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Frustrated crystallization of a monolayer of magnetized beads under geometrical confinement
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We present a systematic experimental study of the confinement effect on the crystallization of a monolayer
of magnetized beads. The particles are millimeter-scale grains interacting through the short range magnetic
dipole-dipole potential induced by an external magnetic field. The grains are confined by repulsing walls
and are homogeneously distributed inside the cell. A two-dimensional (2d) Brownian motion is induced by
horizontal mechanical vibrations. Therefore, the balance between magnetic interaction and agitation allows
investigating 2d phases through direct visualization. The effect of both confinement size and shape on the grains’
organization in the low-energy state has been investigated. Concerning the confinement shape, triangular, square,
pentagonal, hexagonal, heptagonal, and circular geometries have been considered. The grain organization was
analyzed after a slow cooling process. Through the measurement of the averaged bond order parameter for
the different confinement geometries, it has been shown that cell geometry strongly affects the ordering of the
system. Moreover, many kinds of defects, whose observation rate is linked to the geometry, have been observed:
disclinations, dislocations, defects chain, and also more exotic defects such as a rosette. Finally, the influence of
confinement size has been investigated and we point out that no finite-size effect occurs for a hexagonal cell, but
the finite-size effect changes from one geometry to another.
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I. INTRODUCTION

For an infinite assembly of identical particles with isotropic
interaction, the hexagonal lattice without defects represents the
fundamental structure of a crystal. Topological defects play a
key role in the study of the melting of two-dimensional (2d)
systems [1–5], the propagation of cracks [6], the morphology
of cell colonies [7], and the physical properties [8–11] of
materials such as mechanical properties and electrical and
thermal transport. Thus, controlling the number and the
type of defects offers an interesting way to tune material
properties. Curved surfaces, polydispersity, or geometrical
confinement lead to the appearance of defects. Due to the
large amount of biological and physical systems formed on
curved backgrounds, the link between defects in 2d crystals
and curved surfaces has been extensively studied, adopting
two different points of view. On the one hand, the crystal is
wrapped on a fixed curved surface (spheres, paraboloids, tori,
and others), imposing defects [12–15]. On the other hand,
defects are frozen in the crystal, inducing the buckling of
the surface [16,17]. In flat geometry, defects are introduced
with polydispersity [18] or with geometrical confinement. The
study of the structure and the behavior of confined systems
is motivated by the emergence of new technologies such as
quantum dots [19,20] or hollow nanostructures [21–23].

Many studies have shown that the nature, the size, and the
geometry of the spatial confinement can affect the dynamics of
the system near the boundaries [24–26], the melting scenario
[27–31], and the structure of the system [28–36]. In a previous
study, with the same experimental setup [37], we have shown
that a vibrated two-dimensional assembly of millimeter-scale
grains interacting through a short range magnetic dipole-
dipole potential can be used to study phase transitions. The
macroscopic size of the grains allows a direct visualization of
the dynamics. Moreover, we have shown that this macroscopic
system mimics quantitatively colloidal suspensions [38]. In
particular, the agitation was found to follow a Maxwellian

distribution. The low-energy configuration of small systems,
composed of a few dozen particles, is dominated by the
geometry of the confinement, whether for a circular, square,
hexagonal, or pentagonal geometry [31,33]. To our knowledge,
only circular and hexagonal confinements have been studied
for larger systems, composed of a few hundred particles
[27,30,32,34–36].

In this paper, we present a systematic study of the effect
of the confinement on the low-energy state of the system
composed of a few hundred millimeter-scale grains, with
magnetic dipole-dipole interaction, for triangular, square,
pentagonal, hexagonal, heptagonal, and circular geometries
with a homogeneous distribution of the particles.

II. EXPERIMENTAL SETUP

The experimental setup consists of a monolayer of N

soft ferromagnetic spherical beads of diameter d = 1 mm
and mass m = 0.004 g confined in a 2d horizontal cell with
ferromagnetic walls. The beads are immersed in a vertical
and homogeneous magnetic field H , produced by two 19 cm
diameter coils in Helmholtz configuration, inducing magnetic
dipole moments μ = V χmH where V is the volume of
the beads and the magnetic susceptibility χm = 3 [39,40].
As the magnetic field is homogeneous and the beads are
monodisperse, the repulsive potential between two beads
separated by a distance rij can be written as

Uij = μ0

4π

V 2χ2
mH 2

r3
ij

. (1)

Thus the mean magnetic interaction energy between two beads
is

〈U 〉 = μ0

4π
V 2χ2

mH 2

(√
3

2
ρ

)3/2

, (2)
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where ρ is the particle area density and ( 2√
3

1
ρ

)
1/2

is the typical
distance between two beads. The interactions are therefore well
controlled by adjusting the strength of the external magnetic
field H , ranging from 4900 to 11 800 A/m. Moreover, under
an external magnetic field, the walls are repulsive and confine
the beads. The cell is horizontally excited by two perpendicular
electromagnetic shakers generating 35 Hz sinusoidal signals
modulated by a white noise in amplitude. As shown in [37,38],
this configuration leads to a 2d Brownian motion of the beads.
The magnetic coupling parameter is defined as

� = 〈U 〉〈
1
2mv2

〉 . (3)

The mean kinetic energy 〈 1
2mv2〉 has been estimated with a

50 frames per second camera for H = 4900 A/m, because
with such a value the magnetic interactions are weak and
the agitation prevails. All experiments are fully controlled
by a LABVIEW routine and follow the same protocol: for
2 seconds, a 11 800 A/m magnetic field is generated to spread
homogeneously the set of beads in the cell. Simultaneously,
the agitation is switched on and the magnetic field starts a
linear increase from 4900 to 11 800 A/m for 200 seconds,
corresponding to a slow cooling of the system from � = 10 to
70. Afterward, the magnetic field remains at its highest value
for 30 seconds. This slow cooling allows the system to reach
its stationary state, considered a crystal phase. Otherwise, the
system would solidify in an amorphous state. The experimental
protocol is the same for the complete set of experiments
shown in the present paper. Two parameters are investigated:
(i) the shape of the cell and (ii) the size of the cell. For each
experiment, the filling fraction of the cell is fixed to φ = 0.24
and the particle area density is ρ = 315 250 beads per m2. A
CCD camera records a series of images at a fixed rate of 1 frame
per second during the cooling process described above. The
resolution of the camera in the region of interest is 500×500
pixels. The system is backlighted with a lattice of LEDs and
a diffuser. Therefore, the beads and the background appear
respectively in black and white. A basic analysis method allows
us to determine the position of each bead during the whole
process.

The numbers of beads chosen for the present study are
N = 169, 331, and 721, satisfying the relationship giving the
number of grains needed to fill a finite hexagonal lattice,

N = 3p2 − 3p + 1, (4)

where p is the number of beads on an edge.

III. RESULTS

A. Degree of ordering

The structural order of the system is characterized by the
bond order parameter

�6,i = 1

n

n∑
j=1

ei6θij , (5)

where the sum is carried out over the n nearest neighbors
and θij is the angle between the horizontal axis and the bond
linking the particle i and its neighbor j . The modulus of the
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FIG. 1. Evolution of the global orientational order �6 during
the 200 second cooling process for N = 331 beads. For each
geometry of the cell, the points correspond to an average over three
independent experiments. Typical error bars corresponding to the
standard deviation are indicated.

bond order parameter |�6,i | gives information about the sixfold
symmetry of the unit cell composed of the bead i and its first
neighbors. Therefore |�6,i | = 1 when the unit cell follows
a perfect sixfold symmetry, |�6,i | < 1 when the symmetry
deviates from the perfect sixfold symmetry, and |�6,i | = 0
when the neighbors of the bead i are randomly orientated.
The average over all the beads, excluding those near the walls,
gives the global orientational order �6 of the system. One has

�6 = 〈|�6,i |〉. (6)

The evolution of this global orientational order during the
cooling process for N = 331 beads is reported in Fig. 1. For
each cell geometry, the order parameter �6 saturates during
the cooling, indicating that the maximum degree of order is
achieved by the system. For each geometry, the final state
of the system exhibits a global orientational order �6 > 0.8,
ensuring that the system is in a crystalline state [41] and not
trapped in an amorphous state.

The final value of �6 for each geometry is reported in Fig. 2.
As expected, the final value of �6 for both triangular and
hexagonal cell shapes is higher than the value obtained with
other cell geometries. Indeed, the triangular and hexagonal cell
shapes are compatible with the hexagonal lattice formed by
the grain positions. Incompatibilities between cell shape and
hexagonal lattice induce the presence of defects and reduce
the global orientational order �6. The state reached by the
system is not the ground state but a low-energy state. If the
cell geometry is not compatible with the lattice, frustrations
are created; these are a source of disorder leading to a
competition between low-energy states. We show hereafter
that this competition allows one to observe a wide range of
defect types.

It has been checked that the equilibrium value of �6 is
robust for a change in the filling fraction φ. For a variation
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FIG. 2. Global bond order parameter �6 at the end of the cooling
process as a function of the number n of edges of the cell. The error
bars correspond to the standard deviation of ψ6 over three independent
experiments.

of φ from 0.20 to 0.28, the mean final values of �6 and their
standard deviation are equivalent to those presented in Fig. 2.

B. Type and distribution of defects

Let us consider the nearest neighboring of each particle. The
topological charge allocated to a particle i is defined as Qi =
6 − ni for a particle belonging to the bulk and Qi = 4 − ni

for a particle at the boundary, where ni corresponds to the
coordination number of the particle i. The coordination num-
ber is determined using the Delaunay triangulation. The total
topological charge of the system in a planar configuration must
satisfy the Euler condition, i.e.,

∑N
i Qi = 6. We checked that

this condition is always satisfied in our system whatever the
confinement geometry. Figure 3 shows snapshots of the system
in the low-energy state for each geometry. The beads with
sixfold (Q = 0), fivefold (Q = 1), and sevenfold (Q = −1)
coordination numbers are respectively colored in yellow, red,
and green in the Voronoi tessellation. Many types of defects
have been observed in our system [34]. An isolated particle
with a nonzero topological charge is called a disclination.
A pair of fivefold and sevenfold disclinations is called a
dislocation. Defect chains, also called grain boundaries, are
alternating fivefold and sevenfold disclinations. These chains
can be topologically neutral or charged. A scar is the most
rudimentary defect chain, only composed of two fivefold and
one sevenfold disclination. Most of the defects are observed
as a chain with variable sizes or in the form of a topologically
charged cluster. Figure 4 (left) shows a particularly well
organized cluster with a +1 topological charge, called a
rosette, with a fivefold symmetry. No neutral cluster have
been observed. A topologically neutral defect is responsible of
the loss of translational order and, according to the KTHNY
(Kosterlitz, Thouless, Halperin, Nelson, and Young) theory
[1–5], the topologically charged particles are responsible of
the loss of orientational order. Thus, a charged defect tends to
create curvature in crystal lines: +1 defects attract the lines of
the lattice and −1 defects repel the lines of the lattice [13].

The observation probability of a topologically charged
particle in the bulk belonging to a defect type, as described
below, is reported in Table I. The defects are at least counted

FIG. 3. Stack of Voronoi diagrams and Delaunay triangulations
for each geometry with N = 331 beads. Beads with respectively
fivefold, sixfold, and sevenfold coordination are colored in red,
yellow, and green in the Voronoi diagram. Voronoi cells for beads
at the boundary are not shown for clarity.

over 993 particles for each geometry. The cell geometry influ-
ences both the number and the distribution of defects among
the different types listed. The mean number of topologically
charged particles, 〈ND〉, depends on the geometry of the
confinement and can be directly related to �6.

We have observed that the cell geometry influences the
spatial distribution of the defects in the system. Figure 5

FIG. 4. (Left) Rosette defects in a pentagonal confinement.
(Right) Six topologically charged defects near the boundary drawing
a hexagon with the same orientation as the lattice.
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TABLE I. Observation rate of a topologically charged particle in the bulk belonging to a dislocation, a disclination, a neutral chain, a
charged chain, or a cluster for each geometry with an N = 331 beads system. 〈ND〉 is the averaged number of topologically charged particles
observed in an experiment. Counting is performed at least over three experiments.

〈ND〉 Dislocation Disclination Neutral chain Charged chain Cluster Rosette

Hexagon 0
Triangle 6 ± 2 1.00 0.00 0.00 0.00 0.00 0.00
Circle 18 ± 4 0.04 0.00 0.00 0.96 0.00 0.00
Square 26 ± 11 0.22 0.07 0.28 0.20 0.23 0.00
Pentagon 19 ± 3 0.55 0.01 0.08 0.24 0.00 0.12
Heptagon 22 ± 2 0.46 0.06 0.24 0.24 0.00 0.00

presents the cumulated radial distribution of the topologically
charged particle ND(r) for the final state of the system
containing 331 beads for each geometry. Hexagonal and
triangular cell geometries are not shown due to the lack of
defects in these geometries. The cell geometry is found to
affect significantly the radial distribution ND(r). In pentagonal
cells, the defects are distributed everywhere in the cell, with
the exception of the outer region containing only a few defects
(mostly dislocations) which do not belong to a large chain or
to a cluster. In contrast, all the defects in a circular cell are
located in the outer region. Defects in squared or heptagonal
cells are located everywhere but are more rare in the center.
As shown by the cumulated radial distribution of the particle
number N (r) (see insert of Fig. 5), this difference is not
explained by an inhomogeneity of the beads’ distribution in the
cell.

Since the selected bead number satisfies Eq. (4), almost
no defects have been observed in the hexagonal cell, with the
exception of rare dislocations because the system is not in
the ground-state. Therefore, a nonzero probability to observe
dislocation exists. In any case, the total topological charge in
the bulk is Qbulk = 0 and the defects at the boundary appear
at the six corners of the cell.
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FIG. 5. Cumulated radial distribution of defects ND(r) for the
final state of the system for square, pentagonal, heptagonal, and
circular geometries for N = 331 beads. In the insert is the cumulated
radial distribution of the particle number N (r); the black curve
corresponds to a homogeneous distribution. The distance r from the
center is normalized by the mean distance a between two beads in
the system.

Even if the triangular geometry is compatible with the
hexagonal lattice, some dislocations are observed. Indeed, to
fit a perfect hexagonal lattice in a triangular cell, the number
of beads should follow the relation N = p(p + 1)/2, which is
not satisfied. As dislocations are topologically neutral, the total
topological charge in the bulk is Qbulk = 0 and two charged
particles per corner are present at the boundary.

Crystals confined in a circular geometry have been widely
studied, and our results are in agreement with the observations
reported previously [27–29,32,34]. A monodomain crystal
with hexagonal lattice is well defined in the bulk. Near the
boundary, six defects with a +1 topological charge drawa
hexagon with the same orientation than the lattice [see Fig. 4
(right)]. Unlike the hexagonal and triangular cells which fix the
crystal orientation, the circular cell does not impose any privi-
leged crystal orientation. For each independent experiments a
random global orientation of the crystal is observed.

In the square cell, the orientation of the lattice is directed
by two parallel edges among the four edges of the cell
because the cell and the lattice are sharing a mirror symmetry.
As a consequence, the defects are situated near the two
frustrated edges and are aligned to form two grain boundaries.
Despite these defects near the edges, we observe a large
monodomain following a hexagonal lattice between the two
grain boundaries, as illustrated in Fig. 3. In this geometry,
the defect positions are well determined but the nature
of the defects is diversified: dislocations and neutral and
charged grain boundaries and clusters have similar occurrence
probabilities. The global bond order parameter �6 is associated
with a large error bar for a squared cell (see Fig. 2)
because the structure of the system significantly changes
from one experiment to an another, meaning that the square
confinement represents a strong frustrat ion for a hexagonal
cell.

For each experiment in the pentagonal cell, five topolog-
ically charged particles are found at the boundary at each
corner of the cell. Therefore, the total topological charge in
the bulk is Qbulk = +1, in agreement with the Euler relation.
Many neutral defects are observed, mainly dislocations, but
no defects with negative topological charge are observed,
meaning that only one defect with +1 topological charge is
observed per experiment. This positive defects take the form
of a positively charged chain of defects or can be a more
exotic defect such as the rosette. As a consequence of the
isolated charged defects in the bulk, the global orientation is
decreased and the lattice appears distorted. Moreover, a long
chain of defects situated in the middle of the bulk divides the
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FIG. 6. Final value of �6 for pentagonal, hexagonal. and circular
geometries for N = 169, 331, and 721 beads at constant filling
fraction. The lines correspond to a linear fit.

crystal into two distinct domains with different orientations. In
the other geometries, this phenomena is not observed because
charged defects are in average located close to the boundaries
or close to a defect with an opposite charge.

In the heptagonal cell, the observation of one positive
boundary defect at each corner associated with a negative
defect in the bulk could be expected. However, this defect
distribution has not been observed. In all experiments, positive
boundary defects are localized only at six of the seven cell
corners, and the condition Qbulk = 0 is always respected.
Moreover, many dislocations are observed in the bulk. How-
ever, in each independent experiment with the heptagonal
cell, we observe one positive defect and one negative defect
separated by ten typical particle distances. Thus, as the two
opposite charged defects are far from each other, a distortion
in the lattice is observed.

C. Cell size effect

The effect of the confinement size has been studied. Figure 6
shows the final value of �6 for pentagonal, hexagonal, and
circular geometries for N = 169, 331, and 721 beads with
a constant filling fraction φ = 0.24. The lines are guides
for the eyes and correspond to linear fits for the hexagonal,
pentagonal, and circular geometries. For each geometry, the
final value of �6 converges to a unique value for large systems.
Nevertheless, the finite size of the system affects the particle
ordering.

As discussed in Sec. III B, the nature of the defects depends
on the cell geometry. Therefore, it is not surprising to observe

that the finite-size effect is different for hexagonal, pentagonal,
and circular geometries. No finite-size effect is observed for
the hexagonal confinement because this cell geometry induces
the formation of a nearly perfect lattice. Indeed, the selected
bead numbers N = 169, 331, and 721 are in agreement with
Eq. (4).

The global order of the systems is more affected for
small cell sizes in circular confinement than in pentagonal
confinement because, in a curved boundary, the smaller the
system is, the more the radius of curvature increases and
prevents the hexagonal order.

IV. CONCLUSION

A model experimental set-p previously validated to study 2d
phase transitions [37,38] has been used to perform a systematic
study of the confinement effect on the crystallization of a
monolayer of magnetized beads. The temperature is simulated
by a mechanical agitation inducing Brownian motion of the
beads. A slow cooling process from a liquid state to a solid state
is used to reach the low-energy state of the system. We show
that the geometry of the cell affects the type and the number
of defects in the systems. In particular, the influence of both
cell size and cell shape on the global bond order parameter �6

is analyzed. This order parameter is higher for triangular and
hexagonal cells compared to squared, hexagonal, heptagonal,
and circular shaped cells. Moreover, the order increases with
the grain number N for constant filling fraction.

The type of defects (disclinations, dislocations, defect
chains, and also more exotic defects such rosettes) and
their occurrence have been analyzed for the different cell
geometries. Only a few dislocations, that do not degrade
significantly the ordering, are observed in hexagonal and
triangular cells due to the compatibility between the grain
lattice symmetry and the cell shape symmetry. Moreover, no
finite-size effects are observed for these confinements. The
other cell geometries (squared, hexagonal, heptagonal, and cir-
cular) display more complex defects modifying the ordering of
the system. Topologically charged defects affect consequently
the ordering of the system and destroy translational order as
predicted by the KTHNY theory. Moreover, distortion in the
system is observed if topologically charged defects are isolated
in the bulk, and the long-sized defects tend to divide the system
into different domains.
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