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Thermodynamics of quantum information scrambling
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Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators
(OTOCs), i.e., correlators of the type 〈[Wτ,V ]†[Wτ,V ]〉, whose measurements present a formidable experimental
challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point
measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of
broader applicability than methods employed in current experiments and provides a clear-cut interpretation of
quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as
work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our
thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also
discuss how the method can be used to extend the reach of current experiments.
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I. INTRODUCTION

How macroscopic irreversibility emerges from reversible
microscopic dynamics is one of the most studied problems in
statistical mechanics since the early days of the famous debate
between Boltzmann and Loschmidt [1]. Popular quantifiers of
irreversibility are the Loschmidt echo [2] and the irreversible
entropy production [3]. Recently much attention has been
devoted to yet another quantifier, namely, the so-called out-
of-time-order correlator (OTOC), defined as

CV,W (τ ) = 〈[Wτ,V ]†[Wτ,V ]〉
= 〈V †W †

τ WτV 〉 + 〈W †
τ V †V Wτ 〉

− 2 Re〈W †
τ V †WτV 〉, (1)

where V,W are generic Hermitian or unitary operators. The
concept was first introduced by Larkin and Ovchinnikov [4] to
investigate the instability of semiclassical electron trajectories
in superconductors and is currently employed as a tool for
diagnosing quantum chaos [5]. The name OTOC reflects the
fact that the correlator CV,W (τ ) contains the term,

FV,W (τ ) = 〈W †
τ V †WτV 〉, (2)

where the operators are not ordered in time. Such lack of
ordering poses a major experimental challenge for which
they had been dubbed “unartig Korrelatoren” (i.e., “naughty
correlators”) [6].

Interest in OTOCs is currently undergoing a revival [7–18]
after Kitaev pointed out their relevance in the context of holo-
graphic duality [19]. Accordingly a number of experimental
schemes have recently been proposed for the measurement of
the OTOC, and the first experimental measurements thereof
have just been reported. Swingle et al. [12] propose an
interferometric scheme where the OTOC is encoded into the
quantum state of an ancilla, to be implemented in a cold-atom
setup. Recent experiments, performed with a trapped ion
quantum magnet and NMR [20,21], respectively, report a
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method for measuring infinite temperature (i.e., ρ ∝ 1, ρ

is the density matrix) OTOCs, i.e., OTOCs of the form
FV,W (t) = Tr(W †

t V †WtV ). The fact that ρ does not appear
here introduces a great simplification in the implementation
of the scheme where now one can access FV,W (t) by preparing
the system in the service-state ρ ′ ∝ V + a1 (1 stands for
the identity operator) and measure the simpler three-point
correlator Tr(W †

t V †Wtρ
′) instead (see below for a more

detailed discussion of this point).
Here we propose alternative methods to access FV,W (t) and

CV,W (τ ) experimentally which do not require the employment
of an ancillary system nor of a service state and is applicable
to a broad set of states ρ including thermal states. The method
is inspired by a scheme that proved extremely successful for
the investigation of nonequilibrium quantum thermodynamics,
namely, the so-called two-point measurement scheme [22–28].
Two-point measurement schemes are protocols where an
observable is measured twice at the beginning and at the end
of some nonequilibrium manipulation carried on a system.
Their experimental feasibility has recently been demonstrated
in Ref. [29]. The statistics of the observed change in the
measured values encodes information about the manipulation.
In our scheme an observable O is measured projectively at
the beginning and at the end of the information scrambling
manipulation (which we dub the “wing-flap protocol” due to
its connection with the idea of the butterfly effect coming from
nonlinear physics), and the change in its value �O is recorded.
In the wing-flap protocol a system evolves according to some
forward evolution e−iτH and then goes back with the backward
evolution eiτH . The two evolutions are interrupted by a wing
flap (i.e., the application of some unitary operator W ) that
prevents the system to trace back to where it came from, see
Fig. 1. As we will see information about quantum information
scrambling is encoded in the statistics of the observed changes
in the measured values of O.

II. TWO-POINT MEASUREMENT

We first focus on the F correlator in the case when V,W

are unitary operators. Let us express V as

V = eiuO, (3)
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FIG. 1. The wing-flap protocol.

with the appropriate Hermitian operator O and real number u.
Let us then consider the following protocol, which we dub the
wing-flap protocol, see Fig. 1:

(1) Prepare the system in some state ρ.
(2) Measure O.
(3) Evolve the system with H for a time t = τ .
(4) Apply the wing-flap unitary perturbation W .
(5) Evolve the system with −H for a time t = τ .
(6) Measure O.
The two measurements of O are assumed to be projective

giving eigenvalues On,Om, respectively, and collapsing the
system on the according eigenstates |n〉,|m〉. For simplicity
we assume, without lack of generality, that the eigenvalues of
O are nondegenerate. We will call the evolution under H , the
forward evolution, and the evolution under −H , the backward
evolution [30].

In the absence of a wing flap, i.e., when W is the identity
operator 1, the state of the system at the end of the backward
evolution would be exactly the initial state |n〉 of the forward
evolution, and the second measurement would not alter it.
When there is wing-flap W �= 1, the state at the end of the
backward evolution is in general a linear combination of all
eigenstates of O, and the second measurement selects one of
them |m〉, which may differ from |n〉 due to the information
scrambling.

On repeating the wing-flap protocol many times, in each
realization the observed eigenvalues On,Om assume random
values, and by repeating the protocol an infinite number of
times one can build the probability density function (pdf)
p(�O,τ ) of observing a change,

�O = Om − On, (4)

in the quantity O. The statistics p(�O,τ ) contains information
about the OTOC Eq. (2). This connection can be established
at a formal level as follows. Let

G(k,τ ) =
∫

p(�O,τ )e−ik �Od �O (5)

be the characteristic function of p(�O,τ ), i.e., its Fourier
transform [31]. Our first main result is

FeiuO,W (τ ) = G(u,τ ). (6)

Equation (6) says that the OTOC associated with the operators
W,eiuO is identical to the characteristic function of the random
variable �O in the wing-flap protocol above.

To prove the statement consider the formal expression of
p(�O,τ ),

p(�O,τ ) =
∑
n,m

δ[�O − Om + On]Pτ [m|n]pn, (7)

where pn = Tr �nρ is the probability of observing On in the
first measurement and δ[x] stands for Dirac’s δ function. For
simplicity, in the following we will be restricted to the case
of [ρ,O] = 0. This is the only restriction we have on ρ. The
symbol Pτ [m|n] stands for the probability of observing Om

in the second measurement given that On was observed in the
first measurement,

Pτ [m|n] = |〈m|Uτ |n〉|2, (8)

where Uτ is the unitary describing the evolution between the
two measurements. It reads

Uτ = eiτHWe−iτH . (9)

Note that Uτ is the operator W at time τ in the Heisenberg
representation: Uτ = Wτ . Using (5), (7)–(9), the resolution of
identity

∑
m |m〉〈m| = 1 and [ρ,O] = 0, we obtain

G(u,τ ) =
∑
n,m

e−iuOmeiuOnPτ [m|n]pn

=
∑
n,m

〈n|U †(τ )|m〉e−iuOm〈m|Uτ |n〉eiuOnpn

=
∑

n

〈n|U †
τ e

−iuOUτ e
iuO |n〉pn

= Tr U †
τ e

−iuOUτ e
iuOρ

= Tr W †
τ V †WτVρ. (10)

Thus the characteristic function of the statistics p(�O,τ ) of
changes in �O is the OTOC between eiuO and W . Practically
it means that one can experimentally access FeiuO,W (τ ) by
measuring the two-point statistics of O and then Fourier
transform it. In a typical experimental scenario O might be,
for example, a local spin operator, and W might be a local
rotation at a different site as in Ref. [21]. Such a scheme is
well within the reach of current experimental setups.

III. THERMODYNAMICS OF INFORMATION
SCRAMBLING

The realization that OTOCs can be recast as two-point
measurement protocols allows us to directly connect with
nonequilibrium quantum thermodynamics. Consider the case
when the measured quantity O is the Hamiltonian H0 of a
quantum system O = H0. In this case Eq. (6) implies that
FeiuH0 ,W (τ ) is the characteristic function of work Gwork(u,τ ),
namely, the Fourier transform of the work probability distri-
bution function,

p(w,τ ) =
∑
n,m

δ[w − em + en]Pτ [m|n]pn. (11)

Here w denotes work, i.e., the difference of final and initial
measured system eigenenergies ek . In absence of the wing
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FIG. 2. Shown here are (a) the time dependent mean and (b) second moment of the work distribution for the quench protocol described
in the text. (c) shows the real part of the OTOC FeiuO ,W (τ ) for u = 1. Here we focus on a chain of nine spins at inverse temperature β = 0.1
contrasting both integrable (blue solid line) and nonintegrable (orange dashed line) dynamics. We use the model and parameters specified in
Ref. [39] (J = 1, g = 0.904 508 49,h = 0.809 0169).

flap no work is performed on the system, whereas in general,
when a wing-flap operator W is present, work is performed on
the system, and the distribution drifts and spreads. The spread,
namely, the second moment of the work distribution can be cast
in the form 〈w2〉 = ∫

dw p(w,τ )w2 = Tr(W †
τ H0Wτ − H0)2ρ.

Simple manipulations show that it is indeed the square of the
commutator between Wτ and H0,

〈w2〉 = 〈[Wτ,H0]†[Wτ,H0]〉 = CH0,W (τ ). (12)

In the case of an initial thermal equilibrium ρ = e−βH0/Z

(β denotes the inverse temperature, and Z = Tr e−βH0 denotes
the partition function), the first moment 〈w〉 = Tr(W †

τ H0Wτ −
H0)ρ of the work distribution can be written in terms of the
relative entropy S[ρτ ‖ ρ] between the initial state ρ and its
evolved ρτ [32,33],

〈w〉 = β−1S[ρτ ‖ ρ] = β−1Tr(ρτ ln ρτ − ρτ ln ρ). (13)

The quantum relative entropy is a measure of the distin-
guishability of the two quantum states ρ,ρτ = WτρW †

τ , and its
non-negativity is a consequence of the second law of thermo-
dynamics [34]. It accordingly provides a meaningful quantifier
of information scrambling occurring as a consequence of wing
flapping [35].

The characteristic function of work, the second moment
of the work distribution, and the first moment all encode
various aspects of information scrambling. We remark that all
of them can be inferred from the work pdf p(w,τ ), however
the last two can also be accessed without measuring p(w,τ ).
In fact, in order to measure the first or second moment
〈wa〉, a = 1,2, one can measure the expectation of Ha

0 in
the initial state ρ and its expectation in the final state ρτ

and then take their difference, which is a much simpler
procedure. It is worth stressing that, if after the wing-flap
protocol the system is brought back in contact with a thermal
bath as to reestablish its initial thermal state, the quantity
β−1S[ρτ ‖ ρ] is equal to the average heat 〈q〉 that the system
releases into the bath [36]. Thus information scrambling
might be accessed not only through work measurements, but
also through heat measurements. Calorimetric measurement
schemes being developed for low temperature solid state
devices [37,38] could be used for this purpose.

IV. ILLUSTRATIVE EXAMPLE

In order to illustrate our results, we consider a spin chain
of length L described by the Hamiltonian,

H0 = g

L∑
i=1

σ i
x (14)

prepared in the thermal state ρ = e−βH0/Z. At time t = 0
we turn on a perturbation Hi so that the system evolves
with the Hamiltonian H = H0 + Hi . At time t = τ/2 we
instantaneously apply the wing-flap operator (a rotation about
the x axis) W = e−iθσ k

x with θ = π/2. The system then evolves
with −H until time τ . We consider the following forms of
evolutions generated by Hamiltonians Hi :

H1 = J

L−1∑
i=1

σ i
zσ

i+1
z , (15)

H2 = J

L−1∑
i=1

σ i
zσ

i+1
z + h

L−1∑
i=1

σ i
z + (h − J )

(
σ 1

z + σL
z

)
, (16)

corresponding to integrable and ergodic dynamics, respec-
tively. This model was recently used by Kim and Huse in order
to understand the phenomenology of entanglement growth
in ergodic and integrable systems [39]. We choose identical
parameters here. Figure 2 shows the temporal behavior of
the real part of the OTOC FeiuH0 ,W (τ ), the mean and second
moment of the associated work distributions for nine spins. In
all cases the wing-flap operator is acting on the central spin
(k = 5), and both integrable and ergodic evolutions are dis-
played. Note how, as also shown in a closely related experiment
[21], the integrable case is characterized by oscillations, i.e.,
recurrences, whereas no recurrence is observed in the time span
over which the simulation is carried in the ergodic case. This
reflects the irreversible information scrambling occurring in
the nonintegrable case. Note also that, despite nonintegrability,
no exponential behavior is observed in the time dependence
of the OTOC; this is in agreement with previous numerical
[40] and experimental findings [21]. The plots reveal a small
mean work as compared to the second moment 〈w〉2 �
〈w2〉 and a proportionality between them in accordance with
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linear response theory 〈w〉 	 β(〈w2〉 − 〈w〉2)/2 	 β〈w2〉/2
[41,42].

V. EXTENDING THE REACH OF CURRENT
EXPERIMENTS

Our analysis allows for extending the reach of exist-
ing experiments, e.g., Refs. [20,21]. These experiments, as
mentioned in the Introduction, measure infinite temperature
OTOCs by means of a service-state ρ ′. Let us now comment
on the experiment in Ref. [20]. There V is proportional to
Sx = ∑

i σ
i
x , that is, the x component of the total magnetization

of a system of N spins. The system is prepared in the
factorized service-state ρ ′ with all spins pointing up in the
x direction. It then evolves under some wing-flap protocol
Wτ of the type described above. The authors measure the
expectation 〈Sx〉 at the end of the protocol. Interpreting Sx

as the initial Hamiltonian, i.e., H0 = Sx , that is, in fact a
measurement of the change in expectation of H0, namely,
a measurement of average work 〈w〉. Due to the special
preparation ρ ′ = H0 + (N/2)1, the latter assumes the form
of an infinite temperature OTOC:

〈w〉 = Tr(W †
τ H0Wτ − H0)ρ ′ = Tr W †

τ H0WτH0 − Tr H 2
0 .

The same measurement of 〈Sx〉 ∝ 〈w〉 carried on a generic
finite temperature thermal state ρ ∝ e−βH0 would give the
relative entropy S[ρτ ‖ ρ] according to Eq. (13). Under the
provision of linear response theory that would also give
directly the second moment of the work distribution 〈w2〉,
hence the average square commutator 〈|[Wτ,H0]|2〉 according
to Eq. (12). We thus see that the thermodynamic connection
pointed out above directly allows to extend the reach of

current experiments, allowing the so far elusive measurement
of finite temperature OTOCs.

VI. CONCLUSIONS

To summarize we have put forward an alternate method
for measuring information scrambling. The alternate method
consists of a two time measurement scheme using projective
measurements or simpler measurements of expectations. At
variance with previously proposed schemes, the present one
does not require the employment of an ancillary system
nor the preparation of a service state and is applicable to
generic finite temperature conditions. Accordingly, its scope
of applicability is broader than current methods. The scheme
not only offers a practical alternative for the measurement of
OTOCs as compared to existing proposals, but also reveals a
fundamental connection between nonequilibrium fluctuations
of fundamental thermodynamics quantities, namely, work and
heat and scrambling of information.
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