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Does greed help a forager survive?
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We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich
lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop
S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer
to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in
its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies
nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also
unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is
food averse.
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I. INTRODUCTION

Optimal foraging theory is a classic framework that
specifies when a forager should continue to exploit local
resources or move to new feeding grounds [1–7]. The goal
is to formulate a strategy to consume the maximal amount of
resource per unit time. Optimal strategies typically involve
the interplay between continuing to exploit resources in a
current search domain or moving to another and potentially
richer search domain. This same tension underlies a diverse
range of decision-making problems, including, for example,
the management of firms [8,9], the multiarm bandit problem
[10,11], the secretary problem [12] and its variant, Feynman’s
restaurant problem [13], and search of human memory [14,15].
These problems offer a rich arena for applying statistical
physics ideas. An independent approach to foraging is to
search using exotic search strategies, such as Lévy walks [16],
intermittent walks [17–22], and persistent random walks [23].
However, these models typically do not account for resource
depletion in an explicit way.

In the context of resource foraging, we recently introduced
the starving random walk model, in which the forager is
unaffected by the presence or absence of food and always
performs an unbiased random walk [24,25]. When a forager
lands on a food-containing site, all the food there is consumed.
Immediately afterwards, the forager is in a fully sated state and
can hop S additional steps without again encountering food
before it starves. However, if the forager lands on an empty
site, the forager goes hungry and comes one time unit closer
to starvation. Because there is no replenishment, resources
are depleted by consumption and the forager is doomed to
ultimately starve to death. This feature of depletion makes
the forager motion a nontrivial non-Markovian process. How
does the forager lifetime T depend on basic parameters—its
metabolic capacity S and the spatial dimension d? While there
has been progress in answering this question [24,25], a full
understanding is still incomplete.

In this work, we investigate an ecologically motivated
extension of the starving random walk where the forager
possesses a modicum of environmental awareness—whenever

the nearest neighborhood of a forager contains both empty and
full (food-containing) sites, the forager preferentially moves
toward the food (Fig. 1). We define this local propensity
to move towards food as “greed”. We will also investigate
negative greed, or equivalently, food aversion, in which a
forager tends to avoid food in its nearest neighborhood.

Because greed is a universal attribute, its role in opti-
mization processes has been widely investigated. In computer
science, greedy algorithms are often an initial approach to
solve complex problems [26–28]. Such algorithms work well
for finding the minimal spanning tree of a graph [29] or
the ground state of a spin glass [30] but work less well
for the traveling salesman problem [28] and depth first
search processes [31]. Greed also represents a particularly
simple example of feedback between the environmental state
and the forager motion, a mechanism that abounds in the
microscopic world. Perhaps the best-known example is the
run and tumble model of chemotaxis [32–34], in which a
bacterium effectively swims up a concentration gradient of
nourishment. In chemotaxis, however, the concentration of
nutrients is fixed, while the starving forager model explicitly
incorporates resource depletion.

Endowing a starving random walker with greed allows us
to discuss the dichotomy between exploration and exploitation
in foraging problems—should one continue to exploit a rich
local lode in a “desert” or is it better to move to a region where
resources are more abundant overall [35–37]? This is the basic
question that we address by extending first-passage techniques
to the unconventional random walk that arises because of the
local bias whenever the forager encounters food.

In d = 1, we implement greed as follows: when one
neighbor of the forager contains food while the other is
empty, the forager moves toward the food with probability
p = (1 + G)/2, where G is the greediness parameter that
lies in [−1,1]; otherwise, the forager hops symmetrically
(Fig. 1). For d > 1 the forager chooses one of the k full
sites in its neighborhood of z sites with probability p =
(1 + G)/[(z − k)(1 − G) + k(1 + G)]. The forager begins in
the “Eden” condition where all sites initially contain food. As
the forager moves, it carves out a food-depleted region—the
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FIG. 1. Greedy forager motion in d = 1 and d = 2. Solid and
open circles indicate food and empty sites, respectively. Arrow widths
indicate relative hopping probabilities.

“desert”. As this desert grows, the forager typically spends
longer times wandering within the desert and eventually
starves.

II. HEURISTICS FOR ONE DIMENSION

We provide a heuristic argument that predicts both a
nonmonotonic dependence of lifetime on greediness and
a huge maximum for greediness G ≈ −1 (Fig. 2). Here,
starvation proceeds in two stages: (i) The forager first carves a
critical desert of length Lc by repeatedly reaching either edge
of the desert withinS steps after food is consumed. The critical
length is defined by a forager of capacity S typically starving
if it attempts to cross a desert of this length. We denote the time
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FIG. 2. Dependence of the scaled forager lifetime T /S on
greediness G in d = 1 (a) and d = 2 (b). The inset compares
simulations with the analytic result (12) for G close to −1 and
S = 106. Dotted curves in d = 2 correspond to a nonbacktracking
walk (see summary text).

FIG. 3. Schematic illustration of the space-time trajectory of a
greedy forager in the semi-infinite geometry. The shaded region
denotes food.

to create this critical-length desert as Tc. (ii) Once the desert
length reaches Lc, the forager likely starves if it attempts to
cross the desert. That is, the far side is unreachable and thus
irrelevant. The time for this second stage is just the lifetime of
a forager in a semi-infinite desert, TSI.

We now estimate the quantities Lc, Tc, and TSI. The time
for a forager to reach food when it starts a unit distance from
food in a desert of length k is given by t1(k) = 1−p

p
k + 3 − 2

p

(see the Appendix). Therefore, the time for the desert to grow
to the critical length Lc � 1 is

Tc =
Lc∑

k=1

t1(k) � 1 − p

p

L2
c

2
. (1)

We determine Lc by equating the typical time to cross a desert
of this length, t× � 2

3L2
c + 4L

3p
(see the Appendix), to S. This

gives two behaviors: Lc � √
3S/2 for p � 1/

√
S and Lc �

3pS/4 for p � 1/
√
S. Thus, the time to reach the critical-

length desert is

Tc �
{

3(1−p)S/4p p � 1/
√
S,

9pS2/32 p � 1/
√
S.

(2)

For the semi-infinite geometry, a typical trajectory consists
of segments where the forager moves ballistically into the
food-containing region, interspersed by diffusive segments in
the desert (Fig. 3). As long as the diffusive segment lasts
less than S steps, the forager returns to the food-desert
interface and a new cycle of consumption and subsequent
diffusion begins. A ballistic segment of m consecutive steps
toward food (followed by a step away) occurs with probability
pm(1 − p). The average time tb for this ballistic segment is
tb = ∑

m�1 m pm (1−p) = p/(1−p). The probability R for
a diffusive segment to return to food within S steps is the
integral of the first-passage probability for a forager that starts
at x = 1 to reach x = 0 within time S [38]:

R =
∫ S

0
dt

e−1/4Dt

√
4πDt3

= erfc(1/
√

4DS),

where erfc(·) is the complementary error function. The average
number of returns is 〈r〉 = ∑

r�1 r Rr (1−R) = R/(1−R) �√
πS/2 for S → ∞, where the asymptotics of the error

function gives the final result, and we take the diffusion
coefficient D = 1

2 . For a forager that does return within S
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steps, the return time tr is thus

tr = 1

R

∫ S

0
dt t

1√
4πDt3

e−1/4Dt �
√

2S
π

− 1.

The total trajectory therefore contains 〈r〉 = √
πS/2 el-

ements, each of which are comprised of a ballistic and a
diffusive segment. The time for each element equals tb + tr .
There is also the final and fatal diffusive segment of exactly
S steps. Consequently, the forager lifetime TSI in the semi-
infinite geometry is

TSI � 〈r〉(tb + tr ) + S � 2p − 1

1 − p

√
πS
2

+ 2S. (3)

From Eqs. (2) and (3), we estimate the forager lifetime as

T �
⎧⎨⎩

[
3(1−p)

4p
+ 2

]
S + 2p−1

(1−p)

√
πS
2 , p � 1/

√
S,

9
32 pS2 + 2S + 2p−1

(1−p)

√
πS
2 , p � 1/

√
S.

(4)

Two important consequences follow (Fig. 2):
(1) When S exceeds a critical value, it is easily seen that T

is decreasing with p, except for p → 0 and p → 1. Since T
diverges as p → 1, the dependence of lifetime on greediness
is nonmonotonic!

(2) For p � 1/
√
S, Eqs. (4) give a common lifetime T ∼

S3/2—a huge maximum for large S ! This maximum induces
a second nonmonotonicity in the negative greed (food averse)
regime.

III. ONE-DIMENSIONAL SOLUTION

We now outline the analytical solution for the forager
lifetime that confirms and quantifies the above heuristic
picture. The basic quantity is the probability Vk that the forager
has eaten k times at the instant of starvation. This quantity can
be written as

Vk =
[

1 −
S∑

t=0

Fk(t)

]
k−1∏
j=1

S∑
t=0

Fj (t). (5)

Here, Fj (t) is the first-passage probability that a greedy forager
that is a unit distance from either edge of a desert of k empty
sites first reaches either edge at time t . The sum is thus the
probability that this forager escapes a desert of j empty sites,
and the product is the probability that this forager successively
escapes a desert of 1,2,3,..., k − 1 empty sites. Finally, the
leading factor is the probability that the forager does not escape
a desert of k empty sites.

We may now write the average forager lifetime as

T =
∑
k�0

⎡⎣k−1∑
j=1

τj

⎤⎦ Vk + S. (6)

Here,

τj =
∑

0�t�S t Fj (t)∑
0�t�S Fj (t)

is the conditional average time for a greedy forager to
successfully escape a desert of j empty sites when it starts
one lattice spacing from either edge. The quantity

∑k−1
j=1 τj

is the conditional time for the forager to successively escape
deserts of 1,2,3,..., k − 1 empty sites. Consequently, the first
term in Eq. (6) is that total time that the forager takes to carve
a desert of k empty sites and the last factor, S, is the time for
the last and fatal excursion in this desert.

To explicitly evaluate the forager lifetime in Eq. (6), we
need the first-passage probability for a greedy forager, Fk(t).
This first-passage probability can be related to the unperturbed
first-passage probability fk(t) of a symmetric random walk by
the convolution

Fk(t) = p δt,1 + (1 − p)
∑

t ′�t−1

fk−2(t ′) Fk(t − t ′ − 1). (7)

The first term accounts for a forager that reaches food in a
single step. The second term accounts for the forager hopping
to the interior of the interval. In this case, the walker is at x = 2
or k − 2 and hops symmetrically until it again reaches either
x = 1 or k − 1. Thus, the relevant first-passage probability
is that for an unbiased random walk that starts at x = 2 or
k − 2 on [1, k − 1]. Once the walker first reaches either x = 1
or k − 1, the process renews and the subsequent propagation
involves Fk . Since one time unit is used in the first hop to the
right, the walker must reach the boundary in the remaining
time t − t ′ − 1 steps. We solve Eq. (7) by substituting in the
generating functions

f̃k(z) =
∑
t�1

fk(t) zt , F̃k(z) =
∑
t�1

Fk(t) zt .

The generating functions reduce the convolution in Eq. (7) to
an algebraic relation that is readily solved to give

F̃k(z) = pz

1 − (1 − p) z f̃k−2(z)
. (8)

The next step is to substitute the well-known result for the
Laplace transform of the first-passage probability [38]:

f̃k(s) = sech

√
s

D
k

{
sinh

(√
s

D

)
+ sinh

[√
s

D
(k−1)

]}
,

−→
s→0

1 −
√

s

D
tanh

√
sk2

4D
k + · · · ,

into Eq. (8). We also convert the discrete generating function
to a continuous Laplace transform by replacing z → 1 − s.
This construction is asymptotically exact in the limit z → 1 or
s → 0, which corresponds to the long-time limit in the time
domain. Following these steps, the Laplace transform of the
first-passage probability for the greedy forager for s → 0 and
k → ∞ is

F̃k(s) =
(

1 + 1 − p

p

√
s

D
tanh

√
sk2

4D

)−1

. (9)

Using the above first-passage probability for a greedy
forager in a finite desert, and also making use of standard
Laplace transform manipulations, we can determine both τk

and Vk in terms of F̃k(s). When these quantities are expressed
in terms of F̃k(s) in Eq. (6), we can finally determine the
forager lifetime T . These steps are somewhat tedious and all
the details are given in Ref. [39].
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(a) (c)(b)

FIG. 4. A random-walk trajectory that leads to trapping of a
perfectly greedy forager. (a) Forager (×) at the decision point.
(b) Forager hops to the interior region (shaded). (c) Food in the
interior is completely consumed, so that the forager (×) may be
trapped inside the newly created desert.

There are two limiting cases where the forager lifetime
has very different asymptotic behaviors: p � 1/

√
S and p �

1/
√
S . In the former case, we find

T � S 1−p

p

∫ ∞

0
dθ Vθ

∫ θ

0

du

u

∑
j�0

4

v2
{1−e−v2

[1+v2]} + S.

(10)

Here, v = (2j+1)/u, θ = n/(π
√

DS), with n the number of
sites visited by the forager at starvation. Additionally,

Vθ � 4(1−p)

pθ

∑
j�0

e−w2−Q, Q = 2(1 − p)

p

∑
j�0

E1(w2),

where w = (2j+1)/θ , and E1(x) = ∫ ∞
1

dt
t

e−xt is the expo-
nential integral. Because the function Vθ depends on p, the
greedy forager lifetime T does not merely equal T for the
nongreedy forager times 1−p

p
. Our result Eq. (10) agrees with

numerical simulations for large S (Fig. 2).
Deep in the negative greed regime p � 1/

√
S, Eq. (9)

simplifies to

F̃k(s) �
(

1 + k

2pD
s

)−1

. (11)

Following the same steps as given above now leads to

T =
∑
k�1

k2

2pS e−2pDS/k exp

[
−

∫ k

1
e−2pDS/x dx

]
+ S,

(12)
whose numerical evaluation matches the simulation results in
the regime p � 1/

√
S (Fig. 2 inset).

IV. TWO DIMENSIONS

Surprisingly, simulations show that the forager lifetime
again varies nonmonotonically with (positive) greed, but in
the opposite sense compared to one dimension (Fig. 2). A
perfectly greedy forager has a smaller lifetime than one that is
not quite as avaricious. We can explain this feature in a simple
way: Because a random walk is recurrent in two dimensions,
it will certainly form closed loops along its trajectory [40,41].
Suppose that a perfectly greedy forager is about to form such a
closed loop [Fig. 4(a)]. At this point, the forager has only two
possible choices for the next step. One of them leads outside
the incipient closed loop and the other leads inside. If the latter
choice is made, a “moat” is created by the previous trajectory.

Once inside the moat, a perfectly greedy forager always
consumes food in its nearest neighborhood. Ultimately, this
interior food is mostly or completely depleted [the latter is
shown in Fig. 4(c)]. While the former case is more likely, the
remaining food will be scarce and isolated. Thus, the forager
creates and then becomes trapped inside a (perhaps slightly
imperfect) desert.

Conversely, if the greediness G < 1, a forager that en-
counters the moat from the interior can cross it with a
nonzero probability and thereby reach food on the outside.
This mechanism provides a route for the forager to escape
the desert and survive longer than if it remained strictly
inside. This argument indicates that the forager lifetime should
be a decreasing function of G as G → 1, as confirmed by
simulations (Fig. 2). Also in stark contrast to one dimension,
there is no peak in the forager lifetime for negative greed, at
least for the values of S that we were able to simulate.

V. SUMMARY

Greed plays a paradoxical role in the lifetime of a greedy
random-walking forager, which moves preferentially toward
local food for positive greediness and away from food for
negative greediness. The lifetime depends nonmonotonically
on greediness when the forager capacity is sufficiently large.
Moreover, the sense of the nonmonotonicity is opposite in one
and two dimensions. In d = 1, the forager lifetime exhibits a
huge peak of the order of S3/2 for G ≈ −1, scales asS1/2/(1 −
G) for G → 1, while T � S throughout the rest of the range of
G. Determining these intriguing properties rests on solving a
challenging non-Markovian first-passage problem in which the
forager motion is locally biased when food is in the forager’s
nearest neighborhood.

A variety of questions remain open. Can one make
analytical progress in two dimensions? What is the behavior
of the lifetime in greater than two dimensions? Simulations
are not useful here because the lifetime is extremely long
for nonnegligible greed and memory and computation time
constraints become prohibitive. On a biological note, greed can
be viewed as endowing a forager with a minimal information
processing capability. A related mechanism is for the forager
to perform a nonbacktracking random walk (previous step is
not retraced). The forager lifetime increases monotonically
with the probability of not backtracking (Fig. 2; here 1 − G

is a proxy for the backtracking probability) and perfect
nonbacktracking is superior to perfect greed. It would be useful
to understand how to most effectively increase the forager
lifetime with minimal information-processing enhancements
to random-walk motion.
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FIG. 5. Hopping probabilities for a greedy forager inside a desert
of length L.

APPENDIX: ESCAPE FROM AN INTERVAL

We determine the first-passage properties of a random walk
in a finite interval of length L whose hopping rules are the same
as that of a greedy forager. That is, a walk in the interior hops
equiprobably to the left and right, while a walk at either x = 1
or x = L − 1 hops to the edge of the interval with probability
p and into the interior with probability 1 − p (Fig. 5). For
these hopping rules, we calculate the exit probabilities to each
side of the interval, the unconditional time to exit either side of
the interval, and the conditional exit time to exit by each edge
of the interval. We will use the result for the unconditional exit
time to derive Eq. (1), from which we will heuristically argue
that the lifetime of a forager with a sufficiently large capacity
varies nonmonotonically with greediness.

Let En be the probability that the forager, which starts at
site n, exits the interval via the left edge. The exit probabilities
satisfy the backward equations

E1 = p + qE2,

En = 1
2En−1 + 1

2En+1, 2 � n � L − 2, (A1)

EL−1 = qEL−2.

No boundary conditions are needed, as the distinct equations
for n = 1 and n = L − 1 fully determine the exit probabilities.
As we shall see, En = 0 not at n = L, but at different value of
n, and similarly for the point where En = 1.

Since the deviation to random-walk motion occurs only at
the boundaries, we attempt a solution that has the random-walk
form in the interior of the interval: En = A + Bn. This ansatz
automatically solves the interior equations (2 � n � L − 2),
while the boundary equations for n = 1 and n = L − 1 give

E1 = p + qE2 −→ A + B = p + q(A + 2B),

EL−1 = qEL−2 −→ A + B(L − 1) = q[A + B(L − 2)],

from which A and B are

A = p(L − 2) + 1

pL + 2(1 − 2p)
, B = − p

pL + 2(1 − 2p)
.

Thus, the probability that a greedy random walk that starts at
x = n exits via the left edge of the interval is

En = A + Bn =
L − n + 1

p
(1 − 2p)

L + 2
p

(1 − 2p)
, (A2)

while the exit probability via the right edge is 1 − En. As might
be expected for a perturbation that applies only at the boundary,
the overall effect of greed on the exit probability is small:
the exit probability changes from En = 1 − n

L
for p = 1

2 to
En = 1 − n−1

L−2 for p = 1. That is, the effective interval length
changes from L to L − 2 as p increases from 1

2 to 1.

Similarly, let tn be the average time for a greedy random
walker to reach either edge of the interval when the walk
starts at site n. These exit times satisfy the backward
equations

t1 = p + q(t2 + 1),

tn = 1
2 tn−1 + 1

2 tn+1 + 1, 2 � n � L − 2, (A3)

tL−1 = p + q(tL−2 + 1).

Again, no boundary conditions are needed, as the equations
for n = 1 and n = L − 1 are sufficient to solve Eq. (A3). We
attempt a solution for these second-order equations that has
the same form as in the case of no greed: tn = a + bn + cn2.
Substituting this ansatz into Eq. (A3) immediately gives
c = −1, while the equations for t1 and tL−1 lead to the
conditions

− 1 + a + b = q(−4 + a + 2b) + 1,

− (L − 1)2 + b(L − 1) + a

= q[−(L − 2)2 + b(L − 2) + a] + 1.

Solving these equations, the average exit time to either edge
of the interval when starting from site n is

tn = n(L − n) − 2p − 1

p
(L − 2). (A4)

This gives a parabolic dependence of tn on n that is shifted
slightly downward compared to the case of no greed, as p

ranges from 1
2 to 1. Notice again that tn = 0 not at n = 0 and

n = L, but rather at points between n = 0 and 1 and between
n = L − 1 and L for p > 1

2 . This overall shift leads to a tiny
change in each tn, except when the forager starts one site away
from the boundary.

Finally, we determine the conditional exit times, t±n , defined
as the time to reach the left edge of the interval when starting
from site n (for t−) and to the right edge (for t+), conditioned
on the walker exiting only by the specified edge. We focus
on t−n , because once t−n is determined, we can obtain t+n via
t+n = t−L−n. The conditional exit times t−n satisfy

u1 = qu2 + E1,

un = 1
2un−1 + 1

2un+1 + En, 2 � n � L − 2, (A5)

uL−1 = quL−2 + EL−1,

where un ≡ Ent
−
n , with En, the exit probability to the left edge,

given by Eq. (A2). Because Eqs. (A5) are second order with an
inhomogeneous term that is linear in n, the general solution is
a cubic polynomial: un = a + bn + cn2 + dn3. Substituting
this form into Eq. (A5) for 2 � n � L − 2, we obtain the
conditions c = −A and d = −B/3, where A and B are the
coefficient of En in Eq. (A2). The remaining two coefficients
are determined by solving the equations for u1 and uL−1 and
the final results for the coefficients a, b, c, d in un are

a =
2(L−2)(1−2p)

[
p2(L−4)(L + 3

p
(1−p)) + 3

]
3p3

[
L + 2

p
(1 − 2p)

]2 ,

b = 2p2[L(L2−6L+6)+8] + 6pL(L−3)+6L−8p

3p2
[
L + 2

p
(1 − 2p)

]2 ,
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c = −
L + 1

p
(1 − 2p)

L + 2
p

(1 − 2p)
,

d = −1

3

1

L + 2
p

(1 − 2p)
. (A6)

Finally, the conditional exit time to the left edge is t−n = un/En,
with un = a + bn + cn2 + dn3, and En already determined in

Eq. (A2). We are particularly interested in t−L−1, the conditional
time for a walk that starts at x = L − 1 to reach x = 0. From
Eqs. (A2) and (A6), the limiting behavior of this crossing time
for large L is

t−L−1 ≡ t× � 2

3
L2 + 4

3

L

p
. (A7)
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