γ 2L2

3
ρ4

)
,

(40)

where the first two terms in the right-hand side of the
equation come from the Gaussian-type integrals over DY in
the conditional entropy definition Eq. (5) and the normalization
factor πQL in Eq. (22). The third term in Eq. (40) comes from
the normalization factor

√
1 + μ2/3; see Eq. (22). Note that

there are no terms that are proportional to
√

QL in Eqs. (39)
and (40). Indeed, the integrals with the odd powers of x0 and
y0 vanish when integrating over x0, y0 in Eq. (5) for H [Y |X].

To find the optimal distribution P
opt
X [X] normalized to unity

and having a fixed average power P , one should solve the
variational problem for the functional J [PX,λ1,λ2],

J [PX,λ1,λ2] = H [Y ] − H [Y |X] − λ1

(∫
DXPX[X] − 1

)

− λ2

(∫
DXPX[X]|X|2 − P

)
, (41)

where λ1,2 are Lagrange multipliers. We substitute H [Y ] and
H [Y |X] from Eqs. (39) and (40) to Eq. (41), perform the
variation of the functional J [PX,λ1,λ2] over PX[X], λ1, λ2,
and write the Euler-Lagrange equations δJ [PX,λ1,λ2] = 0:∫

DXPX[X] = 1, (42)

∫
DXPX[X]|X|2 = P, (43)

−1− log PX[X]−1

2
log

(
1 + γ 2L2

3
|X|4

)
−λ1−λ2|X|2 = 0.

(44)

The solution P
opt
X [X] of Eqs. (42)–(44) referred to as the

“optimal” distribution depends only on |X| and has the form

P
opt
X [X] = N0(P )

exp{−λ0(P )|X|2}√
1 + γ 2L2|X|4/3

, (45)
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where functions N0(P ) and λ0(P ) are determined from the
conditions Eqs. (42) and (43):

∫
DXP

opt
X [X] = 2πN0(P )

∫ ∞

0

dρ ρ e−λ0(P )ρ2√
1 + γ 2L2ρ4/3

= 1,

(46)

∫
DXP

opt
X [X]|X|2 = 2πN0(P )

∫ ∞

0

dρ ρ3e−λ0(P )ρ2√
1 + γ 2L2ρ4/3

=P.

(47)

In a parametric form, this dependance reads

λ0(P ) = γL√
3

α, N0(P ) = γL

π
√

3 G(α)
, (48)

where G(α) = ∫ ∞
0 dz e−αz/

√
1 + z2 = π

2 [H0(α) − Y0(α)],
with Y0(α) and H0(α) being the Neumann and Struve
functions of zero order, respectively. The parameter α(P ) > 0
emerges as the real solution of the nonlinear equation
d
dα

log G(α) = −γLP/
√

3, which comes from Eqs. (46)
and (47). Let us emphasize that the optimal distribution
obtained here, P

opt
X [X] [Eq. (45)], is different from the

half-Gaussian distribution, see Eq. (33) for β = 1, whereas in
the Ref. [14] the half-Gaussian distribution was considered
as optimal. For sufficiently large values of the power P ,
such that log(γPL) � 1, we can simplify Eq. (48) using the
asymptotic expansions of Y0(α) and H0(α) at small α, see
Ref. [22]:

λ0(P ) ≈ 1 − log log(Cγ̃ )/ log(Cγ̃ )

P log(Cγ̃ )
,

N0(P ) ≈ γ̃

πP
log−1{Cγ̃ /[Pλ0(P )]}, (49)

where C = 2e−γE and γ̃ = γLP/
√

3. At small P , the param-
eter γ̃ � 1, the solution of Eqs. (46) and (47) has the form

λ0(P ) = 1

P
(1 − 2γ̃ 2), N0(P ) = 1

πP
(1 − γ̃ 2). (50)

2 1 0 1 2 3

0.2

0.4

0.6

0.8

1.

log10 γ̃

P
λ

0
(P

)

FIG. 1. The product Pλ0(P ) as the function of dimensionless
parameter γ̃ in the logarithmic scale. The solid black line corresponds
to the precise value of the product Pλ0(P ), see Eq. (48); the
red dashed-dotted line corresponds to the asymptotics Eq. (49) of
Pλ0(P ); the blue dashed line corresponds to the asymptotics Eq. (50)
of Pλ0(P ).

2 1 0 1 2 3
0

10

20

30

40

log10 γ̃

π
P

N
0
(P

)

FIG. 2. The product πPN0(P ) as the function of dimensionless
parameter γ̃ in the logarithmic scale. The solid black line corresponds
to precise value of the product πPN0(P ), see Eq. (48); the red dashed-
dotted line corresponds to the asymptotics Eq. (49) of πPN0(P ); the
blue dashed line corresponds to the asymptotics Eq. (50) of πPN0(P ).

It is worth noting that at γ̃ → 0, our distribution Eq. (45)
approaches the Gaussian distribution Eq. (34), which is known
to be optimal for the linear channel [1]. In Ref. [20], we found
the first correction to P

opt
X [X] proportional to QL. In Figs. 1

and 2, we demonstrate the behavior of the product Pλ0(P )
and πPN0(P ), correspondingly, together with the asymptotics
Eqs. (49) and (50) as the functions of dimensionless parameter
γ̃ .

IV. THE MUTUAL INFORMATION

Now we are ready to consider the mutual information for
different distributions. We start our consideration from the
mutual information for the optimal input signal distribution
P

opt
X [X].

To calculate the mutual information, we substitute Eq. (45)
for P

opt
X [X] in Eqs. (39) and (40) and using the definition

Eq. (4), we obtain

IP
opt
X [X] = Pλ0(P ) − log N0(P ) − log(πeQL). (51)

0 5 10 15 20

8.8

9.2

9.6

10

P [mW]

I P
[ X

][
n
a
t/

sy
m

b
.]

FIG. 3. The mutual information for various input PDFs as a
function of input average power P for the parameters Q = 1.5 ×
10−7 mW km−1, γ = 10−3 mW−1km−1, L = 1000 km. The solid
black line, blue dashed line, red dashed-dotted line correspond to
the optimal PDF P

opt
X [X], Gaussian PDF P

(2)
X [X], and half-Gaussian

PDF P
(1)
X [X], respectively.
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FIG. 4. The mutual information for various input PDFs as a
function of input average power P for the parameters Q = 1.5 ×
10−7 mW km−1, γ = 10−3 mW−1km−1, L = 1000 km. The solid
black line corresponds to I

P
opt
X

[X], see Eq. (51); the red dashed-dotted
line corresponds to the mutual information for the half-Gaussian
distribution I

P
(1)
X

[X], see Eq. (57) for β = 1; the red dashed line

corresponds to our limit Eq. (59) at γ̃ � 1 for the half-Gaussian
distribution; the black dotted line corresponds to the result [14], see
Eq. (10).

This equation gives the mutual information IP
opt
X [X] up to terms

proportional to QL.
The mutual information Eq. (51) is depicted by the black

solid line in Fig. 3 as a function of signal power P for
the following parameters: Q = 1.5 × 10−7 mW km−1, γ =
10−3 mW−1km−1, L = 1000 km. For these realistic parame-
ters, the power range Eq. (23) is actually very wide:

1.5 × 10−4 mW � P � 0.66 × 104 mW. (52)

There is no simple analytical form for N0(P ) and λ0(P );
therefore, to plot Figs. 3, 4, and 5 (see below), we calculated
λ0(P ) and N0(P ) numerically. For large and small values of
the parameter γ̃ we can use the solutions in Eqs. (49) and (50),
respectively. At small γ̃ = γLP/

√
3, we obtain

IP
opt
X [X] ≈ log(1 + Rsn) − γ̃ 2, (53)
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FIG. 5. Shannon capacity, the capacity of the nonlinear channel
I
P

opt
X

[X], and the asymptotic capacity bound Eq. (9) from Ref. [13] for

the parameters Q = 1.5 × 10−7 mW km−1, γ = 10−3 mW−1km−1,
L = 1000 km. The red dashed-dotted line corresponds to the Shannon
limit log[1 + Rsn], the black solid line corresponds to I

P
opt
X

[X], see
Eq. (51), the blue dashed line corresponds to the bound Eq. (9).

which is simply the Shannon capacity log (1 + Rsn) at large Rsn

of the linear channel Eq. (1) with the first nonlinear correction.
In Eq. (53), the unity in the logarithm is beyond the accuracy of
our calculation, but we keep it to bring to notice that the derived
Eqs. (40) and (53) have the correct limit when the parameter
γ tends to zero (in contrast to the Eq. (35) in Ref. [14]).
In the power subinterval (γL)−1 � P � (QL3γ 2)

−1
using

Eq. (49), one can obtain the following expression for the
mutual information:

IP
opt
X [X] = log log(CγLP/

√
3) − log(QL2γ e/

√
3)

+ 1

log(CγLP/
√

3)

[
log log(CγLP/

√
3) + 1

− log log(CγLP/
√

3)

log(CγLP/
√

3)

]
. (54)

This equation is obtained with the accuracy 1/ log2(γLP ).
One can see that the mutual information IP

opt
X [X] grows as

log log P .
In the remainder of this section, we perform an analysis

of the mutual information for the distribution P
(β)
X [X], see

Eq. (33), generalizing the half-Gaussian distribution Eq. (8)
(see, for example, Ref. [14]) and the Gaussian input PDF
Eq. (34). In the leading order in 1/Rsn from Eq. (39), we
obtain

Hβ[Y ] = log

[
P

2π

β
�

(
β

2

)]
+ β

2
+ 2 − β

2
ψ

(β

2

)
, (55)

where ψ(z) is the digamma function ψ(z) = �′(z)/�(z),
where ψ(1) = −γE and ψ(1/2) = −γE − 2 log(2). The sub-
stitution of Eq. (33) into Eq. (40) gives

Hβ[Y |X] =
∫ ∞

0
dτ

e−τ τ
β

2 −1

2�
(

β

2

) log

(
1 + 4γ̃ 2τ 2

β2

)

+ log
(
πeQL

)
. (56)

The integral in Eq. (56) can be calculated analytically using
Ref. [22]; however, the result of the integration is cumbersome,
hence we do not present it here. One can easily obtain
the mutual information I

P
(β)
X [X] by subtracting Eq. (56) from

Eq. (55):

I
P

(β)
X

[X] = log Rsn + log

[
2�(β/2)

β

]

−
∫ ∞

0
dτ

e−τ τ
β

2 −1

2�
(

β

2

) log

(
1 + 4γ̃ 2τ 2

β2

)

+ β − 2

2

[
1 − ψ

(
β

2

)]
. (57)

The mutual information is depicted in Fig. 3 for the
Gaussian distribution by the blue dashed line and for the
half-Gaussian by the red dashed dotted line. One can see
that at small P the mutual information for the Gaussian
distribution is greater than that of the half-Gaussian, whereas
at P > 11 mW the mutual information is greater for the
half-Gaussian distribution. Note that IP

opt
X [X] is greater than

062133-7



TEREKHOV, REZNICHENKO, KHARKOV, AND TURITSYN PHYSICAL REVIEW E 95, 062133 (2017)

I
P

(β)
X [X] for all values of P , as it should be. At γ̃ � 1, the

mutual information I
P

(β)
X [X] takes the form

I
P

(β)
X [X] = − log(QL2γ ) − 2 − β

2
+ log 3

2

− β

2
ψ

(
β

2

)
+ log[�(β/2)]. (58)

One can see that at large Rsn, I
P

(β)
X [X] goes to a constant in

the interval of power P considered, and this constant depends
on the noise power QL. We remind that IP

opt
X [X] increases

as log log P in the interval under consideration. The mutual
information for the half-Gaussian distribution Eq. (8) in the
regime γ̃ � 1 can be obtained as a particular case of Eq. (58)
for β = 1:

I
P

(1)
X [X] = − log(QL2γ ) + log 3π − 1 + γE

2
+ log 2. (59)

Comparing our Eq. (59) with the result Eq. (40) of Ref. [14], we
have an extra term + log 2 due to our more accurate calculation
of H [Y |X]. Our result Eq. (59) and the result of Ref. [14], see
Eq. (10), are presented in Fig. 4. In Fig. 4, one can see that
the mutual information Eq. (51) for the optimal distribution
exceeds the limit Eq. (59) at P ∼ 190 mW. At this power the
difference between the limit Eq. (59) and I

P
(1)
X [X] evaluated on

the base of Eq. (57) with β = 1 is of order of 1.5% and getting
smaller at higher P . Also, the capacity bound from Ref. [14],
see Eq. (10) therein, is plotted by the black dotted line in Fig. 4.

Since we have now found P
opt
X [X] in the power range

Eq. (23), we can calculate an approximation for the capacity
of the considered per-sample nonlinear channel. By definition
it coincides with the mutual information Eq. (51):

C = IP
opt
X [X]. (60)

Let us emphasize that this result for the capacity is valid up
to terms proportional to QL. The correction to the capacity
proportional to QL can be found in Ref. [20].

The comparison of the approximation Eq. (60) with
the Shannon capacity of the linear channel with Gaussian
noise and with the asymptotic capacity bound Eq. (9) from
Ref. [13] is presented in Fig. 5. One can see that the Shannon
capacity of the linear channel with Gaussian noise is always
greater than the approximation Eq. (60) for the nondispersive
nonlinear fiber channel for the considered range of P . But the
approximation Eq. (60) is greater than the asymptotic capacity
bound Eq. (9) in the intermediate power range Eq. (23).

V. CONCLUSION

We have developed a new approach to the calculation of the
conditional PDF via the path-integral representation Eq. (14)
at large signal-to-noise ratio for the intermediate power range
Eq. (23). This approach may be an especially useful technique
for complex nonlinear channels in which the calculation of
the conditional PDF is technically challenging. Applying
our method to the per-sample nondispersive nonlinear fiber
channel, we derived the compact analytical expressions for the
conditional PDF, conditional entropy, and the entropy of the
output signal for different input signal PDFs PX[X]. Moreover,

we solved the variational problem on PX[X], maximizing
the mutual information in the leading order in the noise
power QL in the power range Eq. (23). It allows us to
find the optimal input signal distribution Eq. (45) and the
approximation for the channel capacity Eq. (51) in the power
interval QL � P � (γ 2QL3)−1, which is extremely wide
for realistic parameters; see Eq. (52). The found distribution
P

opt
X [X] is different from the half-Gaussian one, and at the zero

nonlinearity P
opt
X [X] approaches the Gaussian distribution.

We demonstrated that the capacity in the power subinterval
(γL)−1 � P � (QL3γ 2)

−1
grows as log log P rather than

has constant behavior obtained in Ref. [14]. In that subinterval,
the found capacity is greater than the bound Eq. (9) obtained
in Ref. [13] and lower than the Shannon capacity of the linear
channel with the Gaussian noise.
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APPENDIX A: THE CLASSICAL SOLUTION
�cl AND THE ACTION S[�cl]

In Ref. [17] we have shown that in the case Rsn = P/QL �
1 the conditional probability can be written in the form

P [Y |X] = exp

{
−S[�cl(z)]

Q

} ∫ ψ(L)=0

ψ(0)=0
Dψ

× exp

{
−S[�cl(z) + ψ(z)] − S[�cl(z)]

Q

}
,

(A1)

where for the nondispersive model the effective action reads

S[ψ] =
∫ L

0
dz|∂zψ − iγ |ψ |2ψ |2. (A2)

The action Eq. (A2) is associated with the left-hand side of the
nonlinear Shrödinger equation,

∂zψ(z) − iγ |ψ(z)|2ψ(z) = η(z), (A3)

where the noise η(z) has the Gaussian nature:

〈η(z)〉η = 0, 〈η(z)η̄(z′)〉η = Qδ(z − z′). (A4)

The measure Dψ in Eq. (A1) is defined as

Dψ = lim
→0

( 1

πQ

)N
N−1∏
i=1

dReψi dImψi, (A5)

where ψi = ψ(zi) and  = L
N

is the grid space.

062133-8



LOG-LOG GROWTH OF CHANNEL CAPACITY FOR . . . PHYSICAL REVIEW E 95, 062133 (2017)

Now we consider the difference of actions in the exponent
of the path-integral in Eq. (A1):

S[�cl(z) + ψ(z)] − S[�cl(z)]

=
∫ L

0
dz

(∣∣∂zψ − iγ
(
2ψ |�cl|2 + ψ̄�2

cl

)∣∣2

+ 2γ Im[(∂z�̄cl + iγ �̄cl|�cl|2)(2�cl|ψ |2 + �̄clψ
2)]

+ γ 2|2�cl|ψ |2 + �̄clψ
2 + ψ |ψ |2|2

+ 2γ Im
{[

∂zψ̄ + iγ
(
2ψ̄ |�cl|2 + ψ�̄2

cl

)]
× (2�cl|ψ |2 + �̄clψ

2 + ψ |ψ |2)
}

+ 2γ Im
[
(∂z�̄cl + iγ �̄cl|�cl|2)ψ |ψ |2]). (A6)

In Eq. (A1), the function �cl(z) is the solution of the equation
δS[�cl] = 0 (Euler-Lagrange equation), which has the form

d2�cl

dz2
− 4iγ |�cl|2 d�cl

dz
− 3γ 2|�cl|4�cl = 0, (A7)

with boundary conditions �cl(0) = X = |X| exp[iφ(X)],
�cl(L) = Y = |Y | exp[iφ(Y )]. It is easy to find the solution of
Eq. (A7) in the polar coordinate system: �cl(z) = ρ(ζ )eiθ(ζ ),
ζ = z/L. The solution depends on four real integration
constants. We denote them as E, μ̃, ζ0, and θ0. There are
two different regimes of the solution: in the trigonometric
regime one has E = k2

2 � 0, and in the hyperbolic regime

E = − k2

2 � 0. For both cases instead of E we introduce the
nonnegative parameter k = √

2|E|.
In the trigonometric case (E = k2

2 � 0), we have the
solution for μ̃ � k � 0:

ρ2(ζ ) = 1

2Lγ
{μ̃ +

√
μ̃2 − k2 cos[2k(ζ − ζ0)]},

θ (ζ ) = μ̃

2
(ζ − ζ0) +

√
μ̃2 − k2

sin[2k(ζ − ζ0)]

4k

+ arctan

{
(μ̃ −

√
μ̃2 − k2)

tan[k(ζ − ζ0)]

k

}
+ θ0.

(A8)

Here the integration constants μ̃, k, and ζ0 must be found from
the boundary conditions:

|X|2 = ρ2(0) = μ̃ +
√

μ̃2 − k2 cos[2kζ0]

2Lγ
, (A9)

|Y |2 = ρ2(1) = μ̃ +
√

μ̃2 − k2 cos[2k(1 − ζ0)]

2Lγ
,

(A10)

φ(X) = θ (0) = − μ̃

2
ζ0 −

√
μ̃2 − k2

sin[2kζ0]

4k

− arctan

{
(μ̃ −

√
μ̃2 − k2)

tan[kζ0]

k

}
+ θ0,

(A11)

φ(Y ) = θ (1) = μ̃

2
(1 − ζ0) +

√
μ̃2 − k2

sin[2k(1 − ζ0)]

4k

+ arctan

{
(μ̃ −

√
μ̃2 − k2)

tan[k(1 − ζ0)]

k

}
+ θ0.

(A12)

Then one can find the action

S[�cl(z; E = k2

2
,μ̃,ζ0,θ0)]

= k2

2γL

{
μ̃ −

√
μ̃2 − k2

× sin[2k(1 − ζ0)] + sin[2kζ0]

2k

}
. (A13)

In the hyperbolic case (E = − k2

2 � 0), we have the solution
for k � 0 and arbitrary μ̃ in the following form:

ρ2(ζ ) = −μ̃ +
√

μ̃2 + k2 cosh[2k(ζ − ζ0)]

2Lγ
,

θ (ζ ) = − μ̃

2
(ζ − ζ0) +

√
μ̃2 + k2

sinh[2k(ζ − ζ0)]

4k

− arctan

{
(μ̃ +

√
μ̃2 + k2)

tanh[k(ζ − ζ0)]

k

}
+ θ0,

(A14)

where μ̃, k, ζ0, and θ0 are derived from the same procedure as
in the trigonometric regime. The action reads

S
[
�cl

(
z; E = −k2

2
,μ̃,ζ0,θ0

)]

= k2

2γL

{
μ̃ +

√
μ̃2 + k2

× sinh[2k(1 − ζ0)] + sinh[2kζ0]

2k

}
. (A15)

Note, there are two solutions of Eq. (A7) with constant
ρ(z) = ρ(0) ≡ ρ obeying only the input boundary condition
�0(0) = X. The first one reads

�0(z) = ρ exp
{
iμ

z

L
+ iφ(X)

}
, (A16)

where μ = γLρ2 = γL|X|2. This function corresponds to
the solution representation Eq. (A8) with k = 0 and μ̃ = μ

or to the solution representation Eq. (A14) with k = 0 and
μ̃ = −μ. The function �0(z) is the solution of the Eq. (A3)
with zero noise and with the input boundary condition.
Furthermore, �0(z) delivers the absolute minimum of the
action Eq. (A2): S[�0(z)] = 0. The second solution of
Eq. (A7) with constant ρ(z) is the trigonometric regime
Eq. (A8) case with μ̃ = k = 2μ:

�ρ=const(z) = ρ exp
{

3i μ
z

L
+ iφ(X)

}
,

μ = γLρ2 = γL|X|2. (A17)

To find the solution of Eq. (A7), one should express the
integration constant through the boundary conditions. Instead,
we exploit the fact that the noise power QL is much less than
the input signal power. In other words, we will find a solution
of Eq. (A7) that is close to �0(z): it is the solution of Eq. (A3)
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with zero noise, which provides the absolute minimum of
the action S[�0(z)] = 0. In that fashion, we perform the
substitution in Eq. (A7):

�cl(z) = [ρ + �(z)] exp
{
iμ

z

L
+ iφ(X)

}
, (A18)

where the function �(z) is assumed to be small: �(z) � ρ

for all configurations of �cl(z) providingS[�cl(z)]/Q=O(1)
when QL tends to zero. We have the following equation on
�(z) resulting from the Eq. (A7):

d2�

dz2
− 2i

μ

L

d�

dz
− 4

μ2

L2
Re[�] = 4i

μ

Lρ
(� + �̄)

d �

dz
+ μ2

L2ρ
[5�2 + 10|�|2 + 3�̄2] + |�|2μ

L2ρ2

[
4iL

d�

dz
+ 9μ�̄ + 14μ�

]

+ 3μ2

L2ρ2
�3 + 3μ2

L2ρ3
|�|2[3|�|2 + 2�2] + 3μ2

L2ρ4
|�|4�. (A19)

We present �(z) as a perturbation theory decomposition in powers of 1/
√

Rsn: �(z) = �1(z) + �2(z) + . . ., where �1(z) is of
1/

√
Rsn order and provides the leading order contribution, �2(z) is of 1/Rsn order, and so on.

The linearized equation for the function �1(z) = x1(z) + iy1(z) can be obtained from Eq. (A19) by omitting the right-hand
side of this equation:

d2�1

dz2
− 2i

μ

L

d�1

dz
− 4

μ2

L2
Re[�1] = 0. (A20)

The boundary conditions �cl(0) = X and �cl(1) = Y ≡ ρ ′eiφ(Y )
lead to

�1(0) = 0, �1(L) = x0 + iy0 = ρ ′ei(φ(Y )−φ(X)−μ) − ρ. (A21)

The solution �1(z) = x1(z) + iy1(z) of the linearized boundary problem Eqs. (A20) and (A21) is polynomial

x1(z) =
[
−μa1(X,Y )

z

L
+ a2(X,Y )

]
z

L
, y1(z) =

[
−2

3
μ2a1(X,Y )

z2

L2
+ μa2(X,Y )

z

L
+ a1(X,Y )

]
z

L
, (A22)

where coefficients a1(X,Y ) and a2(X,Y ) can be found from the boundary conditions Eq. (A21) and have the form

a1(X,Y ) = −μx0 + y0

1 + μ2/3
, a2(X,Y ) = (1 − 2μ2/3)x0 + μy0

1 + μ2/3
, (A23)

with x0 = x0(X,Y ) and y0 = y0(X,Y ) being determined from Eq. (A21). In the leading in
√

QL order, the action reads

1

Q
S[�0(z) + �1(z)eiμ z

L
+iφ(X)

] ≈ 1

Q

∫ L

0
dz

[∣∣∣∣∂z�1 − 2i
μ

L
Re[�1]

∣∣∣∣
2]

= (1 + 4μ2/3)a2
1 − 2μa1a2 + a2

2

QL
= (1 + 4μ2/3)x2

0 − 2μx0y0 + y2
0

QL(1 + μ2/3)
. (A24)

Let us proceed to the next-to-leading order corrections to P [Y |X]. We should calculate the next approximation �2(z) to the
solution Eq. (A18). Taking into account Eq. (A20), we present the equation for �2(z) in the form

d2�2

dz2
− 2i

μ

L

d�2

dz
− 4

μ2

L2
Re[�2] = 4i

μ

Lρ
(�1 + �̄1)

d �1

dz
+ μ2

L2ρ

[
5�2

1 + 10|�1|2 + 3�̄1
2
]
, (A25)

where the boundary conditions for �2(z) read �2(0) = �2(L) = 0. The solution �2(z) = x2(z) + iy2(z) of Eq. (A25) is polynomial
in z and quadratic in x0 and y0:

x2(z) = − μ/ρ

270(1 + μ2/3)3

(
1 − z

L

) z

L

{
μ(2μ4 − 15μ2 + 585)x2

0 + 2[13μ2(μ2 + 15) − 180]x0y0 + μ(2μ2 + 15)(5μ2 − 9)y2
0

− 5(μ2 + 3)
z

L

[
μ(μ2 − 15)x2

0 − 4(μ2 − 6)x0y0 + μ(μ2 + 9)y2
0

] + 5μ(μ2 + 3)
z2

L2

[
3(5μ2 − 3)x2

0 − 36μx0y0

− (μ2 − 15)y2
0

] + 20μ2(μ2 + 3)
z3

L3
(y0 − μx0)[2μy0 − (μ2 − 3)x0] − 20μ3(μ2 + 3)

z4

L4
(y0 − μx0)2

}
. (A26)

y2(z) = − μ/ρ

270(1 + μ2/3)3

(
1 − z

L

) z

L

{
(7μ4 − 75μ2 + 360)x2

0 + 6μ(μ2 + 75)x0y0 + 3μ2(5μ2 + 39)y2
0

+ 2
z

L

[
(μ6 − 4μ4 + 255μ2 + 180)x2

0 + μ(μ2 + 15)(13μ2 + 3)x0y0 + μ2(5μ4 + 36μ2 − 9)y2
0

]

− 14μ(μ2 + 3)
z2

L2
(y0 − μx0)[(15 − 4μ2)x0 + 9μy0] + 84μ2(μ2 + 3)

z3

L3
(y0 − μx0)2

}
. (A27)
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In the leading, see Eq. (A24), and next-to-leading order in
√

QL, the action reads

1

Q
S[�cl(z)] ≈ (1 + 4μ2/3)x2

0 − 2μx0y0 + y2
0

QL(1 + μ2/3)
+ μ/ρ

135QL(1 + μ2/3)3

[
μ(4μ4 + 15μ2 + 225)x3

0

+ (23μ4 + 255μ2 − 90)x2
0y0 + μ(20μ4 + 117μ2 − 45)x0y

2
0 − 3(5μ4 + 33μ2 + 30)y3

0

]
. (A28)

APPENDIX B: THE PATH-INTEGRAL CALCULATION

To calculate the conditional probability density P [Y |X] in Eq. (A1), one should find the pre-exponent path-integral, referred
to as the quantum corrections near the classical solution �cl(z), in the leading and next-to-leading order in 1/

√
Rsn:

IQC[�cl(z)] =
∫ ψ(L)=0

ψ(0)=0
Dψ e

− S[�cl(z)+ψ(z)]−S[�cl(z)]
Q . (B1)

In what follows, we are interested in the leading and next-to-leading order corrections for the path-integral Eq. (A1). That is
why we retain only quadratic in ψ terms in Eq. (A6). All these terms are placed in the second line of Eq. (A6). As it will be
demonstrated below an extra power of ψ results in an extra power of

√
QL. In the leading and next-to-leading order calculation

of the path-integral, we should take into account the first correction (�1(z) ∝ √
QL) to the solution �cl(z); see Eqs. (A18)

and (A22). Now we put Eq. (A18) with �1(z) and ψ(z) in the form ψ(z) = u(z) exp [iμ z
L

+ iφ(X)] into the second and third lines
of Eq. (A6). In our approximation we obtain

S[�cl(z) + ψ(z)] − S[�cl(z)] ≈
∫ L

0
dz

(∣∣∣∂zu − i
μ

L
(u + ū)

∣∣∣2
+ 2

μ

Lρ
Im

{
2
[
∂zū + i

μ

L
(u + ū)

]
[u(�1 + �̄1) + ū�1]

+
[
∂z�̄1 + i

μ

L
(�1 + �̄1)

]
(2|u|2 + u2)

})
. (B2)

We substitute this difference in the exponent in Eq. (B1). Then we expand the exponent at small Q and obtain the following
expression within the accuracy of terms proportional to QL:

exp

{
−S[�cl(z) + ψ(z)] − S[�cl(z)]

Q

}
≈ exp

{
− 1

Q

∫ L

0
dz

∣∣∣∂zu − i
μ

L
(u + ū)

∣∣∣2}(
1 − 2μ

QLρ
Im

∫ L

0
dz

{
2
[
∂zū + i

μ

L
(u + ū)

]

× [u(�1 + �̄1) + ū�1] +
[
∂z�̄1 + i

μ

L
(�1 + �̄1)

](
2|u|2 + u2

)})
. (B3)

Here we imply that any extra power of u or � is suppressed by the multiplicative parameter
√

QL, because at small Q the main
contribution to the path-integral comes from u ∼ √

QL. We substitute this expansion Eq. (B3) into the path-integral Eq. (B1)
and change the variable from ψ(z) to u(z) and arrive at

IQC[�0(z)] =
∫ u(L)=0

u(0)=0
Du e

−
∫ L
0 dz|∂zu−i

μ
L

(u+ū)|2
Q

(
1 − 4μ

QLρ
Im

∫ L

0
dz

{[
∂z�̄1 + i

μ

L
(�1 + �̄1)

](
|u|2 + u2

2

)

+
[
∂zū + i

μ

L
(u + ū)

]
[u(�1 + �̄1) + ū�1]

})
. (B4)

To calculate the leading and next-to-leading order contributions to IQC[�0(z)] in
√

QL, we should take the first and the second
terms in the parentheses in Eq. (B4), respectively. We start our consideration from the leading order. In this case we represent
the path-integral

I
(0)
QC[�0(z)] =

∫ u(L)=0

u(0)=0
Du e

−
∫ L
0 dz

∣∣
∂zu−i

μ
L

(u+ū)

∣∣2

Q (B5)

in the retarded discretization scheme:

I
(0)
QC[�0(z)] = lim

N→∞

(
N

πQL

)N ∫ ∞

−∞

N−1∏
i=1

du
(1)
i du

(2)
i exp

{
− N

QL

N−1∑
i=0

[(
u

(1)
i+1 − u

(1)
i

)2 + (
u

(2)
i+1 − u

(2)
i − 2

μ

N
u

(1)
i

)2
]}

, (B6)

where we use the measure Eq. (A5) and the notations u(zj ) = u
(1)
j + iu

(2)
j , zi = i,  = L

N
, and u

(1)
0 = u

(1)
N+1 = u

(2)
0 = u

(2)
N+1 = 0.

The sequential integration over u
(2)
N−1, u

(2)
N−2, . . ., u

(2)
1 is trivial:∫

dY exp

[
− (A − Y )2

2τ1
− (Y − B)2

2τ2

]
=

(
2π

τ1τ2

τ1 + τ2

)1/2

exp

[
− (A − B)2

2(τ1 + τ2)

]
. (B7)
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It leads to the remaining integral (over u
(1)
i , i = 1, . . . ,N − 1) of the form

limN→∞

(
N

πQL

)N (πQL/N)
N−1

2√
N

∫ ∞

−∞

N−1∏
i=1

du
(1)
i e

− N
QL

∑N−1
i,j=1 u

(1)
i Mi,j (α)u(1)

j , (B8)

where we denote α = 4
N

( μ

N
)
2
, and the (N − 1) by (N − 1) matrix M(α) has the following elements: Mi,i = 2 + α, Mi,i±1 =

−1 + α, i = 1, . . . ,N − 1, Mi,j = α, j �= i,j �= i ± 1. It is straightforward to calculate the determinant of M(α) and hence to
perform the Gaussian integration over u

(1)
i ,

det[M(α)] = N + α
N2(N2 − 1)

12
, (B9)

I
(0)
QC[�0(z)] = 1

πQL
√

1 + μ2/3
. (B10)

To calculate the next-to-leading order contribution in
√

QL to the path-integral Eq. (B4), we should take the second term in
the parentheses in Eq. (B4). To find this correction we should calculate the integral (the correlator):

〈u(α)(z)u(β)(z′)〉 ≡ QLGα, β(z,z′) ≡ 1

I
(0)
QC[�0(z)]

∫ u(L)=0

u(0)=0
Du e

− 1
Q

∫ L

0 dz|∂zu−i
μ

L
(u+ū)|2

u(α)(z)u(β)(z′), (B11)

where we have introduced the dimensionless Green matrix Gα, β(z,z′), α, β = 1, 2. The standard method for the Green matrix
calculation is the calculation of the generating functional [18]:

Z[J1,J2] =
∫ u(L)=0

u(0)=0
Du exp

{
− 1

Q

∫ L

0
dz

∣∣∣∂zu − i
μ

L
(u + ū)

∣∣∣2
+

∫ L

0
dz

[
J1(z)u(1)(z) + J2(z)u(2)(z)

]}
, (B12)

then any correlator can be derived from the variation of the Z[J1,J2] over Jα , for example,

〈u(α)(z)u(β)(z′)〉 = QLGα, β(z,z′) = 1

Z[J1,J2]

δZ[J1,J2]

δJα(z)δJβ(z′)

∣∣∣
J1=0, J2=0

. (B13)

The calculation of the generating functional can be performed in the same way as the calculation of the normalization integral
Eq. (B6): the integration over u

(2)
j followed by the integration over u

(1)
j . The only new element in the calculation of the Gaussian

integrals with the sources Jα is the inverse matrix M(α)−1
i,j for M(α)i,j = α + 2δi,j − δi,j+1 − δi+1,j defined herein above; see

the text after Eq. (B8). The calculation is simple (after the observation that det[M(α)]M(α)−1
i,j is linear in α), and we only present

the result

M(α)−1
i,j = N

{
− αN4

4 det[M(α)]

i

N

(
1 − i

N

)
j

N

(
1 − j

N

)
+ i

N

(
1 − j

N

)
θ (i � j ) + j

N

(
1 − i

N

)
θ (i > j )

}
, (B14)

where det[M(α)] is given by Eq. (B9), and limN→∞ (αN4/{4 det[M(α)]}) = 3μ2/(3 + μ2). We present the result of the generating
functional calculation in the form of a Green matrix convolution with the sources Jα:

Z[J1,J2] = e
QL

2

∫ L

0 dz
∫ L

0 dz′Jα (z)Gα,β (z,z′)Jβ (z′)

πQL
√

1 + μ2/3
, (B15)

where the Green matrix is Hermitian and it has the following elements:

G1, 1(z,z′) = G1, 1(z′,z) =
[
θ (z′ − z)

z

2L

(
1 − z′

L

)
− 3μ2

4(3 + μ2)

(
1 − z

L

)(
1 − z′

L

)
zz′

L2

]
+ {z ↔ z′}, (B16)

G1, 2(z,z′) = G2, 1(z′,z) = μ

2(3 + μ2)

(
θ (z − z′)

z′

L

(
1 − z

L

){
3
z′

L
− 3

z

L
+ z′

L
μ2

[
1 + z

L

(
2
z′

L
− 3

)]}

+ θ (z′ − z)
z

L

(
1 − z′

L

){
3
z′

L
− 3

z

L
+

(z′

L
− 1

)
μ2

[ z

L
+ 2

z′

L

( z

L
− 1

)]})
, (B17)

G2, 2(z,z′) = G2, 2(z′,z) =
{

θ (z − z′)
6(3 + μ2)

(
1 − z

L

)
z′

L

[
9 + 3μ2

(
1 + z

L
− 2

z2

L2
+ 3

zz′

L2
− 2

z′2

L2

)

+ 2μ4 z′

L

(
z

L
− 1

)(
z′

L
− 3

z

L
+ 2

zz′

L2

)]}
+ {z ↔ z′}. (B18)
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The second way to obtain the expression for the correlator Eq. (B11) and Eqs. (B16)–(B18) reflects the fact that the Gaussian
integral Eq. (B12) is saturated in the vicinity of the saddle-point solution of the equation of motion (i.e., the Euler-Lagrange
equation for the action in question) [19]. Thus, to find it we should solve the set of equations

K̂α,γ Gγ,β(z,z′) = 1

L
δβ
α δ(z − z′), (B19)

where the matrix differentiation operator K̂ for the functions u(z = 0) = u(z = L) = 0 is defined as

− 1

Q

∫ L

0
dz

∣∣∣∂zu − i
μ

L
(u + ū)

∣∣∣2
= − 1

2Q

∫ L

0
dzu(α)(z)K̂α,βu(β)(z), (B20)

and it has the form

K̂ = 2

(
−∂2

z + 4μ2

L2 , −2μ

L
∂z

2μ

L
∂z, −∂2

z

)
. (B21)

The boundary conditions for Eqs. (B19) are as follows: Gα,β (z = 0,z′) = Gα,β (z = L,z′) = 0. The problem has the unambiguous
solution (B16)–(B18). Note that the homogeneous solution of the Eq. (B19) is governed by the solutions of Eq. (A20) obtained
above.

Using the correlator Eq. (B11) with Eqs. (B16)–(B18), one can easily calculate the first correction presented in Eq. (B4). This
term is proportional to �1(z) ∝ √

QL, hence delivering the leading correction to the leading term Eq. (B10). The subsequent
integration of the elements Eqs. (B16)–(B18) with the solution Eq. (A22) for �1(z) is trivial; however, the proper way to
understand the discontinuous derivatives of the Green matrix elements Eqs. (B16)–(B18) at the same point z′ = z is the retarded
scheme adopted in our approach [17]: ∂zG

α,β (z,z′)|z′=z → ∂zG
α,β (z + 0,z′)|z′=z. Finally, we have

IQC[�0(z)] = 1

πQL
√

1 + μ2/3

{
1 − μ/ρ

15(1 + μ2/3)2

[
μ(15 + μ2)x0 − 2(5 − μ2/3)y0

]}
. (B22)

This result is obtained with the accuracy of the terms proportional to QL. In Ref. [20], we found these corrections to the
path-integral contribution as well.

Finally, from Eq. (A28) for the exponent factor and from Eq. (B22) for the pre-exponent factor, we arrive at the expression

P [Y |X] =
exp

[
− (1+4μ2/3)x2

0 −2μx0y0+y2
0

QL(1+μ2/3)

]
πQL

√
1 + μ2/3

{
1 − μ/ρ

15(1 + μ2/3)2
[μ(15 + μ2)x0 − 2(5 − μ2/3)y0]

− μ/ρ

135QL
(
1 + μ2/3

)3

[
μ(4μ4 + 15μ2 + 225)x3

0 + (23μ4 + 255μ2 − 90)x2
0y0 + μ(20μ4 + 117μ2 − 45)x0y

2
0

− 3
(
5μ4 + 33μ2 + 30

)
y3

0

]}
. (B23)

Now it is easy to show that the normalization condition∫
DYP [Y |X] = 1 (B24)

is fulfilled.

APPENDIX C: CALCULATION OF Pout[Y ]

Let us consider the integral Pout[Y ] = ∫
DXPX[X]P [Y |X]. In our case, the measure DX = dxdy, where x = Re{X},

y = Im{X}, so we should consider the integral ∫ ∞

−∞
dxdyPX[x,y]P [Y |X]. (C1)

In the integral, the scale of variation of the function PX[x,y] is P � QL. The scale of variation of the function P [Y |X] is
QL, and this function has the form Eq. (22); therefore, we can use Laplace’s method. To demonstrate that one can see that the
function P [Y |X] depends on |X|, x0 = Re[X̄(Ye−iμ − X)/|X|], y0 = Im[X̄(Ye−iμ − X)/|X|], and reaches the maximal value
at the point x0 = y0 = 0. Let us change the integration variables x, y to η1, η2, where η = η1 + iη2 = (Xeiμ − Y )e−iφ(Y )

. Here,
φ(Y ) is the phase of the Y . The inverse transformation reads X = (η + |Y |)e−iγL|η+|Y ||2+iφ(Y )

. In the new variables, the function
P [Y |X] reaches maximum at the point η1 = η2 = 0. The integral Eq. (C1) takes the following form:∫ ∞

−∞
dη1dη2P [Y |X]PX

[
Re

[
(η + |Y |)e−iγL|η+|Y ||2+iφ(Y )]

, Im
[
(η + |Y |)e−iγL|η+|Y ||2+iφ(Y )]]

, (C2)
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where we have used the fact that the Jacobian determinant for the variables transformation is equal to unity. Since P [Y |X]
reaches its maximum at the point η = 0, we can expand the functions PX[X] and P [Y |X] in the vicinity of the point:

PX

{
Re

[
(η + |Y |)e−iγL|η+|Y ||2+iφ(Y )]

, Im
[
(η + |Y |)e−iγL|η+|Y ||2+iφ(Y )]}

≈ {PX[Re(Ye−iμ̃), Im(Ye−iμ̃)] + terms proportional to η + . . .}, (C3)

P [Y |X] ≈ 1

πQL
√

1 + μ̃2/3
exp

[
− (1 + 4μ̃2/3)η2

1 − 2μ̃η1η2 + η2
2

QL(1 + μ̃2/3)

](
1 + terms proportional to η and

η3

QL

)
, (C4)

where we have used the fact that in the vicinity of the point η = 0 we have x0 = −η1 and y0 = −η2 up to higher powers of η. In
Eqs. (C3) and (C4), we have the parameter μ̃ = γL|Y |2.

One can see that at large μ̃ the exponent contains three different terms:

(1 + 4μ̃2/3)η2
1 − 2μ̃η1η2 + η2

2

QL(1 + μ̃2/3)
≈ 4η2

1

QL
− 6

η1η2

QLμ̃
+ 3η2

2 − 9η2
1

QLμ̃2
. (C5)

Therefore, to use Laplace’s method we have to transform our quadratic form,

(η1,η2)A(η1,η2)T = (1 + 4μ̃2/3)η2
1 − 2μ̃η1η2 + η2

2

QL(1 + μ̃2/3)
, (C6)

to the canonical form. The matrix of quadratic form is

A = 1

QL
(
1 + μ̃2/3

)(
1 + 4μ̃2

3 −μ̃

−μ̃ 1

)
. (C7)

The eigenvalues of the matrix A are

λ1 = 1

QL

(
1 + μ̃

μ̃ +
√

9 + 4μ̃2

3 + μ̃2

)
, (C8)

λ2 = 1

QL

(
1 + μ̃

μ̃ −
√

9 + 4μ̃2

3 + μ̃2

)
. (C9)

One can see that λ1,2 > 0, and at large μ̃ they have the form

λ1 ≈ 4

QL
, λ2 ≈ 3

4QLμ̃2
. (C10)

Therefore, at large μ ≈ μ̃ there are two parameters in the Laplace integral, one parameter is 1/QL, the other is 1/(QLμ̃2). To
use Laplace’s method for the integral Eq. (C1), we have to impose two conditions, P � QL and P � QLμ̃2. These conditions
lead to the two dimensionless parameters for Laplace’s method:

Rsn � 1, (C11)

(γ 2QL3P )−1 � 1. (C12)

To calculate the integral Eq. (C2) in the leading order in the parameters 1/Rsn and (γ 2QL3P ), we substitute the first term of the
expansion Eq. (C3) and the first term in the brackets of the expansion Eq. (C4) to the integral Eq. (C1). After straightforward
calculation, we obtain

PX

[
Re

(
Ye−iγL|Y |2), Im

(
Ye−iγL|Y |2)] ∫ ∞

−∞
dη1dη2P [Y |X] ≈ PX

[
Ye−iγL|Y |2]. (C13)

To calculate corrections to the integral in parameters 1/Rsn and γ 2QL3P , we should take terms that are proportional to η and η3

in the product of expansions Eqs. (C3) and (C4). Formally, the first correction to the integral should be of order of 1/
√

Rsn and√
γ 2QL3P , but it is zero due to the symmetry η → −η (the exponent contains only even combination of η). Therefore, up to

terms proportional to QL the result for the integral Eq. (C1) has the form∫ ∞

−∞
dxdyPX[x,y]P [Y |X] ≈ PX

[
Ye−iγL|Y |2]. (C14)
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