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Einstein relation and hydrodynamics of nonequilibrium mass transport processes
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We derive hydrodynamics of paradigmatic conserved-mass transport processes on a ring. The systems, governed
by chipping, diffusion, and coalescence of masses, eventually reach a nonequilibrium steady state, having
nontrivial correlations, with steady-state measures in most cases not known. In these processes, we analytically
calculate two transport coefficients, bulk-diffusion coefficient and conductivity. Remarkably, the two transport
coefficients obey an equilibrium-like Einstein relation even when the microscopic dynamics violates detailed
balance and systems are far from equilibrium. Moreover, we show, using a macroscopic fluctuation theory, that
the probability of large deviation in density, obtained from the above hydrodynamics, is in complete agreement
with the same derived earlier by Das et al. [Phys. Rev. E 93, 062135 (2016)] using an additivity property.
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I. INTRODUCTION

The Einstein relation (ER) [1], also known as the Einstein-
Smoluchowski relation, is a celebrated equality in equilib-
rium physics. It connects, quite unexpectedly, two seem-
ingly unrelated transport coefficients, bulk-diffusion coeffi-
cient D(ρ) and conductivity χ (ρ), as D(ρ) = χ (ρ)/σ 2

eq(ρ),
where σ 2

eq(ρ) = limv→∞(〈n2
v〉eq − 〈nv〉2

eq)/v is scaled variance
of particle number nv in a subvolume v (subvolume still
much smaller than system volume), and ρ is local number
density; angular bracket 〈·〉eq denotes equilibrium average.
Here the diffusion coefficient D(ρ) is defined from Fourier’s
law for diffusive current JD = −D(ρ)∂ρ/∂x, where ∂ρ/∂x

is spatial density gradient in a particular direction, say
along the x axis. The conductivity χ (ρ) is defined from
Ohm’s law for drift current Jd = χ (ρ)F/kBT , due to a
small external biasing force F also along the x axis, with
kB and T being the Boltzmann constant and temperature,
respectively.

For systems in equilibrium, where detailed balance is
obeyed, the ER is universal, irrespective of the details of
interparticle interactions or whether the systems are liquids or
gases, etc. Indeed, the ER is one of the earliest known forms
of a more general class of equilibrium fluctuation relations,
collectively called fluctuation-dissipation theorems (FDTs);
the FDTs can be proved using linear-response theory around
equilibrium state having the Boltzmann-Gibbs distribution [2].

However, systems having a nonequilibrium steady state
(NESS), which is arguably the closest counterpart to equilib-
rium, generally do not have such relations. Because, unlike in
equilibrium, they violate detailed balance and usually cannot
be described by the Boltzmann-Gibbs distribution. In fact,
in most cases, microscopic probability weights in the steady
state are not known. Quite interestingly, recent studies [3–15]
have indicated that, even in NESSs, there can be fluctuation
relations analogous to the FDTs in equilibrium. In particular,
the ER has been found, mostly numerically, in several model
systems [16–18] having a NESS.

The ER involves two bulk transport coefficients, D(ρ)
and χ (ρ), defined on a macroscopic level from the two phe-
nomenological laws of transport—Fourier’s and Ohm’s law.

One way to understand such macroscopic phenomenological
fluctuation relations is to derive, from microscopic dynamics, a
hydrodynamic description of the systems on a large space and
time scales. However, such a task, for classical deterministic
(or quantum) dynamics, is quite difficult. On the other hand,
for systems governed by stochastic dynamics, the problem of
deriving hydrodynamics is comparatively easier and, recently,
there has been considerable progress made in this direction
[19–21]. However, for stochastic systems having a NESS, the
steady-state probability weights are not always known and
tackling the problem analytically in such systems, especially
when there are nonzero finite spatial correlations, remains to
be a challenging one [22]. Perhaps not surprisingly, so far
there are not many nonequilibrium interacting-particle systems
for which exact hydrodynamic descriptions, presumably the
first step toward exploring fluctuation relations such as the
ER, have been derived. In fact, the difficulty arises primarily
because fluctuation, diffusion coefficient, and conductivity,
which would appear in ER (if any) in such systems, must
be calculated in a steady state far from equilibrium, not in or
around an equilibrium state.

Here, we study a broad class of nonequilibrium conserved-
mass transport processes on a ring. These processes are gov-
erned by chipping, diffusion, and coalescence of neighboring
masses, with total mass in the system being conserved, and
have become paradigm in nonequilibrium statistical physics of
driven many-particle systems [23,24]. Indeed, throughout the
past couple of decades, they have been explored intensively to
model a huge variety of natural phenomena, such as formation
of clouds [25] and gels [26,27], force fluctuation in packs
of granular beads [28,29], transport of energy in solids [30],
dynamics of interacting particles on a ring [31], self-assembly
of molecules in organic and inorganic materials [32,33], and
distribution of wealth in a society [34], etc.

In this paper, we derive hydrodynamics of the above-
mentioned one-dimensional conserved-mass transport pro-
cesses, which have nontrivial spatial correlations (nonzero
and finite), with their steady-state weights in most cases not
known. For these processes, we explicitly calculate the two
transport coefficients as a function of local mass density ρ ,
the bulk-diffusion coefficient D(ρ), and the conductivity χ (ρ),
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which characterize the hydrodynamics. Remarkably, we found
that, for this class of models, the two transport coefficients
satisfy an equilibrium-like Einstein relation,

D(ρ) = χ (ρ)

σ 2(ρ)
, (1)

where

σ 2(ρ) = lim
v→∞

〈m2〉 − 〈m〉2

v
, (2)

is scaled variance of mass m in a large subsystem (much
smaller than the system) of volume v with ρ = 〈m〉/v is
average local mass density. The diffusion coefficient D(ρ) and
the conductivity χ (ρ) are suitably defined on a hydrodynamic
level from diffusive current JD = −D(ρ)∂ρ/∂x and drift
current Jd = χ (ρ)F , respectively, where ∂ρ/∂x is gradient
in local mass density and F is the magnitude of a small
biasing force coupled locally to conserved mass variable
and applied in a particular direction. For all the processes
considered in this paper, we find bulk diffusion coefficient
D(ρ) = const. and conductivity χ (ρ) ∝ ρ2, indicating that
the processes, on hydrodynamic level, belong to the class
of Kipnis-Marchioro-Presutti (KMP) processes on a ring
[30]. Moreover, we use the two transport coefficients to find
probabilities of large deviations of mass in a subsystem in
the framework of recently developed macroscopic fluctuation
theory (MFT) [5,15]. The mass large-deviation functions
(LDFs) completely agree with that in Refs. [12,14], which
were derived earlier using an additivity property.

The paper is organized as follows. In Sec. II, we discuss
general aspects of conserved-mass transport processes. In
Sec. III, we present a linear-response analysis around a
nonequilibrium steady state, which is implemented to calculate
the transport coefficients in the model-systems discussed later.
We introduce, in Sec. IV (symmetric versions) and Sec. VI
(asymmetric versions), a broad class of conserved-mass
transport processes (called models I, II, and III) and derive
hydrodynamics of these systems in terms of two transport
coefficients—the diffusion coefficient and the conductivity. In
Sec. V and VI, we discuss how the density large deviation
functions in all these models can be calculated using a
macroscopic fluctuation theory. In Sec. VII, we summarize
with some concluding remarks.

II. GENERAL CONSIDERATIONS AND MOTIVATIONS

Let us first discuss some general aspects of fluctuations
in steady states and their connection to hydrodynamics in
the context of recently obtained results in conserved-mass
transport processes [12–14]. The conserved-mass transport
processes are defined on a one-dimensional periodic lattice
of L sites, with a continuous mass variable mi � 0 at site i ∈
{1,2, . . . L} [27,31,35,36]. They are governed by dynamical
rules, such as chipping or fragmentation, diffusion, and
coalescence of neighboring masses, which eventually lead to
a nonequilibrium steady state. Under these dynamical rules,
total mass M = ∑L

i=1 mi in the system remains conserved.
Though these processes are governed by simple dynamical
rules, they usually have nontrivial spatial correlations in the
steady states. That is why, even in one dimension (which is

the case considered here), the exact steady-state probability
weights for the microscopic configurations, except for a few
special cases [27,29,31,35], are not yet known.

In this paper, we study several generalized versions of the
above-mentioned mass transport processes [14], which we
call Model I, Model II, and Model III. In the symmetric
versions of the models (see Sec. IV), mass transfers take
place, without any preference, to the right or (and) to the
left nearest neighbor(s); consequently, net mass currents are
zero in the nonequilibrium steady states. However, as shown
later, the systems with the symmetric transfers still remain
far from equilibrium as the dynamics in the configuration
space violates Kolmogorov criterion and thus also detailed
balance [37]. For asymmetric mass transfers (see Sec. VI),
the violation is quite evident as there would be nonzero mass
current in the systems. Kolmogorov criterion, which provides a
necessary and sufficient condition for detailed balance to hold
in a system, says the following. If, for each and every possible
loop generated by the dynamics in the configuration space, the
probability of a forward path and that of the corresponding
reverse path are equal, detailed balance is satisfied, and vice
versa. As a consequence, if a reverse path corresponding to a
forward path in a particular transition in the configuration
space does not exist, it suffices to say that Kolmogorov
criterion, and therefore detailed balance, is violated. Indeed, in
the absence of the knowledge of exact steady-state measures
in these mass transport processes, Kolmogorov criterion helps
one to check whether detailed balance is satisfied or not.

At a coarse-grained level where one divides such a system of
volume V into ν = V/v subsystems, each of volume v � V ,
one could however have a simpler description. Provided that
the subsystem sizes are large compared to the microscopic
spatial correlation length but much smaller than the size of the
full system, one expects that the system would possess an ad-
ditivity property [8,10,11], which states that large subsystems
are statistically almost independent. That is, the steady-state
joint subsystem mass distribution P[{M1,M2, . . . ,Mν}], with
Mk being mass in kth subsystem, can be approximately
written in a product form, except for a constraint of global
mass conservation. In other words, the joint subsystem mass
distribution can be expressed in terms of subsystem weight
factor Wv(Mk),

P[{Mk}] 	
∏

k Wv(Mk)

Z(V,M)
δ

(∑
k

Mk − M

)
, (3)

where Z is the normalization constant. For large subsystem
size, the weight factor Wv(Mk) can be characterized by a
large deviation “density” function f (ρk) (or “rate” function;
also sometimes called “nonequilibrium free energy” density)
as Wv(Mk) 	 exp[−vf (ρk)], where ρk = Mk/v is fluctuating
subsystem mass density [13]. The immediate consequence
of additivity is that the function f (ρ) is related to the
scaled variance σ 2(ρ) [as defined in Eq. (2)] of subsystem
mass through a fluctuation-response relation (FR) [8,10–14],
analogous to equilibrium fluctuation-dissipation theorems,

f ′′(ρ) = dμ

dρ
= 1

σ 2(ρ)
, (4)
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where μ(ρ) = f ′(ρ) is defined to be a chemical potential and
ρ = 〈ρk〉 is local mass density. Now, instead of subsystem
mass variables {Mk}, additivity property [Eq. (3)] can be
written in terms of subsystem density variables {ρk = Mk/v},
or equivalently, in terms of coarse-grained fluctuating density
profile {ρ(x)} in the system. Then, one can write the joint
subsystem density distribution, or large-deviation probability
of a given density profile {ρ(x)}, as

P[ρ(x)] 	 e−F[ρ(x)],

where F[ρ(x)] is called large deviation function (LDF). In the
mass-transport processes considered here, as the functional
form of the scaled variance σ 2(ρ) = ρ2/η with η being a
model-dependent parameter [e.g., see Eq. (23)], the LDFs can
be calculated by using additivity and the FR [Eqs. (3) and (4)]
[12,14]. In fact, the LDFs have been previously shown to have
the following form:

F[ρ(x)] =
∫

V

dx{f (ρ) − f (ρ0) − μ(ρ0)(ρ − ρ0)}, (5)

where

f (ρ) = −η ln ρ, (6)

μ(ρ) = f ′(ρ) = −η

ρ
, (7)

with μ(ρ) an equilibrium-like chemical potential and
ρ0 = M/V the global mass density [12,14]. The FR in
Eq. (4) can be verified from Eq. (5). Moreover, in this case,
the probability distribution function Pv(m) of mass m in a
subsystem of volume v can be obtained as

Pv(m) ∝ mvη−1e−ηm/ρ, (8)

which is gamma distribution [12,14].
Thus, additivity property helps one to construct a statistical

mechanical framework in these conserved-mass transport
processes, through a free energy density f (ρ) and a chemical
potential μ(ρ), which however describes only the static proper-
ties of steady-state mass fluctuations. At this stage, one could
ask whether the above LDFs can be derived in a dynamical
setting. To address this issue, here we formulate, within
recently developed macroscopic fluctuation theory (MFT)
[5,15], a statistical mechanical description of fluctuations
for these processes. The formulation provides a dynamical
description of mass fluctuations at a coarse-grained level, i.e.,
a fluctuating hydrodynamics valid in large length and time
scales [see Eq. (45)].

Since mass remains conserved locally under the micro-
scopic evolution, one must keep the mass conservation valid
also at the hydrodynamic scales. Therefore, the hydrodynamic
equation must be written in the form of a continuity equation,

∂τρ(x,τ ) + ∂xJ (ρ(x,τ )) = 0, (9)

which governs the time evolution of density field ρ(x,τ ) with
x and τ being suitably rescaled position and time, respectively.
Since the class of processes we consider here are of “gradient
type” (i.e., local diffusive current can be expressed as a gradient
in local observables) [3] with respect to their microscopic
evolutions, one would expect a nonlinear hydrodynamics in the
diffusive scaling limit, where the current J (ρ(x,τ )) is the sum

of two parts J = JD + Jd . The first part JD = −D(ρ)∂xρ is
the diffusive current with D(ρ) being the diffusion coefficient
and the second part Jd (ρ,τ ) = χ (ρ)F is the drift current due
to a small slowly varying biasing field F (x) (conjugate to
conserved mass variable) with χ (ρ) being the conductivity.

According to the hydrodynamic Eq. (9), along with a con-
stitutive relation for the current J (ρ) = −D(ρ)∂xρ + χ (ρ)F ,
the density field ρ(x,τ ) evolves deterministically in time.
However, to study any dynamical aspects of fluctuations, one
requires to add a suitable noise term. Clearly, as the noise in this
case should maintain the local mass conservation, one must add
a noise term ζ to the deterministic part of the current J (x,τ ) →
J (x,τ ) + ζ (x,τ ), making the total current now a fluctuating
one. But the question here is what properties the noise ζ would
have. As we see later within MFT [see Eq. (45)], the fluctuating
part ζ of the total current can be represented in terms of
a weak multiplicative Gaussian white noise, whose strength
explicitly depends on the conductivity χ (ρ). So the problem
of formulating a theory of mass fluctuations in these processes
essentially boils down to finding the functional dependence of
the diffusion coefficient D(ρ) and the conductivity χ (ρ) on
density ρ.

In the following section, we explicitly calculate the two
transport coefficients, D(ρ) and χ (ρ), in a broad class of
conserved-mass transport processes. Remarkably, in all cases
studied here, we find that the two transport coefficients obey
an Einstein relation Eq. (1). We present below the details of
computations for different models separately.

III. THEORY: LINEAR RESPONSE AROUND
NONEQUILIBRIUM STEADY STATES

Before proceeding to the calculations of the transport
coefficients in the nonequilibrium mass transport processes
mentioned in the previous section, we first present a proof
of the Einstein relation (ER), which is valid in or, strictly
speaking, around equilibrium state of a system, in the limit of
an external force vanishingly small. In equilibrium, an external
force field �F (here taken to be constant, for simplicity), or
equivalently an external potential, can be directly related to
chemical potential of the system. For example, consider a
one-dimensional system whose two halves are kept at two
different external potentials, say, first half at potential V1 and
second half at potential V2 where V2 − V1 = �V = − ∫

Fdx

with the force field �F = F x̂. The fact that effective chemical
potentials of the two halves equalize implies

μ(ρ1) + V1 = μ(ρ2) + V2,

where ρ1 and ρ2 are densities of the first and second halves,
respectively, μ(ρ) = df/dρ is chemical potential (canonical)
and f (ρ) free-energy density (canonical) in the absence of any
external potential. In other words, across a spatial interval �x,
we have the following relation �μ/�x = −�V/�x = F , or

dμ

dx
= F, (10)

in the limit of �x → 0. Now, in the limit of small force
F → 0, drift current Jd = χ (ρ)F due to the force F and
the diffusion current JD = −D(ρ)dρ/dx must balance each
other so that there is no net current in the system. That is,
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we must have Jd + JD = 0, which, along with the equality
F = dμ/dx = (dμ/dρ)(dρ/dx) [from Eq. (10)] and the equi-
librium fluctuation-response relation between compressibility
and fluctuation dρ/dμ = σ 2(ρ) [Eq. (4)], immediately leads
to the ER.

On the other hand, in nonequilibrium, though detailed
balance is violated on a microscopic level, the macroscopic
mass current in the steady state could still be zero, e.g., in
the case of the mass-transport processes with symmetric mass
transfer rules. In that case, one would perhaps expect, for a
suitably chosen biasing force, an ER even in nonequilibrium.
Interestingly, we see later that an ER holds in the cases of
both symmetric and asymmetric mass transfers. The issue
essentially revolves around the crucial question whether
Eq. (10) would hold in such cases, which could be addressed
by checking if there is an ER. In fact, provided it holds,
an ER would then imply a LDF of the form as in Eq. (5),
where f ′′(ρ) = D(ρ)/χ (ρ) (see Sec. V for a more rigorous
discussion).

To explore the issue further, we perform a linear-response
analysis of the conserved-mass transport processes in the
presence of a small constant biasing force field �F = F x̂, which
is now applied in the system, with x̂ being a unit vector along
+ve x axis. The force field �F , somewhat like a gravitational
one, is conjugate to the conserved mass variables (external
force is coupled to local masses at the individual sites) and is
chosen as follows. The biasing force �F modifies the original
mass transfer rates ci→j , from site i to j , to biased rates cF

i→j

(which are now effectively asymmetric) [15],

cF
i→j = ci→j�(�ei), (11)

where �(�ei) > 0 is nonnegative function of

�ei = �mi→j ( �F .δ�xij ). (12)

The quantity �e can be physically interpreted as extra energy
cost (due to the biasing force �F ), for transferring or displacing
mass �mi→j from site i to j in a particular direction with
the mass displacement vector δ�xij = (j − i)ax̂ and a being
the lattice constant. We explicitly write the lattice constant,
which would be required later for taking diffusive scaling limit.
Clearly, �|F=0 = 1 as cF=0

i→j = ci→j .

In the case of only nearest-neighbor mass transfer (more
generalized version is described below), the mass displacement
vector δ�xij can take, depending on the direction of the mass
transfer, one of the two values δ�x = ±ax̂. Consequently, the
form of rates in Eq. (11) makes the modified forward and
backward mass-transfer rates across a bond asymmetric and
therefore induces a small net current in the system.

To check the ER, we consider, somewhat analogous to equi-
librium, the function � to have a form �(�e) = exp(�e/2)
[15]. However, note that, in the following linear analysis for
small force F where we require only the leading order term
O(F ) [or O(�e)], the whole analysis goes through even for a
general functional form of �. We expand � in O(F ),

�(�ei) 	 1 +
[

d�

d(�e)

]
�e=0

�ei = 1 + 1

2
�mi→j ( �F .δ�xij ).

(13)

For example, see the biased mass-transfer rates cF
i→j as

in Eqs. (31) and (32). In the above equation, without
any loss of generality, we put 2[d�/d�e]�e=0 = 1, which
essentially implies a rescaling of the applied force F →
[2d�/d(�e)]�e=0 × F .

It is possible that several fractions �min→jn′ , where
n = 1,2, . . . ,K and n′ = 1,2, . . . ,K ′, of masses from K

number of sites {in} ≡ i1,i2, . . . iK are transferred, at the same
instant of time, to K ′ number of sites {j ′

n} ≡ {j1,j2, . . . jK ′ }.
For example, see the modified rates for Model I in Eq. (17),
where K = 1 and K ′ = 2, and in Eq. (27), where K = K ′ =
L. The original rate c{in}→{jn′ } for mass transfer from sites {in}
to {jn′ } and the corresponding modified biased rate cF

{in}→{jn′ }
are related as

cF
{in}→{jn′ } = c{in}→{jn′ }�(�e), (14)

where the total extra energy cost, due to the biasing, can
be written by summing over all individual energy costs
corresponding to each and every pair 〈n,n′〉 of departure site
n and destination site n′ as

�e =
∑
〈n,n′〉

�min→jn′
( �F .δ�xinjn′

)
. (15)

In the next, we use this modified biased rate cF
{in}→{jn′ } [as in

Eq. (14)] along with Eqs. (13) and (15) for the three models
(I, II, III) to derive a hydrodynamic equation like in Eq. (9)
and hence, in turn, we compute the diffusivity D(ρ) and the
conductivity χ (ρ).

IV. MODELS AND RESULTS:
SYMMETRIC MASS TRANSFERS

In this section, we define the symmetric versions of the
models, first in the absence of any biasing force, where
masses are transferred symmetrically, without any preferential
direction, to the nearest neighbors. Consequently, there is no
net mass current in the systems. However, it is important
to note that, even in that case, detailed balance condition
is still not satisfied. In fact, it would be quite instructive to
explicitly show that, for generic values of parameters in the
models, Kolmogorov criterion and therefore detailed balance
is strongly violated, in the sense that, for a transition (say,
forward) from one configuration to another while mass being
transferred from a site to its neighbor, the corresponding
reverse path of transition may not exist.

Therefore, even in the absence of any biasing force, the
system eventually reaches a steady state, which is inherently
far from equilibrium, and cannot be described by the equilib-
rium Boltzmann-Gibbs distribution. To calculate conductivity
in such a nonequilibrium steady state, we need to apply a
biasing (constant, for simplicity) force field, which would
essentially modify the original mass-transfer rates in the
systems, inducing a mass current, and then we calculate the
current in the limit of biasing force being small.

A. Model I

This particular class of models has been introduced to study
mass transport processes accounting for stickiness of masses
while fragmenting and diffusing [36]. These processes are
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variants of various previously studied mass transport
processes, such as random average processes (RAP),
etc. [24,27,31].

1. Random sequential update

In Model I with random sequential update (RSU), three
sites are updated simultaneously where two random fractions
of the chipped-off mass from site i are shared randomly with
the nearest neighbor sites i − 1 and i + 1. The stochastic time
evolution of mass mi(t) at time t after an infinitesimal time dt

can be written as

mi(t + dt) =

⎧⎪⎪⎨
⎪⎪⎩

λmi(t) prob. dt

mi(t) + λ̃ri−1mi−1(t) prob.dt

mi(t) + λ̃r̃i+1mi+1(t) prob. dt

mi(t) prob. (1 − 3dt)

,

(16)

where rj ∈ (0,1)s are independent and identically distributed
(i.i.d.) random variables, having a probability density φ(r)
and λ̃ = 1 − λ and r̃i+1 = 1 − ri+1. Throughout the paper, we
denote the first and the second moments of φ(r) as

θ1 =
∫ 1

0
rφ(r)dr; θ2 =

∫ 1

0
r2φ(r)dr,

respectively. Note that if the probability density φ(r) is not
symmetric around r = 1/2, it can be shown that, in the hydro-
dynamic equation for density field, drift dominates diffusion
unless the asymmetry is small and comparable to the diffusive
contribution. In that case, the analysis would lead to hyperbolic
hydrodynamic equations for density field (hydrodynamics of
such systems are discussed in Sec. VI). Here we consider the
density function φ(r), which is symmetric around r = 1/2,
i.e., φ(r) = φ(1 − r), thus θ1 = 1/2 is taken throughout; but
the probability density φ(r) is otherwise arbitrary.

Breakdown of Kolmogorov criterion. In this model, with
random sequential update, at any instant of time, mass is
chipped off from a single departure site and then it arrives at
its two nearest-neighbor destination sites. Clearly, the reverse
path, where mass would have been simultaneously chipped
from two departure sites i − 1 and i + 1 and would have
arrived at a single destination site i, is not allowed by the
actual dynamics as given in Eq. (16). Therefore, Kolmogorov
criterion is violated and consequently there is no detailed
balance even when there is as such no external biasing force.

Dynamics when F = 0. Let us now bias the system by
applying a small constant biasing force field �F = F x̂, say,
along the clockwise direction, which affects the mass transfer
rates according to Eq. (14). Since, at every instant of time,
two fractions of the chipped-off mass from site i could be
simultaneously transferred, to the two neighboring sites i ± 1,
the modified biased rate in this case is written as

cF
i→{i+1,i−1} = ci→{i+1,i−1}

[
1 + �ei

2

]
, (17)

where ci→{i+1,i−1} = 1 and �ei = Fa(�mi→i+1 − �mi→i−1)
with �mi→i+1 = λ̃rimi and �mi→i−1 = λ̃(1 − ri)mi . For no-
tational simplicity, we denote the biased rate as cF

i→{i+1,i−1} ≡
cF
i , which can be explicitly written as cF

i = 1 + λ̃(2ri −
1)miFa/2, with λ̃ = 1 − λ. We now write the modified

dynamics:

mi(t + dt)

=

⎧⎪⎪⎨
⎪⎪⎩

λmi(t), prob.cF
i dt

mi(t) + λ̃ri−1mi−1(t), prob.cF
i−1dt

mi(t) + λ̃r̃i+1mi+1(t), prob.cF
i+1dt

mi(t), prob.
[
1 − (

cF
i + cF

i−1 + cF
i+1

)
dt

] .

(18)

Consequently, the time evolution of the first moment of mass
mi(t) in the infinitesimal time dt can be written as

〈mi(t + dt)〉 = 〈
λmi(t)c

F
i

〉
dt

+ 〈
[mi(t) + λ̃ri−1mi−1(t)]cF

i−1

〉
dt

+ 〈
[mi(t) + λ̃r̃i+1mi+1(t)]cF

i+1

〉
dt

+ 〈
mi(t)

[
1 − (

cF
i + cF

i−1 + cF
i+1

)
dt

]〉
.

After simplifying the above expression, the time evolution of
average mass, or mass density, 〈mi〉 ≡ ρi at site i, can be
rewritten as

dρi

dt
= λ̃

〈
ri−1mi−1c

F
i−1 + (1 − ri+1)mi+1c

F
i+1 − mic

F
i

〉
= λ̃

2
(ρi−1 + ρi+1 − 2ρi)

+ λ̃2

2
(2θ2 − 1/2)

[〈
m2

i−1

〉
Fa − 〈

m2
i+1

〉
Fa

]
. (19)

Note that the time evolution of the first moment of local mass,
i.e., the density ρi = 〈mi〉, depends on the second moments
〈m2

i±1〉 of neighboring masses, and so on. Thus, the hierarchy
between the local density and the local fluctuation does not
close.

Hydrodynamics. However, we are interested in the hy-
drodynamic description of the density field at large space
and time scales, called diffusive scaling limit as described
below. Importantly, on the large spatiotemporal scales, local
observables are expected to be slowly varying functions of
space and time. Therefore, we could safely assume that a
local steady state is achieved throughout the system such that
average of any local observable g(mi) could be replaced by
its exact local steady-state average 〈g(mi)〉st, which in that
case would be a function of the local density ρi only. In other
words, we assume 〈g(mi)〉 ≈ 〈g(mi)〉st. Thus, for the average
of the quantity g(mi) = m2

i , i.e., the second moment of local
mass, we have replaced the average by the its local steady-state
average,

〈
m2

i

〉 ≈ 〈
m2

i

〉
st = 1

1 − 2λ̃θ2
ρ2

i . (20)

The above steady-state expression of the second moment has
been exactly calculated before in Ref. [14]. Now substituting
Eq. (20) in Eq. (19) and then taking the diffusive scaling
limit of Eq. (19), i → x = i/L, t → τ = t/L2, and a → 1/L,
we obtain the hydrodynamic equation for the density field,
∂τρ(x,τ ) + ∂xJ = 0, where current J (ρ(x,τ )) is given by

J = λ̃2

2

4θ2 − 1

1 − 2λ̃θ2
ρ2F − λ̃

2

∂ρ

∂x
. (21)
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In the above equation, we break the current J = Jd + JD into
two parts, drift current Jd = [λ̃2(4θ2 − 1)/2(1 − 2λ̃θ2)]ρ2F

and diffusive current JD = −(λ̃/2)(∂ρ/∂x), to identify the
conductivity and the diffusion coefficient, respectively, as

χ (ρ) = λ̃2

2

(4θ2 − 1)

(1 − 2λ̃θ2)
ρ2, D(ρ) = λ̃

2
. (22)

Now the scaled variance σ 2(ρ) of subsystem mass [as defined
in Eq. (2)] can be calculated by summing over the microscopic
correlation function c(n) = 〈mimi+n〉 − ρ2,

σ 2(ρ) =
∞∑

n=−∞
c(n) = λ̃(4θ2 − 1)

(1 − 2λ̃θ2)
ρ2 ≡ ρ2

η
, (23)

where c(n) has been exactly calculated in Ref. [14],

c(n) = 2λ̃θ2

(1 − 2λ̃θ2)
ρ2 for n = 0

= − λ̃

2

(1 − 2θ2)

(1 − 2λ̃θ2)
ρ2 for n = 1

= 0 for n � 2,

and η = (1 − 2λ̃θ2)/λ̃(4θ2 − 1). Using Eqs. (22) and (23), one
can readily verify that the ER as in Eq. (1) is indeed satisfied.
We emphasize that the nearest-neighbor spatial correlations
here (also in the other models discussed later) are actually
finite and our hydrodynamic analysis takes into account the
effects of the finite microscopic spatial correlations.

2. Parallel update

In Model I with parallel update (PU), fractions of masses
to be transferred to the two nearest neighbors are the same
as in the case of random sequential update. However, at a
discreet time t , the mass variables at all sites are updated
simultaneously according to the following rule:

mi(t + 1) = λmi(t) + λ̃ri−1mi−1(t) + λ̃r̃i+1mi+1(t), (24)

where λ̃ = 1 − λ, r̃i = 1 − ri , and ri ∈ (0,1) is a symmetri-
cally distributed random variable, having a probability density
φ(ri). The time evolution equation in the configuration space
{mi} ≡ {m1,m2, . . . ,mL} can be written as

P[{mi},t + 1] =
⎡
⎣∏

j

∫
dmj

⎤
⎦

×�[{mj } → {mi}]P[{mj },t], (25)

where P[{mi},t] is the probability of a configuration {mi} at
time t and

�[{mj } → {mi}] =
∏

i

φ(ri)

is the transition probability, per unit time, from a configuration
{mj } to another configuration {mi}.

Breakdown of Kolmogorov criterion. In the case of parallel
update, the breakdown of Kolmogorov criterion, though not
quite obvious, can be straightforwardly shown for generic
parameter values λ = 0. For example, consider a configuration
having two sites i − 1 and i, with masses mi−1 finite and
mi infinitesimal (say, mi = 0, just for the sake of argument),

respectively. Then, a chunk of mass is transferred from site
(i − 1) to site i so that mi−1 → m′

i−1 > 0 and mi → m′
i > 0.

In the next time step, since at least a λ fraction of mass m′
i

must be retained at site i, the reverse path where the whole
mass m′

i would have been transferred back to i − 1 from
site i is not possible, implying breakdown of Kolmogorov
criterion and thus violation of detailed balance. This simple,
though not rigorous, argument can be readily extended to
any configuration with sufficiently large difference of masses
in any two neighboring sites so that there cannot be a
reverse path corresponding to a particular possible path of
mass transfer. Note that, in this argument, we consider only
the unbiased process (F = 0). Let us consider transitions
{mi} → {m′

i} and {m′
i} → {m′′

i } at two consecutive time steps.
In the second transition, one must have m′′

i > λm′
i , i.e., the

mass retained at site i must be at least λm′
i . Now, if the

amount of mass λm′
i is greater than mass mi , the value of

mass at site i at the initial step, clearly the path cannot be
reversed. Therefore, the condition for which a process cannot
be reversed is simply λm′

i > mi , which, after using Eq. (24)
m′

i = λmi + λ̃ri−1mi−1 + λ̃r̃i+1mi+1, leads to the condition

ri−1mi−1 + r̃i+1mi+1 − 1 + λ

λ
mi > 0. (26)

Therefore, for λ = 0, indeed there are configurations (a finite
set in the configuration space) that satisfy the above inequality.
This implies breakdown of Kolmogorov criterion and that the
steady state is far from equilibrium even in the absence of any
biasing force (F = 0). Analysis for λ = 0 requires more effort
and is omitted here.

Dynamics when F = 0. Let us now consider the process
in the presence of an externally applied biasing force, F = 0.
Once the random fractions [λ̃rimi and λ̃(1 − ri)mi] of mass
mi at a site i are chosen at time t they are transferred, at
the next discrete time step, to the nearest neighbor sites i + 1
and i − 1, respectively, with probability 1 and this is done
simultaneously for all sites. That is, in this case, the mass
transfer rate, or the transition probability per unit time, can
be written as c{in}→{jn′ } = 1, which we modify, in the pres-
ence of biasing force, as cF

{in}→{jn′ } = c{in}→{jn′ }
∏

i exp(�ei/2),
according to Eq. (14). Here we put �(�e) = exp(�e/2)
with �e = ∑

i �ei and �ei = Fa(�mi→i+1 − �mi→i−1) =
λ̃(2ri − 1)miFa. The time evolution Eq. (25) can now be
written by replacing the original transition probability � with
the modified one �F ,

�F [{mj } → {mi}] =
∏
j

[
φ(rj )e�ej /2

γ (mj,F )

]
, (27)

where γ (mj,F ) is a normalization constant, ensuring that the
transition probability �F [.] is suitably assigned from a normal-
ized probability density function where (

∏
j

∫
drj )�F = 1.

As the probability density φ(r) is considered to be symmetric
about r = 1/2, we have the following expansion in powers
of F ,

γ (mi,F ) =
∫ 1

0
φ(ri)e

λ̃(2ri−1)miFa/2dri

= 1 + (λ̃mi)2θ2

8
(Fa)2 + . . . ,
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implying that the leading order term is quadratic O(F 2) in the
biasing force F and, therefore, to linear order of F , we can take
γ (mi,F ) ≈ 1 in the following analysis (see also Sec. IV B 2).

The expression for the average of mass mi at site i can now
be written as

〈mi(t + 1)〉 =
⎡
⎣∏

j

∫
dmj

⎤
⎦miP[{mj },t + 1]

= 〈[λmi(t) + λ̃ri−1mi−1(t)

+ λ̃(1 − ri+1)mi+1(t)]〉,
where the angular brackets 〈.〉 denote average over both
random numbers {rj } and the mass variables {mj }. Explicitly
writing the terms, we get

〈mi(t + 1)〉 =
〈
λmi(t)

∫
φ(r)eλ̃(2r−1)miFa/2

γ (mi,F )
dr

〉

+
〈
λ̃mi−1(t)

∫
r
φ(r)eλ̃(2r−1)mi−1Fa/2

γ (mi−1,F )
dr

〉

+
〈
λ̃mi+1(t)

∫
(1 − r)

φ(r)eλ̃(2r−1)mi+1Fa/2

γ (mi+1,F )
dr

〉
,

which, in leading order in F , leads to

ρi(t + 1) − ρi(t) = λ̃

2
(ρi−1 + ρi+1 − 2ρi) + λ̃2

2
(2θ2 − 1/2)

× [〈
m2

i−1

〉
Fa − 〈

m2
i+1

〉
Fa

]
.

Hydrodynamics. Now taking the diffusive scaling limit
i → x = i/L, t → τ = t/L2, and a → 1/L and substituting
〈m2

i 〉 by the following expression of second moment [14],
within the assumption of local steady state,〈

m2
i

〉
st = 1

ε + (1 − ε)
√

κ−1
κ+1

ρ2
i ,

we obtain the hydrodynamic equation for the density
field, ∂τρ(x,τ ) + ∂x(Jd + JD) = 0, where the drift current
Jd (ρ(x,τ )) and the diffusive current JD(ρ(x,τ )) are given by

Jd = λ̃2

2

4θ2 − 1

ε + (1 − ε)
√

κ−1
κ+1

ρ2F, JD = − λ̃

2

∂ρ

∂x
, (28)

respectively. Then, the conductivity χ (ρ) and the diffusion
coefficient D(ρ) can be expressed as

χ (ρ) = λ̃2

2

4θ2 − 1

ε + (1 − ε)
√

κ−1
κ+1

ρ2, D(ρ) = λ̃

2
, (29)

where ε = 2 − 4θ2 and κ = (1 + λ)/(1 − λ). The Einstein re-
lation Eq. (1) can be immediately verified using the expression

of the scaled variance,

σ 2(ρ) = λ̃(4θ2 − 1)

ε + (1 − ε)
√

κ−1
κ+1

ρ2,

which was exactly calculated earlier in Ref. [14]. We mention
here that the microscopic spatial correlations, as in the case
of Model I (RSU), are also finite and have been accounted
exactly in the above analysis.

B. Model II

The class of models studied in this section is a generalized
version of previously known Hammersley process [23] and a
variant of random average processes [24]. These models were
studied in the past to understand force fluctuations in granular
beads [28,29] and dynamics of driven interacting particles on
a ring [31,35], etc.

1. Random sequential update

In Model II with random sequential update, two nearest-
neighbor sites are updated in an infinitesimal time dt :
A random fraction of mass at site i is chipped off and
transferred either to site i − 1 or to site i + 1, each with
probability (1/2)dt , i.e., the mass transfer rates ci→i−1 = 1/2
and ci→i+1 = 1/2.

Breakdown of Kolmogorov criterion. First let us show that
the process in the absence of any external bias (F = 0) violates
Kolmogorov criterion and therefore also detailed balance. Let
us consider transitions {mi} → {m′

i} and {m′
i} → {m′′

i } at two
consecutive time steps, where

m′
i = (1 − λ̃ri)mi ; m

′
i+1 = mi+1 + λ̃rimi,

m′′
i = (1 − λ̃ri)m

′
i ; m

′′
i+1 = m′

i+1 + λ̃rim
′
i .

Now the conditions, m′′
i = mi and m′′

i+1 = mi+1, for the
existence of a reverse path leads to an equality, r ′

i+1 =
rimi/(mi+1 + λ̃rimi). Or equivalently, an inequality mi+1 �
λrimi , as r ′

i+1 � 1, must be satisfied for the existence of a
reverse path. Said differently, the condition for which a reverse
path will not exist can be written as the following inequality
on the ratio of neighboring masses,

mi

mi+1
>

1

λri

.

The above condition is satisfied by a finite set in the
configuration space and will then imply the steady state to
be far from equilibrium even in the absence of any external
biasing force (F = 0).

Dynamics when F = 0. However, in the presence of a
biasing force F = 0, the dynamics is modified as

mi(t + dt) =

⎧⎪⎪⎨
⎪⎪⎩

λmi(t) + λ̃(1 − ri)mi(t) prob. dt

mi(t) + λ̃ri+1mi+1(t) prob. cF
i+1→idt

mi(t) + λ̃ri−1mi−1(t) prob. cF
i−1→idt

mi(t) prob. [1 − (1 + cF
i+1→i + cF

i−1→i)dt]

(30)
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where λ̃ = 1 − λ and the modified mass transfer rates,
cF
i→i±1 = exp(±�mi→i±1Fa/2) with transported mass

�mi→i±1 = λ̃rimi(t), can be written, in leading order of F , as

ci−1→i = 1

2
+ λ̃

4
ri−1mi−1Fa, (31)

ci+1→i = 1

2
− λ̃

4
ri+1mi+1Fa. (32)

Clearly, F = 0 reproduces the original unbiased dynamics.
Now, the time evolution of average mass or density at site i is
given by

d〈mi〉
dt

= λ̃
〈[
ri−1mi−1c

F
i−1→i + ri+1mi+1c

F
i+1→i − rimic

F
i

]〉
,

which, in leading order of F , can be written as

dρi

dt
= λ̃

2
θ1(ρi−1 + ρi+1 − 2ρi)

+ λ̃2

4
θ2
[〈
m2

i−1

〉
Fa − 〈

m2
i+1

〉
Fa

]
.

Hydrodynamics. Taking the diffusive scaling limit i → x =
i/L, t → τ = t/L2, and a → 1/L and using the local steady-
state expression for the second moment,〈

m2
i

〉 = θ1

θ1 − λ̃θ2
ρ2

i ,

we obtain the hydrodynamic equation governing the density
field, ∂τρ(x,τ ) + ∂x(Jd + JD) = 0, where the drift current
Jd (ρ(x,τ )) and the diffusive current JD(ρ(x,τ )) are given by

Jd = λ̃2

2

θ1θ2

θ1 − λ̃θ2
ρ2F, JD = − λ̃

2
θ1

∂ρ

∂x
. (33)

Therefore, the conductivity χ (ρ) and the diffusion coefficient
D(ρ) are given by

χ (ρ) = λ̃2

2

θ1θ2

θ1 − λ̃θ2
ρ2, D(ρ) = λ̃

2
θ1. (34)

The Einstein relation Eq. (1) can now be verified by using the
expression of scaled variance,

σ 2(ρ) = λ̃θ2

θ1 − λ̃θ2
ρ2,

which was obtained earlier in Ref. [14].

2. Parallel update

In Model II with parallel update, at each discrete time step,
masses at all sites are updated simultaneously according to the
following rule:

mi(t + 1) = (1 − λ̃ri)mi(t) + λ̃ri+1mi+1(t)

+ λ̃[si−1ri−1mi−1(t) − si+1ri+1mi+1(t)], (35)

where λ̃ = 1 − λ. Here we have introduced a set of discrete
i.i.d. random variables {si}: When the chipped-off fraction of
mass moves to the right, si = 1, and otherwise, si = 0. As each
of the values si = 0 and si = 1 occurs with probability 1/2,
we have 〈sn

i 〉 = 1/2 for n > 0.
Breakdown of Kolmogorov criterion. In this model, the

breakdown of Kolmogorov criterion, for generic parameter

values λ = 0, can be shown along the lines of arguments
as given in the case of parallel update for Model I in
Sec. IV A 2. As before, let us consider transitions {mi} → {m′

i}
and {m′

i} → {m′′
i } at two consecutive time steps. Provided that

the mass (1 − λ̃r ′
i )m

′
i , the least amount of mass retained at

site i after second transition, is greater than the initial mass
mi , there cannot be a reverse path. Using dynamical rule in
Eq. (35), it can be shown that the condition of inequality
(1 − λ̃r ′

i )m
′
i > mi leads to a condition on the initial masses,

si−1ri−1mi−1 + (1 − si+1)ri+1mi+1 −
(

1

λ
+ ri

)
mi > 0.

The above condition is satisfied for a finite set of configurations
in the configuration space and will then imply violation of
Kolmogorov criterion, and thus also detailed balance, and that
the steady state is far from equilibrium even in the absence of
any biasing force (F = 0).

Dynamics when F = 0. In the presence of a biasing force
F = 0, the transition probability �[{mj } → {mk}] from a
configuration {mj } to another configuration {mk} is modified
as

�F [{mj } → {mk}] =
∏

i

[
1

γ (mi,F )
φ(ri)e

�ei/2

]
, (36)

where �ei = [si − (1 − si)]λ̃rimiFa and the normalization
factor

γ (mi,F ) = �si
P (si)

∫ 1

0
φ(ri)e

(2si−1)λ̃rimiFa/2dri

= 1 + (λ̃m)2θ2

8
(Fa)2 + · · · ≈ 1,

to the linear order of F . The time evolution of the average
mass or density at site i is given by

〈mi(t + 1)〉 = 〈(1 − λ̃ri)mi(t)〉 + 〈λ̃si−1ri−1mi−1(t)〉
+ 〈λ̃(1 − si+1)ri+1mi+1(t)〉, (37)

where the above angular brackets denote averaging over all
three random variables, {ri}, {si}, and {mi}. Equivalently, we
can write

〈mi(t + 1)〉

=
〈
(1 − λ̃ri)mi(t)

∫
φ(ri)e�ei/2

γ (mi,F )
dri

〉

+
〈
λ̃si−1ri−1mi−1(t)

∫
φ(ri−1)e�ei−1/2

γ (mi−1,F )
dri−1

〉

+
〈
λ̃(1 − si+1)ri+1mi+1(t)

∫
φ(ri+1)e�ei+1/2

γ (mi+1,F )
dri+1

〉
, (38)

where, in the second step, we have explicitly written the
averaging over the i.i.d. random variables {ri}. Next, doing
the averaging over the i.i.d. random variables {si}, we obtain,
in linear order of F , the time evolution equation for density
ρi = 〈mi〉 at site i,

ρi(t + 1) − ρi(t) = λ̃

2
θ1(ρi−1 + ρi+1 − 2ρi)

+ λ̃2

4
θ2
[〈
m2

i−1

〉
Fa − 〈

m2
i+1

〉
Fa

]
. (39)
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Hydrodynamics. Now rescaling the space and time
by i → x = i/L, t → τ = t/L2, and a → 1/L, and using
the expression for second moment of mi in the local
steady state [14],

〈
m2

i

〉 =
√

α

1 − (1 − λ)ε
ρ2

i ,

we obtain the hydrodynamic equation of density field,
∂τρ(x,τ ) + ∂x(Jd + JD) = 0, where the drift Jd (ρ(x,τ )) and
diffusive currents JD(ρ(x,τ )), respectively, can be written as

JD = − λ̃

2
θ1

∂ρ

∂x
, Jd = λ̃2

2
θ2

√
α

1 − (1 − λ)ε
ρ2F.

The above expressions of currents immediately gives the
diffusion coefficients and the conductivity as a function of
density,

χ (ρ) = λ̃2

2
θ2

√
α

1 − (1 − λ)ε
ρ2, D(ρ) = λ̃

2
θ1, (40)

respectively, with ε = θ2
θ1

, α = (1 + λ)/2. Now, by using the
exact expression of scaled variance [14],

σ 2(ρ) = λ̃
√

αε

1 − λ̃ε
,

one can verify that the ER as in Eq. (1) is indeed satisfied.
Note that, as in the case of Model I, the microscopic spatial
correlations are also finite here and have been taken into
account in deriving hydrodynamics.

C. Model III

This class of models have been studied intensively in
the past to understand distribution of wealth in a population
[34,38,39]. In this model, each site keeps a λ fraction (usually
called “saving propensity” in the literature) of its own mass,
and the remaining mass of two neighboring sites are mixed and
are distributed randomly among themselves. Here we study
only the random sequential update dynamics, which can be
written in an infinitesimal time dt as follows:

mi(t + dt) =
⎧⎨
⎩

λmi(t) + λ̃ri[mi(t) + mi+1(t)] prob. ci+1→idt

λmi(t) + λ̃r̃i−1[mi(t) + mi−1(t)] prob. ci−1→idt

mi(t) prob. [1 − (ci+1→i + ci−1→i)dt]
(41)

where λ̃ = 1 − λ, r̃i = 1 − ri, mi(t) is mass at site i at time
t, ri ∈ (0,1) is a i.i.d. random variable having a probability
density φ(ri) (symmetric around 1/2), and the mass transfer
rate ci→j = 1 (here j = i ± 1).

Violation of Kolmogorov criterion. Again, let us consider
transitions {mi} → {m′

i} and {m′
i} → {m′′

i } at two consecutive
time steps, where, by denoting μi,i+1 = mi + mi+1,

m′
i = λmi + λ̃riμi,i+1; m′

i+1 = λmi+1 + λ̃r̃iμi,i+1,

m′′
i = λm′

i + λ̃riμi,i+1; m′′
i+1 = λm′

i+1 + λ̃r̃iμi,i+1.

The condition, m′′
i = mi and m′′

i+1 = mi+1, of having a reverse
path can be written as an equality r ′

i = (1 + λ)mi/μi,i+1 − λri ,
or alternatively, as an inequality (as r ′

i � 1) on the ratio of
neighboring masses mi/mi+1 � (1 + λri)/λr̃i . Said differ-
ently, for mi/mi+1 > (1 + λri)/λr̃i , Kolmogorov criterion and
detailed balance are violated, and thus the steady state is far
away from equilibrium even in the absence of any biasing
force (F = 0).

Dynamics when F = 0. In the presence of a biasing force,
the mass transfer rates are modified as

cF
i+1→i = e−�mi+1→iF a/2 ≈ 1 − 1

2�mi+1→iF a,

cF
i−1→i = e�mi−1→iF a/2 ≈ 1 + 1

2�mi−1→iF a,

where

�mi+1→i = λ̃rimi+1(t) − λ̃(1 − ri)mi(t) (42)

and

�mi−1→i = λ̃(1 − ri−1)mi−1 − λ̃ri−1mi(t). (43)

The time evolution of the first moment of local mass or density
ρi = 〈mi〉 at site i can be written as

〈mi(t + dt)〉
= 〈

[λmi(t) + λ̃ri(mi(t) + mi+1(t))]cF
i+1→idt

〉
+ 〈

[λmi(t) + λ̃(1 − ri−1)(mi(t) + mi−1(t))]cF
i−1→idt

〉
+ 〈

mi(t)
[
1 − (

cF
i−1→i + cF

i+1→i

)
dt

]〉
.

After substituting 〈mi〉 = ρi and some simplifications, we have
the following evolution for density ρi ,

dρi

dt
= λ̃

2
[ρi+1 − 2ρi + ρi−1]

− 1

2

〈(
�m2

i+1→iF a − �m2
i−1→iF a

)〉
,

which leads to

dρi

dt
= λ̃

2
[ρi+1 − 2ρi + ρi−1]

− λ̃2

2

[
θ2

λ + 2λ̃θ2

1 − 2λ̃θ2

(
ρ2

i+1 − ρ2
i−1

)
− (1 − 2θ2)

(
ρ2

i+1 − ρ2
i

)]
Fa

In the last step, following the assumption of local steady-state,
we have used Eqs. (42) and (43) and, subsequently, used the
expression of second moment of local mass as well as the
expression of nearest-neighbor mass-mass correlation [14],

〈
m2

i

〉 = 1 − λ̃(1 − 2θ2)

λ + λ̃(1 − 2θ2)
ρ2

i , 〈mi−1mi〉 = ρ2
i .

Hydrodynamics. Finally, we take the diffusive limit, by
rescaling space and time as i → x = i/L, t → τ = t/L2,
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and a → 1/L, and obtain the hydrodynamic equation for
the density field as ∂tρ(x,τ ) + ∂xJ (ρ(x,τ )) = 0, where J =
Jd + JD , with

Jd (ρ) = λ̃2

2

4θ2 − 1

1 − 2λ̃θ2
ρ2, JD(ρ) = − λ̃

2

∂ρ

∂x
.

The above functional forms of currents imply that the diffu-
sion coefficient and the conductivity, respectively, have the
following expressions:

χ (ρ) = λ̃2

2

4θ2 − 1

1 − 2λ̃θ2
ρ2, D(ρ) = λ̃

2
. (44)

The ER as in Eq. (1) can now be verified by using the previously
obtained expression of scaled variance [14],

σ 2(ρ) = λ̃(4θ2 − 1)

1 − 2λ̃θ2
ρ2.

V. DENSITY LARGE DEVIATIONS

The evolution in Eq. (9), in fact, describes the evolution
of the average density profile. As mentioned earlier, our
microscopic models are, however, stochastic by nature, which
gives rise to fluctuations in the density and the associated
current fields. According to the macroscopic fluctuation
theory (MFT) [15], the fluctuations in these two fields can
be introduced by adding a random current field ζ (x,τ ) to
the deterministic one J (x,τ ) as follows. The total current
can now be written as j (x,τ ) = J (x,τ ) + ζ (x,t), where
ζ (x,τ ) is a weak Gaussian multiplicative white noise, whose
mean is zero and strength depends on local density through
conductivity χ (ρ),

〈ζ (x,τ )〉 = 0; 〈ζ (x,τ )ζ (x ′,τ ′)〉 = 1

L
χ (ρ)δ(x − x ′)δ(τ − τ ′).

Thus, one obtains the following fluctuating-hydrodynamic
time-evolution of the density field:

∂τρ(x,τ ) + ∂x[−D(ρ)∂xρ(x,τ ) + χ (ρ)F + ζ (x,τ )] = 0.

(45)

Starting from the stochastic microscopic dynamics, and using
the Markov properties of the evolution, one can actually prove
the above stochastic hydrodynamic Eq. (45) [15]. Then, using
Eq. (45), one can, in principle, find the joint probability of any
given time-trajectories of the full density ρ(x,τ ) and current
j (x,τ ) profiles, starting from an arbitrary initial condition.

However, here, we are interested in the steady-state prob-
abilities of density large deviations. According to MFT, the
probability of an arbitrary density profile ρ(x) in the steady
state, which corresponds to Eq. (45) with zero external bias
F = 0, is given by the following large deviation probabil-
ity P[ρ(x)] ≈ e−F[ρ(x)], where the large deviation function
F[ρ(x)] satisfies [15]∫

dx

[
∂x

(
δF
δρ

)
χ (ρ)∂x

(
δF
δρ

)
− δF

δρ
∂xJD(ρ)

]
= 0. (46)

After performing a partial integration in the second term, one
can readily check that the above equation is satisfied by the

LDF F[ρ(x)], which satisfies the following conditions,

∂x

(
δF

δρ(x)

)
= ∂x{f ′[ρ(x)] − f ′(ρ0)}, (47)

1

f ′′(ρ)
= χ (ρ)

D(ρ)
. (48)

Here, ρ0 is the average or typical local mass density (which in
our case turns out to be the same as the global density since
the systems are homogeneous) at which the LDF F[ρ] has a
minimum equal to F[ρ(x) = ρ0] = 0. Equation (47), together
with this minimum condition, gives the following expression
of the LDF:

F[ρ(x)] =
∫ ∞

−∞
dx{f (ρ) − f (ρ0) − f ′(ρ0)(ρ − ρ0)}. (49)

Note that the above functional form of the LDF implies the
FR as in Eq. (4). Now substituting Eq. (4) in Eq. (48), one
immediately obtains the Einstein relation Eq. (1). Moreover,
using Eqs. (48) and (4), one can easily see that the LDF in
Eq. (49) is exactly the same as in Eq. (5), which was earlier ob-
tained directly from additivity and the FR Eq. (4). Particularly,
for the conserved-mass transport processes considered here,
one recovers free-energy density f (ρ) and chemical potential
μ(ρ) = f ′(ρ), as in Eqs. (6) and (7), by explicitly using the
expressions of conductivity χ (ρ) and diffusion coefficients
D(ρ) derived in Secs. IV A, IV B, and IV C.

VI. RESULTS: ASYMMETRIC MASS TRANSFERS

In the asymmetric mass transport processes, masses are
transferred preferentially in a particular direction, say, coun-
terclockwise. Consequently, there is, on average, a nonzero
mass current and detailed balance is manifestly broken in
the system. However, even in the case of such asymmetric
mass transfer, we explicitly show below that the bulk-diffusion
coefficient D(ρ) and the conductivity χ (ρ) still satisfy an
ER. The conductivity (differential) χ (ρ) = [∂Jd/∂F ]F=0 here
can be defined with respect to a small perturbing biasing
force field �F around the nonzero current-carrying steady
state. For simplicity, only the random sequential update
rule is considered here; the results can be straightforwardly
generalized to the parallel update rules.

To illustrate how one could incorporate asymmetry in
transfer of masses, let us now consider a particular model,
say, model I where the dynamics is described by Eq. (16)
in Sec. IV A. In this case, model I becomes one having
asymmetric transfer of masses, provided that the probability
density function φ(ri) is not symmetric around ri = 1/2.
Clearly, the asymmetric mass-transfer gives rise to an inherent
bias towards a particular direction. Note that asymmetry can
be incorporated in several other ways also, but, for simplicity,
we confine our discussions to the cases considered below.

Now, in the above mentioned asymmetric version of
model I, the time-evolution of the first moment 〈mi(t)〉 = ρi(t)
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of mass at site i is governed by

dρi

dt
= λ̃〈ri−1mi−1 + (1 − ri+1)mi+1 − mi〉

+ λ̃2

2
(2θ2 − θ1)a

[〈
m2

i−1

〉 − 〈
m2

i+1

〉]
F

+ λ̃2

2
(2θ1 − 1)a

[〈
m2

i+1

〉 − 〈
m2

i

〉]
F. (50)

Let us define strength of asymmetry α = [1 − 2θ1], which
in a particular case may depend on system size L through
the first moment θ1 of probability density function φ(ri). The
parameter α helps us in obtaining concisely the hydrodynamic
equation, which can be applicable to both weakly and strongly
asymmetric cases, depending on α. We now rescale Eq. (50)
by i → x = i/L, t → τ = tα/L, and a → 1/L, and using
the expression 〈m2

i 〉 = ρ2
i /[λ + 2λ̃(θ1 − θ2)] [14], we obtain

the hydrodynamic equation,

∂ρ

∂τ
= −λ̃

∂ρ

∂x
+ νD

∂2ρ

∂x2
− ∂

∂x
[νχ (ρ)F ], (51)

where ν = 1/αL and

χ (ρ) = λ̃2

2

1 − 4(θ1 − θ2)

λ + 2λ̃(θ1 − θ2)
ρ2; D(ρ) = λ̃

2
.

There is now an additional drift current λ̃ρ appearing in
the hydrodynamic equation. However, one can immediately
verify that the diffusivity and mobility are indeed connected
by the Einstein relation as in Eq. (1). Note that conductivity
now depends on the strength of asymmetry α through
θ1 = (1 − α)/2.

In the case of weak asymmetry where α(L) = const./L
is O(1/L), the above rescaling of time (τ ∼ t/L2) leads
to diffusive hydrodynamics with conductivity νχ (ρ) and
diffusion coefficient νD(ρ) both being finite. Whereas, in the
case of strong asymmetry where α = const. is O(1), the above
rescaling of time (τ ∼ t/L) gives hyperbolic hydrodynamics
with conductivity νχ (ρ) and diffusion coefficient νD(ρ) both
being infinitesimally small as ν → 0 in the hydrodynamic
limit. However, the MFT is still expected to describe the
density fluctuation in both cases [15] and density field ρ(x,τ )
would then satisfy the following stochastic hydrodynamic
equation with a Gaussian multiplicative noise-current ζ (x,τ ):

∂ρ

∂τ
= −∂x

[
λ̃ρ − νD

∂ρ

∂x
+ ζ (x,τ )

]
, (52)

where 〈ζ (x,τ )〉 = 0 and 〈ζ (x,τ )ζ (x ′,τ ′)〉 = [νχ (ρ)/L]δ(x −
x ′)δ(τ − τ ′). Note that the structure of stochastic hydrody-
namics for asymmetric cases remains quite similar to Eq. (45),
where JD is now replaced by JD + λ̃ρ and D and χ are
now replaced by νD and νχ , respectively. Consequently, the
density large deviation function can be obtained by solving a
slightly modified version of Eq. (46),∫

dx

[
∂x

(
δF
δρ

)
νχ (ρ)∂x

(
δF
δρ

)
+ δF

δρ
∂xνD(ρ)∂xρ

]

+ λ̃

∫
dx

δF
δρ

∂xρ = 0. (53)

10-5

10-4

10-3

10-2

10-1

 5  10  15  20  25  30

P υ
(m

)

m

λ=0.0
λ=0.25

λ=0.5

FIG. 1. Weakly asymmetric mass transfers: Model I (random
sequential update), steady-state probability distribution Pv(m) is
plotted as a function of subsystem mass m for λ = 0, 0.25 and 0.5
and subsystem volume v = 10.

By noting that the last term in the left-hand side of the above
equation is identically zero when integration is performed over
a periodic boundary, Eq. (49), along with Eq. (48), provides the
density LDF, having the same functional form as in Eqs. (5),
(6), and (7). One could check that the same LDF can also be
recovered by directly using additivity. The only difference in
the two cases of symmetric and asymmetric mass transfers is
that the exact expressions of free energy f (ρ) may differ as
it is directly obtained from the ratio (related to parameter η)
of conductivity χ (ρ) and diffusion coefficient D(ρ) (or, from
the mass fluctuation σ 2(ρ)), and the ratios may be different in
these two cases. Indeed, the LDFs in the cases of symmetric
and strongly asymmetric mass transfer are different as the
conductivity χ (ρ) is different in these two cases. However,
the LDFs are the same in symmetric and weakly asymmetric
cases, which is somewhat expected.
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P υ
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λ=0.5

FIG. 2. Strongly asymmetric mass transfers: Model I (random
sequential update), steady-state probability distribution Pv(m) is
plotted as a function of subsystem mass m for λ = 0, 0.25, and 0.5
and subsystem volume v = 10.
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In Figs. 1 and 2, we have plotted steady-state probability
distribution Pv(m) [see Eq. (8)] of mass m in a subsystem of
volume v = 10 as a function of m for λ = 0, 0.25, and 0.5 and
L = 5000, which are in excellent agreement with fluctuating
hydrodynamics Eq. (52) as well as additivity property in
Eq. (3). It should be noted that, for a particular value of λ,
the subsystem mass distributions are different for weak and
strong asymmetry, depending on the parameters θ1 (or α, the
strength of asymmetry) and θ2.

We have also considered asymmetric versions of Models
II and III, leading to similar conclusions as above (results not
presented).

VII. SUMMARY AND CONCLUDING REMARKS

In this paper, we have derived hydrodynamics of paradig-
matic conserved-mass transport processes on a one dimen-
sional ring-geometry, which have been intensively studied
in the last couple of decades. In these processes, we have
calculated two transport coefficients—diffusion coefficient
D(ρ) and conductivity χ (ρ). Remarkably, the two transport
coefficients satisfy an equilibrium-like Einstein relation Eq. (1)
even when the microscopic dynamics violate detailed balance.
In all cases studied here, we find that the diffusion coefficient
D is independent of mass density ρ and the conductivity
χ (ρ) ∝ ρ2 is proportional to the square of the mass density ρ.
Moreover, using these two transport coefficients, a fluctuating
hydrodynamic framework for these processes have been
set up here, following a recently developed macroscopic
fluctuation theory (MFT). The MFT has helped us to calculate
density large deviation function (LDF), which is analogous
to an equilibrium-like free-energy density function. The LDFs
completely agree with that obtained previously in Refs. [12,14]
solely using an additivity property Eq. (3).

Interestingly, the analytically obtained functional depen-
dence of the two transport coefficients D(ρ) and χ (ρ) on den-
sity indicates that, on large space and time scales, these mass
transport processes belong to the class of Kipnis-Marchioro-
Presutti (KMP) processes. However, unlike the KMP processes
on a ring, the processes studied in this paper generally have
a nontrivial spatial structure in their steady states. That is,
they have finite spatial correlations in the steady state. Not
surprisingly, the exact probability weights of microscopic
configurations in the steady state, except for a few special cases
[27,29,31,35], are not yet known. In fact, precisely due to this
nontrivial spatial steady-state structure in out-of-equilibrium
interacting-particle systems, finding hydrodynamics in such
systems poses a great challenge. This is because, in the
absence of knowledge of the exact steady-state weights, it
is usually difficult to calculate averages of local observables

(e.g., moments of local mass variables, which have been actu-
ally used here to derive hydrodynamics of these processes).

However, as noted in Ref. [14], there is an important
feature in these conserved-mass transport processes (with zero
external bias F = 0), arising from the fact that the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy involving
n-point spatial correlations in the steady states closes. In
other words, n-point spatial correlations in the steady state
do not depend on (n + 1)-point or any higher-order spatial
correlations. This particular property previously enabled us to
exactly calculate the steady-state 2-point spatial correlations
and, consequently, the second moment 〈m2

i 〉 of local mass at
site i [14]. Indeed, the second moment of local mass, which
appears in the hydrodynamic equations [e.g., see Eq. (19)],
determines the functional dependence of the conductivity χ (ρ)
on density ρ.

Finally, it is worth mentioning that, unlike in equilibrium,
microscopic dynamics in the mass transport processes consid-
ered here, in general, do not satisfy detailed balance. Even
for the processes with symmetric mass transfers, we have
explicitly shown that Kolmogorov criterion, and thus detailed
balance, is violated (even in the absence of a biasing force) and
the microscopic dynamics is not time reversible. That is, for a
forward path in the configuration space, there may not exist a
reverse path. However, in spite of the lack of any microscopic
reversibility in the dynamics of the processes, the observed
Einstein relation suggests that these mass transport processes
possess a kind of time-reversibility on a coarse-grained
macroscopic (hydrodynamic) level. As discussed here, this
macroscopic time-reversibility can be understood in the light
of a macroscopic fluctuation theory (MFT) [15], which indeed
correctly predicts the probabilities of density large-deviations
obtained earlier in Refs. [12,14]. From an overall perspective,
we believe our study could provide some useful insights in
characterizing fluctuations in many other driven many-particle
systems, e.g., various driven lattice gases [12,20], where a
fluctuating hydrodynamic description is yet to be obtained.
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