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Entropy measures are widely applied to quantify the complexity of dynamical systems in diverse fields.
However, the practical application of entropy methods is challenging, due to the variety of entropy measures and
estimators and the complexity of real-world time series, including nonstationarities and long-range correlations
(LRC). We conduct a systematic study on the performance, bias, and limitations of three basic measures (entropy,
conditional entropy, information storage) and three traditionally used estimators (linear, kernel, nearest neighbor).
We investigate the dependence of entropy measures on estimator- and process-specific parameters, and we show
the effects of three types of nonstationarities due to artifacts (trends, spikes, local variance change) in simulations
of stochastic autoregressive processes. We also analyze the impact of LRC on the theoretical and estimated
values of entropy measures. Finally, we apply entropy methods on heart rate variability data from subjects
in different physiological states and clinical conditions. We find that entropy measures can only differentiate
changes of specific types in cardiac dynamics and that appropriate preprocessing is vital for correct estimation
and interpretation. Demonstrating the limitations of entropy methods and shedding light on how to mitigate bias
and provide correct interpretations of results, this work can serve as a comprehensive reference for the application
of entropy methods and the evaluation of existing studies.
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I. INTRODUCTION

The growing awareness that many real-world systems
exhibit complex dynamics that are challenging to quantify
has initiated extensive interest in developing measures and ap-
proaches for time series analysis to characterize these systems.
In this context, the utilization of tools taken from information
theory has become extremely popular for the assessment of the
degree of complexity of physical, biological, physiological,
social, and econometric systems. A variety of measures rooted
in the concept of entropy and implemented according to
several estimation approaches have been proposed, including
approximate entropy [1], sample entropy [2], corrected condi-
tional entropy [3], fuzzy entropy [4], compression entropy [5],
permutation entropy [6,7], distribution entropy [8], multiscale
entropy [9–12], self entropy and information storage [13,14].
These measures have emerged as a less ambitious but more
practical alternative to classical techniques for the analysis of
nonlinear dynamical systems, like correlation dimension [15],
Lyapunov exponents [16], and nonlinear prediction methods
[17,18]. In fact, the popularity of entropy measures stems
from their applicability to short and noisy processes with
important stochastic components such as those describing
the dynamical activity of real-world systems. These measures
have been applied with great success to numerous research
fields, including heart rate variability [3,19–23], cardiovas-
cular control [3,24–26], cerebrovascular dynamics [27,28],
cardiac arrhythmias [29], financial time series analysis [30,31],
gait and posture [32–36], climatology [37], earth sciences
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[38], cellular automata [39,40], electromyography [41], elec-
troencephalography [42–44], magnetoencephalography [45],
functional neuroimaging [14,46,47], and others [48–51].

Despite the broad relevance and application of entropy
measures for various systems and fields of science, a number
of theoretical, computational, and practical issues exist that
often prevent a fair evaluation of the performance of these
measures, as well as a correct interpretation of the measured
complexity of the observed dynamics.

First, since there are many entropy measures with a variety
of entropy estimators that are not always independent of each
other, it is not straightforward to associate a given measure
to the complexity of the dynamical system under analysis
and to compare the variety of entropy measures obtained by
different estimators. In addition, the crucial but often elusive
term of “complexity” is also related to several other concepts in
physics and biology, such as the existence of long-range cor-
relations [52–56], nonlinear multifractal properties [57–61],
and/or chaotic dynamics [15,16], which are not univocally
linked to the signal features reflected by entropy measures [62];
even within the family of entropy measures, different working
definitions of complexity have been proposed, e.g., in terms
of “randomness” [63], “unpredictability” [3], or “regularity”
[64].

Second, given that the practical computation of
information-theoretic measures from real-world time series
is not a trivial task, several approaches exist for the estimation
of these measures [65]. Entropy estimators differ in the
assumptions made about the properties of the investigated
process and follow different approaches to approximate the
probability density function utilized in the computation of
entropy measures. Thus, entropy estimates are often highly
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dependent on method-specific parameters. In the absence of a
comparative evaluation of the different estimators, assessing
their performances and interpreting results obtained using
different estimation strategies has become a subjective task.
Furthermore, an incorrect or unaware setting of the estimation
parameters may easily lead to wrong inference about the
properties of the observed dynamics.

Third, even though stationarity of time series is a pre-
requisite for the estimation of entropy measures for the
target dynamical system, entropy estimators are often blindly
applied without checking the fulfillment of this prerequisite.
The presence of nonstationarity is often due to artifacts
of various nature and exists in diversified forms such as
trends, spikes, and changes in local variance. Due to the
differences in entropy measures and estimators, the effects
of nonstationarity vary for different entropy measures and for
different estimation approaches. Therefore, a comprehensive
investigation of the limitations and biases of entropy-based
methods in the presence of nonstationarity is not only vital for
reducing the biases in the estimation of entropy measures, but
also important for the evaluation and comparison of results
from different studies.

Fourth, an unaddressed issue with the computation of
entropy measures is the effect of long-range correlations. It
is well known that a broad class of dynamic processes in
physics, biology, and econometrics exhibit long-range power-
law correlations that result in scaling properties observed
across multiple temporal scales [53,55,57,58,66–74]. Despite
the fact that these intrinsic properties of dynamic processes
are manifested even at the shorter scales and within the shorter
time windows typically used in the assessment of information
theoretic measures, their effects on the estimated values of
entropy measures are not comprehensively investigated and
not taken into account in the majority of empirical studies.

Due to the theoretical and practical issues related to the
variety of entropy measures, entropy estimators, and the
complexity of real-world time series mentioned above, it
is therefore difficult to compare and evaluate the results
from existing literature, which are often not consistent or
even contradicting because different studies are based on
data with different types of nonstationarity and long-range
correlations, and researchers adopt different entropy measures
and estimators as well as different data preprocessing and
filtering procedures, which affect the outcome of information
theoretic analyses.

To address the problems and challenges mentioned above,
here we present a systematic study on the performance
of entropy measures and estimators in various situations
with both simulated and empirical time series. We aim to
answer three questions: (1) to what extent entropy measures
adequately characterize the dynamics of complex systems;
(2) what are the limitations and biases of entropy estimators
in approximating entropy measures from time series with
various types of nonstationarity and presence of long-range
correlations; (3) how to perform credible estimations and
provide appropriate interpretations.

We present a unifying framework for the definition of
entropy measures and corresponding estimation methods from
time series data, which serves to clarify their theoretical mean-
ings and assess their practical significance in the evaluation of

the complexity of dynamic processes measured from physical
systems. We show that a range of information theoretic
measures can be subsumed by the three basic measures of
entropy, conditional entropy, and information storage, and
three of most widely used approaches for the quantification
of these measures—linear estimator, kernel estimator, and
nearest-neighbor estimator.

Further, we provide a detailed systematic analysis of
the most basic frequently encountered dynamic processes
and perform a comparative assessment of entropy measures
and entropy estimators on multiple realizations of these
processes. We study the dependence of entropy measures on
estimator-specific parameters, as well as the effects of three
types of nonstationarities due to artifacts that are commonly
encountered in real data (i.e., slow trends, random spikes,
and local variance changes). Importantly, we present for the
first time a systematic quantitative assessment of the impact
on entropy measures of trends originating from the intrinsic
dynamics of systems exhibiting multifractal scaling properties,
both in the case of long-range power-law correlations and in the
more complicated and realistic situation in which long-range
correlations and short-term autoregression coexist.

Finally, we consider a practical case of study that subsumes
all the issues treated in the simulations, i.e., the study of
human heartbeat fluctuations in different physiological states
(wake and sleep) and pathological conditions (healthy and
congestive heart failure). These analyses evidence advantages
and pitfalls of entropy measures and estimators, as well
as provide indications for their optimal use in the study
of real-world time series, including recommendations about
which measure to adopt depending on the purpose of the
analysis, which estimator to implement in different conditions,
how to deal with nonstationarities and artifacts, and how
to interpret the values obtained from complex systems with
different coexisting types of dynamics.

II. METHODS

A. Entropy measures

In the analysis of dynamical systems, entropy measures
are used to characterize the temporal statistical structure
of a system evolving in time. In an information-theoretic
framework, the “information” contained in a dynamical system
varies at each time step. When the system transits from past
states to a new state, new information is produced in addition
to the information that is already carried by the past states. This
process is reflected by entropy measures: the entropy quantifies
the information carried by the present state of the system, the
conditional entropy quantifies the new information contained
in the present but not in the past, and the information storage
quantifies the amount of information carried by the present
that can be explained by the past history of the system.

To introduce the notation, we consider a dynamical system
X and assume that the states visited by this system are
described by the stochastic process X. Let us further denote
Xn as the random variable obtained by sampling the process
X at the present time n, and X−

n = [X1, . . . ,Xn−2,Xn−1]
as the vector variable describing the past of X. The
probability distribution for an individual variable Xi,i =
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1, . . . ,n, is p(xi) = Pr{Xi = xi},xi ∈ Ai , where Ai is the
set of all possible values that may be taken by Xi . Then,
the process X is fully characterized by the joint prob-
ability distributions p(x1, . . . ,xn) = Pr{X1 = x1, . . . ,Xn =
xn},∀n � 1, with (x1, . . . ,xn) ∈ A1 × · · · × An. An impor-
tant property of dynamic processes is stationarity, which
defines the time-invariance of the joint probabilities extracted
from the process: Pr{X1 = x1, . . . ,Xn = xn} = Pr{X1+m =
x1, . . . ,Xn+m = xn} = p(x1, . . . ,xn),∀n,m � 1. Note that all
random variables that can be obtained sampling a stationary
process take values inside the same set, i.e., Ai = A ∀i � 1.

In the following, we provide definitions and illustrations
of entropy, conditional entropy, and information storage com-
puted for a stationary stochastic process. Note that the present
study considers exclusively univariate stochastic processes
describing the activity of individual dynamical systems; the
reader is referred to the abundant literature in the field
[13,75–78] for an extension to multivariate analysis.

1. Entropy

The central concept for the derivation of entropy measures
is the definition of the Shannon information content of a
random variable V [63]: the information contained in a specific
outcome v of a random variable V is the quantity h(v) =
− log p(v), where p(v) = Pr{V = v} is the probability that V

takes the value v. The units of information depend on the base
of the logarithm, being usually bits (base 2) for discrete random
variables, and nats for continuous variables where the natural
logarithm is used. According to this definition, the information
content will be low for highly probable outcomes of the
observed random variable and high for unlikely outcomes.
Then, if the variable is continuous, the differential entropy
expresses the amount of information carried by V intended as
its average information content:

H (V ) = −
∫
A

p(v) log p(v)dv, (1)

where the integral is computed over a continuous range of
values A. When the probability p(v) is discrete rather than
continuous, the entropy of the variable is defined as

H (V ) = −
∑
v∈A

p(v) log p(v), (2)

where A is in this case the finite alphabet of values that can
be taken by V . Using a notation that subsumes both Eqs. (1)
and (2), entropy can be defined as the expected value of the
Shannon information content:

H (V ) = E[h(v)] = −E[log p(v)], (3)

where E[·] is the expectation operator. Entropy quantifies
information as the average uncertainty about the outcomes
of the variable: if all observations of the variable take the same
value, there is no uncertainty and the entropy is zero; if, on the
contrary, the variable takes different values all with the same
probability of occurrence, the entropy is maximum and reflects
maximum uncertainty. The concept of entropy above defined
relies on the seminal work of Shannon performed in the field
of communication theory [63]. The relevant measure has been
extended to the definition of many alternative measures of

information such as the Renyi entropy [79] and the Tsallis
entropy [80], of which the Shannon entropy constitutes a
limiting case that possesses all the desired properties of
an information measure. Moreover, there are close parallels
between these information-theoretic entropy measures and
the fundamental thermodynamic entropy investigations of
Boltzmann and Gibbs [81,82].

The entropies defined in Eqs. (1) and (2) are “static”
measures, in the sense that they do not take any temporal
information into account when describing an observed prob-
ability distribution. “dynamic” measures of entropy can be
introduced by studying the information content of a stochastic
process that represents the activity of a system evolving in time
such as conditional entropy and information storage explained
below. Specifically, the entropy of the process X is defined as
the average information contained in its present state:

E(X) = H (Xn) = −E[log p(xn)], (4)

where xn is the value taken by the process X at the present
time n. Equation (4) presupposes stationarity of the process, so
that it carries the same entropy at all times and dependence on
time is dropped in the definition of E(X). The past information
contained in the system up to time n − 1 is defined as the joint
entropy of the past variables X−

n :

H (X−
n ) = H (X1, . . . ,Xn−1) = −E[log p(x1, . . . ,xn−1)].

(5)

Likewise, the total information contained the the system up to
time n is the joint entropy of the present and past variables, as
given by

H (X−
n ,Xn) = H (X1, . . . ,Xn) = −E[log p(x1, . . . ,xn)]. (6)

The simple ideas of separating the present from the past and
of incorporating the temporal information into the definition
of entropy as done in Eqs. (4)–(6) form the basis of the studies
of Kolmogorov [83] and Sinai [84], who first formalized
information-theoretic concepts for the analysis of dynamical
systems. As further studied by Ebeling [85] and discussed in
the next subsections, dynamic entropies are closely related to
the notion of predictability defined for a dynamical system
evolving in time.

2. Conditional entropy

In general, the present state of the observed process is
partially determined by its past history, but also carries a certain
amount of new information that cannot be inferred from the
past. The average rate of creation of new information is given
by the conditional entropy, also known as the Kolmogorov-
Sinai entropy [86]:

C(X) = H (Xn|X−
n ) = H (X−

n ,Xn) − H (X−
n )

= −E[log p(xn|x1, . . . ,xn−1)], (7)

where p(xn|x1, . . . ,xn−1) is the conditional probability that
X takes the value xn at time n given that the values taken
previously were x1, . . . ,xn−1.

Thus, the conditional entropy quantifies the amount of
information contained in the present of the process that
cannot be explained by its past history: if the process is fully
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random, the system produces information at the maximum rate,
yielding maximum conditional entropy; if, on the contrary, the
process is fully predictable, the system does not produce new
information and the conditional entropy is zero. When the
process is stationary, the system produces new information at
a constant rate; i.e., the conditional entropy does not change
over time.

The notion of conditional entropy subsumes a wide range
of entropy measures and estimates that have been proposed in
the recent past to quantify the complexity of a time series
intended as the degree of predictability of the underlying
process. These measures, which include approximate en-
tropy [1], sample entropy [2], fuzzy entropy [4], corrected
conditional entropy [3], and permutation entropy [6], are
extremely popular for the estimation of conditional entropy in
several fields ranging from applied physics to neuroscience,
physiology, econometrics, climatology, earth sciences, and
others [24,25,29–32,37,38,87,88].

3. Information storage

Another relevant entropy measure is the so-called infor-
mation storage, which quantifies the amount of information
shared between the present and the past observations of the
considered stochastic process. For a generic process X, the
information storage is defined as

S(X) = I (Xn; X−
n ) = E

[
log

p(x1, . . . ,xn)

p(x1, . . . ,xn−1)p(xn)

]
, (8)

where I (Xn; X−
n ) denotes the mutual information between Xn

and X−
n .

The information storage reflects the degree to which
information is preserved in a time-evolving system [14]. As
such, it measures how much of the uncertainty about the
present can be resolved by knowing the past: if the process is
fully random, the past gives no knowledge about the present,
so that the information storage is zero; if, on the contrary, the
process is fully predictable, the present can be fully predicted
from the past, which results in maximum information storage.
If the process X is stationary, the information shared between
the present and the past is constant.

Although information storage has been long recognized as
an important aspect of the dynamics of many physical and
biological processes, it has been formalized only recently
as in Eq. (8) as the information contained in the past of
a process that can be used to predict its future [39]. This
quantitative definition is gaining more and more relevance and
has been used with great success to analyze complex dynamics
in physiology [26,27,89], neuroscience [90,91], collective
behaviors [92], and artificial systems [40,93].

To summarize, the entropy of a dynamical system measures
the information contained in its present state. The information
of the present state can then be decomposed into two parts: the
new information that cannot be inferred from the past, which
is measured by the conditional entropy and the information
that can be explained by its past, which is measured by
the information storage. Consequently, entropy, conditional
entropy, and information storage are related to each other by
the equation S(X) = E(X) − C(X).

4. Illustrative example

In this section we demonstrate the properties of the entropy
measures defined above using an exemplary stationary binary
Markov process of order one as depicted in Fig. 1. The binary
process takes values in the alphabet A = {0,1} and is defined
in a way such that the two outcomes are equiprobable; i.e.,
p(Xn = 0) = p(Xn = 1) = 0.5. Moreover, according to the
Markov property, the present state of the process depends on
the past at only one time lag: p(xn|x1, . . . ,xn−1) = p(xn|xn−1).
We further assume that the conditional probability for the
process to take the same value at times n − 1 and n, Pr{Xn =
x|Xn−1 = x}, is inversely modulated by a parameter δ ∈ [0,1]
in a way such that δ quantifies the strength of the internal
dynamics in the system: the higher δ is, the more the present
state is dependent on the past states [Fig. 1(a)].

The exact theoretical values of entropy, conditional entropy
and information storage computed as a function of δ are
reported in the bottom panel of Fig. 1(a), while the remaining
panels depict exemplary realizations of the process and values
of the entropy measures for the cases of fully random
dynamics [δ = 0, Fig. 1(b)], fully predictable dynamics [δ=1,
Fig. 1(c)] and partially predictable dynamics [δ = 0.5,
Fig. 1(d)]. As seen in Fig. 1(a), the entropy of the process
is constant and equal to 1 bit, because it only depends
on the marginal probabilities, which do not change with
δ (p(Xn = 0) = p(Xn = 1) = 0.5). When δ moves from 0
to 1, the conditional entropy decreases and the information
storage increases, reflecting the increasing predictability of
the process. The entropy measures the present information
contained the dynamic system, H (Xn) = E(X), represented
by the solid line with triangle or the red oval. The conditional
entropy measures the rate of increase of the total information
of the system, which is represented by the slope of the solid
line with squares or the part of the red oval not overlapped with
the blue. The information storage measures the shared amount
of the present information H (Xn) and the past information
H (X−

n ), which is represented by the overlap of the red and
blue ovals. The fully random dynamical system described
in Fig. 1(b) produces new information at the maximum rate,
yielding C(X) = E(X) and S(X) = 0 (no overlap of the red
and blue ovals). The fully predictable system in Fig. 1(c)
produces no new information at any time, yielding C(X) = 0
and S(X) = E(X) (superimposition of the red and blue ovals).
The partially predictable system in Fig. 1(d) produces new
information but also maintains past information, yielding
C(X) ∈ (0,E(X)) and S(X) ∈ (0,E(X)) (partial overlap of the
red and blue ovals).

B. Entropy estimators

In practical analysis, entropy measures are computed from
realizations of the observed process that are available in
the form of time series data. In general, the estimation of
information-theoretic measures from time series is a difficult
task. A major issue is the so-called “curse of dimensionality”
[94], which refers to the fact that numerical computation
is possible only for entropies of finite order. Specifically,
when the dimension of the observed variables increases, the
conditional entropy estimated from time series of finite length
decays towards zero [3]. Therefore, in the practice of short time
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FIG. 1. Computation of entropy measures for a stationary binary order-1 Markov process. Since this process takes discrete values, entropies
are computed using the base 2 logarithm and measured in bits. (a) Dependence of the transition probabilities and the entropy measures
on the internal coupling parameter δ. When δ rises from 0 to 1, the probability that a state transition keeps the process in the same state
(p(Xn = x|Xn−1 = x)) moves from 1/2 to 0; accordingly, conditional entropy decreases from 1 to 0 (green dotted line with diamond) and
information storage increases from 0 to 1 (purple dashed line with down-triangle); note that, since for this process the marginal probabilities are
unaffected by δ, the entropy of the process does not change (red solid line with up-triangle). The values of entropy measures for δ = 0,0.5,1
are marked with full symbols. (b), (c), (d) Entropy analysis for representative parameter values, showing a realization of the process (solid
line with full circles), the total and present system information as a function of time, and the Venn diagram of the entropy measures (present
information, red oval; past information, blue oval). For this stationary process, the present information is the same at all times and measures the
entropy of the process (E), while the total information increases at a constant rate measured by the conditional entropy (C); the information
storage (S) is the information shared between the present and the past (overlap of ovals), while the C is the part of the present information
not shared with the past. When the process is fully random (δ = 0), the total information increases at the maximum rate (C = 1) and there is
no stored information (S = 0). On the contrary, a fully predictable process (δ = 1) does not produce new information (C = 0) and stores the
whole information contained in its present state (S = 1). Any intermediate parameter configuration (0 < δ < 1) yields a partially predictable
process with presence of both information production and information storage (0 < S < 1, 0 < C < 1).

series analysis, conditional entropy and information storage
are estimated using a finite number of samples in the past, i.e.,
X−

n is approximated by Xm
n = [Xn−1,Xn−2, . . . ,Xn−m] when

computing H (Xn|X−
n ) and I (Xn; X−

n ). While optimization

techniques such as graphical models [94] or nonuniform
embedding [89,95] exist to limit the detrimental effects of
the curse of dimensionality, yet in this study we stick to
the uniform embedding scheme, which selects m consecutive
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past samples, so as to compare the performances of different
estimators under the “standard” conditions that are commonly
studied in the existing literature.

Various entropy estimators that follow different approaches
to compute the probability distribution are available in the
literature [75]. The estimators can be categorized into two
groups: model-based estimators and model-free estimators.
If the probability distribution of the data can be faithfully
represented by a known parametric distribution (e.g., Gaus-
sian), entropy measures can be computed using model-based
estimators as functions of the parameters of the presumed
probability distribution [13,75,96]. On the other hand, when
no assumptions can be made about the data distribution,
model-free approaches which approximate the probability
distribution directly from the data should be followed. The
most intuitive method is to build the histogram distribution of
the quantized time series amplitudes. However, this method
is proved to have serious bias problems and its estimates
are strongly dependent on the size of the quantization levels
[97,98]. This situation can be improved to some extent by
using binless density estimators such as the kernels estimator
[2,30,99] or the nearest neighbor estimator [100,101]. In this
paper, we consider the linear model-based estimation method
and the two model-free methods which employ kernel and
nearest-neighbor entropy estimators. Details of these three
estimators are presented in the following.

1. Linear estimator

The linear estimator is a model-based approach for the
estimation of entropy measures. It adopts the assumption
of a joint Gaussian distribution for the observed variables
and exploits the exact expressions that hold in this case for
the entropy measures. Specifically, the assumed Gaussian
probability distribution is given by

p(xn) = 1√
2πσ 2

X

e

−x2
n

σ2
X , (9)

where σ 2
X is the variance of Xn. Then, by plugging Eq. (9) into

Eq. (3), the entropy of the present state of the observed process
is obtained as

E(X) = H (Xn) = 1
2 ln 2πeσ 2

X. (10)

Note that the entropy of a stationary Gaussian process is a
function of its variance only.

Moreover, the linear method estimates the conditional
entropy from the variance of the prediction error of the linear
regression of the present of the process on its past [96].
Specifically, the linear regression of the present Xn on the
past Xm

n = [Xn−1, . . . ,Xn−m] is performed as

Xn =
m∑

i=1

aiXn−i + Un, (11)

where m is the order of the regression, ai,i = 1, . . . ,m, are the
regression coefficients, and Un is a zero-mean white Gaussian
noise. A paradigmatic example for the linear regression of Xn

on Xn−1 is given in Fig. 2. Then, the linear estimate of the
conditional entropy is obtained from the variance of Un, σ 2

U ,

FIG. 2. Schematic illustration of the linear estimation of entropy
measures. In this paradigmatic example in which a time series
{x1, . . . ,x8} is considered as a realization of the process X, and the
past of the process is approximated with m = 1 lags (X−

n ≈ Xm
n =

Xn−1), seven realizations of (Xn,Xn−1) are found and used to fill a
two-dimensional space. Then, the linear regression of Xn on Xn−1 is
performed yielding the regression line Xn = aXn−1 (red line) and, for
a given observation xn of Xn, the prediction error un is taken as the
difference between the true and the predicted value, un = xn − axn−1.
The estimates {u2, . . . ,u8} are finally used to compute the variance
of Un and the conditional entropy according to Eq. (12).

as follows:

C(X) = H
(
Xn|Xm

n

) = 1
2 ln 2πeσ 2

U . (12)

Subtracting Eq. (12) from Eq. (10), the estimation of
information storage is obtained as

S(X) = I
(
Xn; Xm

n

) = 1

2
ln

σ 2
X

σ 2
U

. (13)

Hence, under the assumption of Gaussianity, the information
storage is determined by the ratio of the variance of the present
state of the process to the partial variance of the present given
the past.

The formulations above exploit a central result relating the
conditional entropy to the prediction error of a multivariate
regression [96], which is here adapted to univariate regression
and extended to the computation of information storage as
proposed recently in both theoretical and empirical studies
[13,25,25]. Note that, while the formulation presented here
holds exactly only for Gaussian processes for which the linear
representation captures the whole the entropy variations in
the system, it may be extended in a straightforward way
to nonlinear representations when non-Gaussian parametric
distributions are assigned [75].

2. Kernel estimator

The Kernel entropy estimator is a model-free approach
which reconstructs the probability distribution of an observed
variable by centering kernel functions at each outcome of the
variable and then exploits the estimated probabilities to derive
the relevant entropy measures. Kernels are used to weight the
distance of each point in the time series to the reference point
depending on the kernel function. For instance, the entropy of
the present state of the process X is estimated, starting from
a realization of length N available in the form of the time
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series {x1,x2, . . . ,xN }, first computing the kernel estimate of
the probability distribution:

p(xn) = 1

N

N∑
i=1

K(‖xn − xi‖), (14)

where K is the kernel function and ‖ · ‖ is an appropriate norm,
and then plugging Eq. (14) into Eq. (4):

E(X) = H (Xn) = − ln〈p(xn)〉, (15)

where 〈·〉 denotes the average taken over all possible xn.
Similarly, Eq. (14) can be used to estimate the joint probability
distributions p(xm

n ) = p(xn−1, . . . ,xn−m) and p(xn,x
m
n ) in

the m-dimensional and (m + 1)-dimensional spaces spanned
by the realizations of Xm

n and (Xn,X
m
n ), from which the

conditional entropy is obtained as

C(X) = H
(
Xn|Xm

n

) = − ln

〈
p
(
xn,x

m
n

)〉
〈
p
(
xm

n

)〉 . (16)

Given the expressions of Eqs. (15) and (16) for the kernel
estimates of entropy and conditional entropy, the kernel
estimate of the information storage is then obtained as follows:

S(X) = I
(
Xn; Xm

n

) = ln

〈
p
(
xn,x

m
n

)〉
〈
p(xn)p

(
xm

n

)〉 . (17)

The most common metric to compute distances using
the kernel estimator, which is adopted also in this study, is
the so-called Chebyshev distance or maximum norm, which
is obtained as the maximum of the absolute differences
between scalar components, i.e., ‖xn − xi‖ = |xn − xi | and
‖xm

n − xm
i ‖ = max

1�k�m
|xn−k − xi−k|. As to the kernel function,

the most popular is the Heaviside kernel, which sets a threshold
r to weight the distance of each point to the reference point.
Its expression is

K = �(‖xn − xi‖) =
{

1, ‖xn − xi‖ � r

0, ‖xn − xi‖ > r
. (18)

Substituting Eq. (18) into Eq. (14), one can see that
the Heaviside Kernel estimator approximates the probability
density at the reference point xn with the fraction of time
series points that falls within the distance r from xn. The
threshold r is the width of the Heaviside kernel function,
which controls the precision of the density estimation: smaller
values of r give more detailed estimates yet requiring more
data points to be accurate, while too large values of r yield
very coarse probability estimates because too many points
are included in the neighborhood of the reference point. In
practical computation, the threshold r is usually set to be a
fraction of the data variance so as to remove the dependence
of entropy measures on the amplitude of the observed process
[1,2]. An illustrative example is depicted in Fig. 3 for the
estimation of the probabilities p(xn,xn−1) and p(xn−1) in a
paradigmatic case (m = 1).

The kernel estimation for conditional entropy defined in
Eq. (16), when implemented applying the heaviside kernel
function and using the maximum norm to compute distances, is
equivalent to the sample entropy (SampEn) [2], a well-known
measure of dynamical complexity proposed to reduce the bias

FIG. 3. Schematic illustration of the kernel estimation of entropy
measures. In this example, the past of the process X is approximated
using m = 1 samples, and the Heaviside kernel with fixed threshold r

is used. In the (m + 1)-dimensional space spanned by the realizations
of (Xn,Xn−1), the probability of a given reference point (xn,xn−1)
(red dot) is estimated as the fraction of points whose distance are
less than r (gray dots) from it: p(xn,xn−1) = 2/7. The distance
between two points is computed as the maximum between the
horizontal and the vertical distance between the two points. Similarly,
in the m-dimensional space spanned by the realizations of Xn−1,
the probability of xn−1 is approximated using the same threshold
r , yielding p(xn−1) = 3/7. This procedure is repeated varying the
reference point and the conditional entropy is estimated by Eq. (16).

of the first introduced kernel-based measure of conditional
entropy, i.e., the approximate entropy (ApEn) [1]. These
measures, and more generally all kernel-based estimators of
conditional entropy and information storage, are ubiquitously
used to assess the dynamical complexity of time series in
several fields ranging from physics to engineering, biology, and
medicine [25,29–31,33,37,102,103]. Therefore, it is of utmost
importance to investigate how these estimates behave in the
conditions typical of real-world time series analysis, as well
as to understand their range of applicability and limitations.

3. Nearest-neighbor estimator

The k-nearest-neighbor estimator (knn) is another model-
free approach that approximates the probability distribution
from multiple observed realizations of the considered variable,
and then plugs this probability into the entropy definition to
yield the entropy estimate. The knn estimator approximates
the probability distribution from the statistics of the distances
between neighboring points in the multidimensional spaces
spanned by the observed variables [100]. Compared to the
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kernel estimator, which fixes the neighborhood size for the
reference point according to a given threshold distance, the
knn estimator fixes the number of neighbors of the reference
point and quantifies the neighborhood size by computing
the distance between the reference point and its kth nearest
neighbor. Specifically, the method builds on the central
results, published in Refs. [100,101], stating that the average
Shannon information content of a generic d-dimensional
random variable V can be estimated from a set of realizations
{v1,v2, . . . ,vN } of the variable as

−E[ln p(vn)] = ψ(N ) − ψ(k) + dE[ln εn], (19)

where ψ is the digamma function and εn is twice the distance
between the outcome vn and its kth nearest neighbor computed
according to the maximum norm (i.e., taking the maximum
distance of the scalar components).

Exploiting Eq. (19), one can easily derive the expression
for the knn estimate of the entropy of the present state of the
process X computed for the time series {x1,x2, . . . ,xN }:

E(X) = H (Xn) = ψ(N ) − ψ(k) + 〈ln εn〉. (20)

Then, according to Eq. (7), the conditional entropy can be
computed as the difference between the joint entropy of the
present and the past, H (Xm

n ,Xn), and that of only the past of
the process, H (Xm

n ). The information storage can be computed
as the difference between entropy and conditional entropy.
However, since H (Xn),H (Xm

n ),H (Xm
n ,Xn) are computed in

spaces with different dimensions (respectively, 1, m and m +
1), the naive application of the same neighbor search procedure
in all spaces would result in different distance lengths when
approximating the probability density in different dimensions,
which would introduce different estimation biases that cannot
be compensated by taking the entropy differences. Therefore,
in order to keep the same distance length in all explored
spaces, we adopt the solution [101] of performing a neighbor
search only in the highest-dimensional space and projecting the
distances found in this space to the lower-dimensional spaces,
keeping these distances as the range within which neighbors
are counted. An example is depicted Fig. 4 for the paradigmatic
case of m = 1. Specifically, the knn estimate of H (Xm

n ,Xn) is
computed through the neighbor search:

H
(
Xn,X

m
n

) = ψ(N ) − ψ(k) + (m + 1)〈ln εn〉, (21)

where εn is twice the distance from (xn,x
m
n ) to its kth nearest

neighbor, and then, given the distances εn, the entropies in
the lower-dimensional spaces are estimated through a range
search:

H (Xm
n ) = ψ(N ) − 〈

ψ
(
NXm

n

)〉 + m〈ln εn〉, (22)

H (Xn) = ψ(N ) − 〈
ψ

(
NXn

)〉 + 〈ln εn〉, (23)

where NXn
and NXm

n
are the number of points whose dis-

tance from Xn and Xm
n , respectively, is smaller than εn/2.

Finally, the conditional entropy is obtained by subtracting

FIG. 4. Schematic illustration of the knn estimation of entropy
measures. In this example, the past of the process X is approximated
with m = 1 samples and k = 2 neighbors are used in the search
for neighbors. In the (m + 1)-dimensional space spanned by the
realizations of (Xn,Xn−1), a neighbor search is performed using
the maximum norm to find the kth nearest neighbor (blue dot)
of the assigned reference point (red dot). Then, the distance between
these two points, 0.5εn is used in the projected one-dimensional space
spanned by the realizations of of X1

n = Xn−1 as threshold distance
to find the neighbors of the reference point xn−1; in this example,
NX1

n
= 3 neighbors are counted. This procedure is repeated varying

the reference point and the obtained values of εn and NX1
n

are then
used in Eq. (24) to compute the conditional entropy.

Eq. (22) from Eq. (21):

C(X) = H
(
Xn|Xm

n

) = −ψ(k) + 〈
ψ

(
NXm

n

)〉 + 〈ln εn〉, (24)

and the information storage is obtained subtracting Eq. (21)
from the sum of Eqs. (22) and (23) [26]:

S(X) = I
(
Xn; Xm

n

)
= ψ(N ) + ψ(k) − 〈

ψ
(
NXm

n

)〉 − 〈
ψ

(
NXn

)〉
. (25)

Since the nearest-neighbor technique results in an adaptive
resolution as it changes the distance scale according to the
underlying probability distribution [97,99], and may also
achieve bias compensation when implemented through dis-
tance projection [101], this approach has gained in recent years
increasing popularity for the estimation of entropy measures
in time series analysis. While the utilization of this estimator
has been directed up to now mostly to the computation of
entropy measures for multivariate time series where the issue
of dimensionality is more serious [14,25,104–106], in this
study we consider its implementation for the computation of
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entropy measures for individual time series, as first proposed
in [106].

C. Simulation model of stochastic processes

In this section, we introduce the models to simulate four
different types of stochastic processes: stationary autoregres-
sive process, autoregressive process with nonstationarities,
fractionally correlated process, and fractionally integrated
autoregressive process.

We start with the stationary autoregressive process (AR
process), which constitutes the basic process on which entropy
measures can be applied. For this type of process, techniques
to compute the exact theoretical values of the various entropy
measures are available [13] and are here reviewed in the
Appendix. We use these theoretical values as a reference
to evaluate the performance of different entropy estimators.
Results of this basic process will serve as a baseline for more
complicated processes that are studied later.

Second, we superimpose three types of nonstationarities
(i.e., sinusoidal trends, spikes, and local variance changes) on
the stationary AR signal. These nonstationarities are selected
as they are commonly encountered in real-world time series
as factors corrupting the underlying dynamics [57,58,107–
110]. In our simulations, by comparing the estimated values
of entropy measures for AR signals with nonstationarity and
their corresponding theoretical values for original stationary
AR signals, we aim to understand the effects of nonstationarity
on entropy estimation and figure out potential solutions to
mitigate or remove consequent biases.

In addition to the autoregressive process, we also investigate
processes with long-range power-law correlations, a property
exhibited by many empirical time series such as the human
heart rate or the price index of the stock market [58,109].
Unlike the autoregressive process which is considered to
be short memory, these processes, usually referred to as
fractionally integrated processes, often exhibit long-range or
medium-range dependence [111]. In other words, a frac-
tionally integrated process has an autocorrelation function
that damps hyperbolically, more slowly than the geometric
damping of an autoregressive process. Despite the fact that
entropy measures are typically applied to time series with long-
range power-law correlation [2,3,24,27,30,30,31,37,89,106], it
is not well understood how these measures relate to this type
of long-memory dynamics and how their estimation is affected
by properties of correlations including its sign and strength.
To fill in this knowledge gap, we first extend the approach
used in Ref. [13] to compute the theoretical values of entropy
measures from given simulation parameters for fractionally
integrated processes, as shown in the Appendix. In addition,
we compare these theoretical values with the estimated values
of different entropy measures and estimators to evaluate their
estimation bias. In this way, our work provides a reference
for the application of entropy measures and estimators to
power-law long-range correlated processes.

Last, we consider more general cases of processes with
both autoregression and power-law long-range correlations
and follow the same procedures to evaluate the performance of
entropy measures and estimators by computing and comparing
their estimates with the corresponding theoretical values.

1. Stationary AR process

The AR process is simulated as the output process of a linear
univariate AR model driven by a stochastic uncorrelated noise.
Using the polynominal notation, an autoregressive process of
order p can be expressed as

A(L)Xn = Un, (26)

where A(L) = 1 − ∑m
i=1 AiL

i is an autoregressive polyno-
mial of order m, L is the backward shift operator (LiXn =
Xn−i), and U is a white Gaussian innovation process with zero
mean and unit variance.

In this study we simulate an AR process of order m = 2 by
placing two complex-conjugate poles [roots of A(L)] in the
complex plane, with modulus ρ and phase ±2πf , in a way
such that the coefficients of the AR polynomial become

A1 = 2ρ cos(2πf ), A2 = −ρ2. (27)

With this setting, the parameters ρ and f determine, respec-
tively, the amplitude and frequency of a stochastic oscillation
that is imposed for the process. Note that the process is
stationary when ρ ∈ [0,1) and that the AR amplitude ρ

determines the regularity of the stochastic oscillation: the
process is a fully unpredictable white noise when ρ = 0, and
becomes a highly predictable stochastic process exhibiting a
marked oscillatory behavior around the frequency f when ρ

approaches 1.
Stationary realizations of the AR process described above,

generated with different values set for the AR amplitude ρ and
frequency f , are given in Fig. 5. Comparing Figs. 5(a)–5(c)
by column one can see that, for an assigned frequency f , the
process is more regular for higher values of ρ, confirming
the expected increase in the predictability of the process
with the AR amplitude. On the other hand, variations in the
predictability of the process are more difficult to appreciate
when f is varied by keeping fixed the AR amplitude ρ. To
investigate this dependence in more detail, Figs. 5(d) and 5(e)
report, respectively, the autocorrelation function of the process,
and the two-dimensional (2D) and three-dimensional (3D)
phase plots of the temporal relation between the present and
the two past samples (Xn versus Xn−1,Xn−2), computed for the
realizations of Fig. 5(c). These plots indicate that the process
exhibits longer memory, as well as a much stronger linear
dependence of the present on the past values, when the AR
frequency is very low (f = 0.01) or very high (f = 0.49)
compared to the intermediate value (f = 0.25). This suggests
that, besides the pole modulus ρ, also the frequency f of
the stochastic oscillation of an AR process plays a role in
determining its degree of regularity.

2. AR process with nonstationarity

Stationarity is a prerequisite for the computation of the
entropy measures from an individual realization of the process
under investigation. In fact, if the process is nonstationary,
the joint probability distribution of its present and past values
changes over time, which precludes the possibility of pooling
observations across time for estimating of such probabilities.
If observations are pooled across time in the presence of
nonstationarities, the estimated probability distribution is
unreliable and the resulting entropy measures deviate from
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FIG. 5. Autoregressive processes: characterization of a stationary order-2 AR process for different values of the AR amplitude ρ and
frequency f . (a)–(c) Exemplary realizations of the process obtained varying ρ (columns) and f (rows). Results: When f is fixed, the process
appears more regular for higher values of ρ. (d) Autocorrelation of the process as a function of the lag τ for the realizations in (c). (e) 2D phase
plots of (Xn,Xn−1) and (Xn,Xn−2), and 3D phase plots of (Xn,Xn−1,Xn−2), for the realizations in (c). When ρ is fixed, the process exhibits
shorter memory and weaker dependence of the present on the past for intermediate frequency f .

the value assumed for a stationary distribution to an extent
depending on the type and strength of the nonstationary
behavior.

Here we study the effects of three types of nonstationarities
due to common artifacts, including trends, spikes, and local
changes in the signal variance, on the entropy, conditional
entropy, and information storage of the AR process of
order 2 described above. To reproduce these situations, we
superimpose the chosen type of nonstationary behavior to
stationary realizations of the AR process generated according
to Eqs. (26) and (27). Nonstationary AR signals with sinusoidal
trends are obtained by adding to the original stationary AR
signals a sine wave of period T and amplitude A. Signals
with random spikes with amplitude A and percentage P %
are generated by replacing random points of the original
time series with random numbers uniformly distributed in the

interval(−Aσ 2
X,Aσ 2

X), where σ 2
X is the variance of the original

signal. To simulate local changes in variance, we choose
random segments from the original time series and inflate these
segments by multiplying their original values by a factor of σ .
Each inflated segment contains 20 points and the total number
of inflated points covers P % of the original signal length. The
resulting realizations of the AR process with superimposed
nonstationary behavior were always normalized to zero mean
and unit variance before computing the entropy measures.
Exemplary realizations of the analyzed nonstationary AR
processes are depicted in Figs. 11, 13, and 15.

3. Fractionally integrated white noise process

Stochastic processes with power-law long-range correla-
tions are generated as fractionally integrated white noise [112],
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FIG. 6. Processes with long-range correlations: characterization of a fractionally integrated process with long-range power-law correlations
for different values of the differencing parameter d , which controls the correlations. (a) Exemplary realizations of the process with d =
−0.5,0,0.5. (b) Results of detrended fluctuation analysis (DFA) applied to longer realizations (220 data points) of the process in (a). For
d ∈ [−0.5,0.5], the DFA exponent is α = (2d + 1)/2. (c) 2D phase plots of (Xn,Xn−1) and (Xn,Xn−2), and 3D phase plots of (Xn,Xn−1,Xn−2),
for the realizations in (a). Results: For fixed modulus of the differencing parameter, positively correlated processes exhibits stronger dependence
of the present on the past than anti-correlated processes.

defined by

(1 − L)dXn = Un, (28)

where U is a Gaussian white noise with zero mean and unit
variance, d � 0 is the so-called differencing parameter and
(1 − L)d is the fractional differencing operator defined by

(1 − L)d =
∞∑

k=0

�(k − d)Lk

�(−d)�(k + 1)
, (29)

with �(·) denoting the gamma (generalized factorial) function.
In this study, computation of Eq. (29) is approximated by
(1 − L)d = ∑100

k=0
�(k−d)Lk

�(−d)�(k+1) . The differencing parameter d

controls the sign and degree of the correlations imposed in the
process. It is related to the Hurst exponent, α, by the relation
α = (2d + 1)/2,d ∈ [−0.5,0.5] [113]. Within this range of
values for d, the fractionally integrated process is considered

as stationary [112]. For d ∈ (0,0.5], the process is long-range
correlated, showing long-range positive dependence, while
for d ∈ [−0.5,0), it is anti-correlated, showing long-range
negative dependence. The case d = 0 reduces to uncorrelated
white noise.

Figure 6(a) shows exemplary realizations of fractionally
integrated white noise with differencing parameter set to
d = −0.5, d = 0, and d = 0.5. The corresponding multifractal
behavior obtained through detrended fluctuation analysis
is depicted Fig. 6(b), confirming the relation between the
fractional differencing parameter d and the Hurst exponent
α. Figure 6(c) depicts the two-dimensional phase plots
of (Xn,Xn−1) and (Xn,Xn−2) and three-dimensional phase
plots of (Xn,Xn−1,Xn−2) for anticorrelated, uncorrelated,
and positively correlated time series. The plots evidence a
cloud distribution of the points reflecting the absence of a
dependence of the present on the past for the uncorrelated
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FIG. 7. Autoregressive processes with long-range correlations: characterization of a stationary fractionally integrated AR process with both
autoregression and power-law long-range correlations for different values of the differencing (correlation) parameter d and fixed values of the
AR parameters ρ and f . (a) Exemplary realizations of the process with d = −0.5,0,0.5 and fixed ρ = 0.8,f = 0.25. (b) 2D phase plots of
(Xn,Xn−1) and (Xn,Xn−2), and 3D phase plots of (Xn,Xn−1,Xn−2) for the realizations in (a). Results: The fractionally integrated AR process
displays weaker dependence of the present on the past than the corresponding pure autoregressive process with the same AR parameters in the
presence of positive long-range correlations and stronger dependence in the presence of negative long-range correlations.

case (middle); moreover, when the degree of correlation is the
same, a much stronger dependence of the present on the past
is exhibited for a process with positive correlation (right) than
for a process with anticorrelation (left).

4. Fractionally integrated AR process

The combination of the autoregressive process and the
fractionally integrated processes defined in Eqs. (26) and
(28) results in a more general univariate process exhibiting
both stochastic oscillations and long memory. The resulting
process, which belongs to the class of fractionally integrated
autoregressive moving average processes (ARFIMA) [112], is
defined as follows:

A(L)(1 − L)dXn = Un. (30)

Figure 7 shows exemplary realizations and phase plots of
this fractionally integrated autoregressive process with fixed
AR amplitude ρ = 0.8 and varying differencing parameter
d = −0.5,0,0.5. Compared with the case in which the pro-
cess is not long-range correlated but purely autoregressive
[Fig. 7(a), middle, ρ = 0.8, d = 0], the combination of the AR
stochastic oscillations with positive long-range correlations
[Fig. 7(a), right, ρ = 0.8, d = 0.5] seems to slightly reduce
the dependence of the present of the process on its past, while
the opposite seems to occur when AR stochastic oscillations
are combined with negative long-range correlations [Fig. 7(a),

left, ρ = 0.8, d = −0.5]. The same effect, i.e., a decrease of
the predictability of the present given the past for positive long-
range correlations and an increase of this predictability for neg-
ative long-range correlations, is observed comparing the case
of mixed AR and fractionally integrated processes [Fig. 7(a)]
with the pure fractionally integrated process [Fig. 6(a)]. Thus, a
process with both AR short-term dependencies and long-range
correlations results less predictable than its pure autoregressive
or pure fractionally integrated counterparts in the case of
positive long-range correlations and more predictable in the
case of anticorrelations.

III. RESULTS

This section provides the results for the application of the
three entropy measures defined in Sec. II A (i.e., entropy,
conditional entropy, and information storage) computed using
the three entropy estimators presented in Sec. II B (i.e., linear,
kernel, and knn) on the four types of stochastic processes
discussed in Sec. II C (i.e., stationary AR processes, AR
processes with different types of nonstationarity, power-law
long-range correlated processes, and process with both AR
structure and long-range correlation). For each type of process,
we first theoretically obtain the true values of all three entropy
measures through analytical derivations starting from the
assigned model parameters. Then, using the same simulation
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model and model parameters, we compute the estimated
values of entropy measures using all three estimators for 100
realizations of the target process. Each realization typically
lasts 300 points. All the analyzed processes have zero mean
and are reduced to unit variance prior to the computation
of entropy measures. All entropy estimations are performed
using m = 2 lagged components to approximate the past of the
process (i.e., Xm

n = [Xn−1,Xn−2]); this setting corresponds to
choosing the true order of the simulated AR process, so as to
make the interpretation of results free from issues related to
an inappropriate selection of the embedding dimension.

A. Performance of entropy estimators and entropy measures
for stationary AR processes

Figure 8 reports the characterization of entropy measures
and entropy estimators for the case of a stationary AR process.
For this process, the exact behavior of the entropy measures in
response to changes in the analysis parameters can be studied
by looking at the theoretical values (black solid lines), and
can be compared with the distributions of values obtained
applying the different estimators to multiple realizations of
the process generated from setting specific values for the
parameters (symbols and error bars).

The theoretical values of all entropy measures are obviously
the same for different lengths of the generated realizations
[Figs. 8(d), 8(e), and 8(f)]. Moreover, since this example deals
with normalized Gaussian processes with zero mean and unit
variance, the entropy of the process is constant at varying the
AR parameters ρ and f [Figs. 8(g) and 8(j)]. On the other
hand, when f is fixed and ρ increases, the theoretical value of
conditional entropy decreases and that of information storage
increases. When ρ is fixed and f increases, the theoretical
value of conditional entropy increases for f ∈ (0,0.25] and
decreases for f ∈ (0.25,0.5). The theoretical behavior of infor-
mation storage is the opposite. The dependence of the measures
of dynamical complexity on the AR amplitude is expected: a
process with higher ρ exhibits a stronger dependence of the
present on the past, and this better predictability is reflected
by lower conditional entropy and higher information storage.
On the other hand, the dependence of the entropy measures
on the AR frequency, documented in Figs. 8(k) and 8(l) and
in more cases in Fig. 10, is a less expected behavior, which
indicates the existence of a complex relation between the
statistical structure of a dynamic process and its information
content.

Turning to the analysis of the entropy estimates first, we
see that, as one may expect, the estimated values exhibit
lower variability while increasing the time series length.
This behavior is particularly evident for the kernel estimator,
confirming the findings of previous studies [11,12]. The kernel
estimator also shows a substantially higher variance compared
to that of the linear and knn estimators [Figs. 8(e) and 8(f)].
In addition, we find that the kernel estimates of entropy and
conditional entropy are strongly biased for all values of the
analysis parameters [Figs. 8(d), 8(e), 8(g), 8(h), 8(j), and 8(k)].
The bias is less evident for the kernel estimates of information
storage, and is generally low or negligible for the linear and
knn estimates of all measures.

In Fig. 9 we investigate how the estimates of the different
entropy measures are affected by the choice of the analysis
parameters. The linear estimation approach has no free param-
eters and, for this case in which the amplitude distribution of
the simulated process matches the assumption of Gaussianity
made by the estimator, it returns very precise estimates for
all measures [Figs. 9(a)–9(c)]. The kernel estimator turns out
to be very sensitive to the choice of its free parameter, the
threshold r . Specifically, as shown in Figs. 9(d) and 9(e),
when r decreases from 0.5 to 0.2 and 0.1, we observe that
the estimates of entropy and conditional entropy are higher
and exhibit larger variability. Such sensitive dependence on
the threshold r results from the partition rule of the state space
used by the kernel estimator. The threshold r is the width of
the Heaviside kernel function and determines the size of the
cells used for probability estimation: when r decreases, less
points are included in the cell used to estimate probabilities;
as a result, the estimated probabilities are lower, leading to
higher entropy estimates regardless of the true underlying
value. On the contrary, when r increases, more points are
included in the neighborhood of any reference point, increasing
the estimated probability and thus leading to a lower entropy
estimate. This holds regardless of the type of kernel function
used for entropy estimation, and determines a substantial
unreliability for the absolute values of entropy and conditional
entropy estimated with the kernel method. The bias (but not
the variance) is compensated for the estimates of information
storage [Figs. 9(d)–9(f)]. On the contrary, results from the knn
estimator are more accurate for the estimation of all entropy
measures and much less dependent on the choice of its free
parameter k denoting the number of neighboring points used
for probability estimation.

Figure 10 provides a more detailed analysis of the depen-
dence of entropy measures on the parameters of a stationary
AR process. In this case, where both the AR amplitude ρ

and the AR frequency f are varied, we see that the entropy
measures reflect the signal properties observed in Fig. 5:
increasing ρ with constant f , or moving f away from 0.25
with constant ρ, yields a decrease of conditional entropy
and an increase of information storage that indicate lower
complexity and higher regularity of the dynamics. Moreover,
by comparing the theoretical and estimated values for the
different estimators we found that—despite the bias in the
kernel estimation of entropy and conditional entropy—all of
the estimators can follow the changes in entropy measures
when the internal dynamics of the stationary AR process
changes. However, unlike the linear estimator which makes
an accurate approximation of all entropy measures for all
combinations of AR parameters, the kernel and knn estimators
exhibit a bias when the AR amplitude is high (ρ � 0.8) and the
AR frequency is very low (f < 0.1) or very high (f > 0.4).

In summary, the simulations reported in this section indicate
that the assessment of entropy measures is not an easy task even
for the simple case of stationary AR processes. Theoretically,
the expected values of conditional entropy and information
storage are dependent on the features of the process in a
way that is not always straightforward. Moreover, the practical
estimation of these measures is not an easy task: while for the
linear estimator computation is accurate thanks to the close
correspondence between model assumptions and properties
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FIG. 8. Performance of entropy estimators and entropy measures for stationary AR processes. (a)–(c) Exemplary realizations of AR
processes generated with fixed f = 0.25 and varying ρ = 0,0.6,0.9, with corresponding probability distributions reported on the right; note
that if ρ = 0 the process is a white noise ∀f . (d)–(f) Dependence of entropy measures and entropy estimates, obtained for AR processes with
fixed amplitude and frequency (ρ = 0.6,f = 0.25), on the length N of the time series generated as process realizations. (g)–(i) Dependence
of entropy measures and entropy estimates on the AR amplitude ρ with fixed AR frequency (f = 0.25) and time series length (N = 300).
(j)–(l) Dependence of entropy measures and entropy estimates on the AR frequency with fixed AR amplitude ρ = 0.6 and time series length
(N = 300). Panels (d)–(l) report the theoretical values (black solid line) and the estimated distributions (mean and 25%–75% percentiles
over 100 realizations) of entropy (d), (g), (j), conditional entropy (e), (h), (k), and information storage (f), (i), (l) obtained with the linear
estimator (green squares), the kernel estimator implemented with threshold r = 0.2 (red circles), and the knn estimator implemented with
k = 10 neighbors (blue triangles). Results: The expected values of all entropy measures do not change with the realization length N . Moreover,
for these normalized time series the theoretical values of entropy are unaffected by the AR parameters. The conditional entropy decreases with
the increase of ρ when f is fixed, and increases with increasing f for f ∈ (0,0.25] and decreases for f ∈ (0.25,0.5) when ρ is fixed. The
theoretical behavior of information storage is the opposite of that of the conditional entropy. The estimates obtained with the linear and knn
estimators are close to the theoretical values for all entropy measures, while the estimates of entropy and conditional entropy obtained with the
kernel estimator are strongly biased and exhibit high variance for short time series.
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FIG. 9. Dependence of entropy estimators on estimator parameters for stationary AR processes. Plots depict the theoretical values (black
solid line) and the estimated distributions (mean and 25%–75% percentiles over 100 realizations, colored symbols and error bars) of entropy
(a), (d), (g), conditional entropy (b), (e), (h), and information storage (c), (f), (i) computed using the linear estimator (a)–(c), the kernel estimator
(g)–(i) implemented with threshold r = 0.1 (green open squares), r = 0.2 (blue full triangles), and r = 0.5 (red open circles), and the knn
estimator (g), (h) implemented with k = 5 (green open squares), k = 10 (blue full triangles), and k = 30 (red open circles) neighbors. Estimates
are computed over realizations of length N = 300, generated with fixed AR frequency f = 0.25 and varying the AR amplitude in the range
ρ ∈ {0,0.4,0.6,0.8,0.9}. Results: The kernel estimates of entropy and conditional entropy are strongly dependent on the parameter r setting
the kernel threshold, whereas the knn estimates are much less sensitive to the parameter k setting the number of neighbors. Since the linear
estimator assumes the form of the probability distributions, it has no free parameters.
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FIG. 10. Dependence of entropy measures and entropy estimators on AR process parameters. Plots depict the theoretical values (lines) and
the estimated distributions (mean and 25%–75% percentiles over 100 realizations lasting N = 300 samples, colored symbols and error bars)
of entropy (a), (d), (g), conditional entropy (b), (e), (h) and information storage (c), (f), (i) computed using the linear estimator (a)–(c), the
kernel estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with k = 10 neighbors (g)–(i). Each measure
is computed as a function of the AR frequency varying in the range f ∈ (0–0.5) for different values of the AR amplitude (ρ = 0, red crosses
and solid lines; ρ = 0.6, blue long-dashed lines and open squares; ρ = 0.8, pink short-dashed lines and full triangles; ρ = 0.9, green dotted
lines and open circles). Results: The linear estimates of entropy measures are close to the theoretical values regardless of the values of the AR
amplitude ρ and frequency f . The kernel and knn estimates exhibit a bias that is more evident for high values of the AR amplitude (ρ � 0.8),
and for very low or very high values of the AR frequency (f � 0.1,f � 0.4).
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of the simulated data (i.e., stationary Gaussian process),
the model-free analysis is complicated by empirical factors,
such as the data length, but also by the statistical properties
of the underlying process. Specifically, we found that the
estimates of conditional entropy and information storage are
strongly biased for processes exhibiting very slow or very fast
regular oscillations. Moreover, the kernel estimates of these
measures, though being extremely popular when implemented
in measures like approximate entropy and sample entropy, are
highly biased with a bias strongly dependent on the estimation
parameter. On the other hand, small bias and low estimation
variance can be attained by computing the same measures
through the knn method.

B. Performance of entropy estimators and entropy measures
for AR processes with nonstationarities

Using the results for the stationary AR process as a
benchmark, in this section we study the effect of nonstationary
behaviors on the performance of the estimators of entropy,
conditional entropy, and information storage. Starting from
stationary AR processes, we induce three types of nonsta-
tionarity by superimposing sinusoidal trends, adding random
spikes and inflating the amplitude of segments of the original
time series. For each type of nonstationarity, we first compare
the statistical properties and the entropy measures estimated
for of individual realizations of AR processes with and without
nonstationarity and then perform exhaustive analysis assessing
how the estimation performance varies with the severity of the
simulated nonstationary behavior.

1. Nonstationarity due to sinusoidal trends

The first type of nonstationarity we consider is the sinu-
soidal trend. As shown in Figs. 11(a) and 11(b), the presence
of a sinusoidal trend changes the probability distribution of Xn,
which departs from Gaussianity and becomes bimodal. Trends
have also the effect of distorting the temporal relation between
Xn and Xn−2, making it more evident but changing the sign of
their correlation [see Figs. 11(c) and 11(d), where the cloud of
points is less dispersed and the fitting line changes its slope]. In
this case, the change of the distribution after superimposition
of the trend is not reflected by alterations of the estimates of
the entropy of the time series, while the higher predictability is
reflected by a susbstantial decrease of the conditional entropy
and a clear increase of the information storage [Figs. 11(e)
and 11(f)]. These effects are evident regardless of the entropy
estimator.

The effects described above are confirmed by the analysis
of 100 process realizations with and without sinusoidal trends
reported in Fig. 12. The analysis performed as a function of
the AR amplitude shows that, regardless of the period or the
amplitude of the trend, the presence of trends does not have
big effects on the estimation of entropy but totally impairs the
ability of all entropy estimators in following the variations of
the regularity of the AR process. While such an ability was
documented in Fig. 8 for the original stationary AR process,
here we see that none of the estimators can correctly follow the
theoretical behaviors of conditional entropy and information
storage as a function of AR amplitude ρ, not even qualitatively
[see the difference between the estimated values for signals

with trends (colored lines with markers) and the theoretical
value for original AR signals (black lines)]. Moreover, for all
estimators we find that the estimation bias depends more on the
trend amplitude A (represented by red line with cross and pink
line with triangle) than on the trend period T (represented
by blue line with square and green line with circle). With
trend amplitude equal to the variance of the original process
(A = 1), the conditional entropy is underestimated for ρ < 0.7
and overestimated for ρ > 0.7, while the opposite happens
for the information storage; with trend amplitude A = 5 the
conditional entropy is systematically underestimated and the
information storage is systematically overestimated.

Overall, we find that trends have a big impact on the
detection of the dynamical complexity of stochastic processes.
In all cases, the negative impact of the presence of trends
is documented by the flat response of the entropy measures
to variations in the predictability of the underlying original
process.

2. Nonstationarity due to spikes

Next, we consider the case in which the stationary AR
process is corrupted by spikes with random temporal location
and amplitude. Spikes are extremely common in real life
signals [18,49,52,53,55,108] and may be manifested as arti-
facts originating from external conditions or from the intrinsic
dynamics of the system. Here we simulate spikes with random
temporal location and amplitude. As shown in Figs. 13(a)
and 13(b), the presence of spikes concentrates the probability
distribution of Xn in a way such that the largest part of the
signal variance is due to the spikes, which are outliers of the
distribution. As a result of the presence of random outliers,
the points of the 2D phase plot of (Xn−2,Xn) are concentrated
around the origin and the estimation of the temporal relation
between Xn and Xn−2 is strongly biased with respect to the
clean case [see Fig. 13(d), where the linear fit follows the
outliers rather than the noncorrupted points]. As documented
in Figs. 13(e) and 13(f), the more concentrated probability
distribution induced by the presence of spikes result in a
decrease in the model-free estimate of entropy (kernel and
knn estimators), while the linear model-based estimate is
unchanged for these normalized time series. Moreover, the
errors in the detection of the linear relation between time
series samples result in a clear overestimation of conditional
entropy and underestimation of information storage by the
linear estimator. On the contrary, the kernel and knn estimators
are still able to capture the predictability of the time series at
least to some extent, as demonstrated by the detection of a
significant amount of information storage resulting from the
estimation of a decrease in the conditional entropy compared
with the entropy. We ascribe the higher robustness to spikes
of kernel and knn estimators of conditional entropy and
information storage to the fact that these estimators explore
locally the state space in the computation of probabilities, thus
excluding from the estimate the points corrupted by spikes.

Figure 14 reports the results of the systematic analysis
of the effects of spikes, performed studying the behavior of
the entropy measures as a function of the AR amplitude
of the uncorrupted AR process at varying the frequency of
occurrence and the amplitude of the spikes. We found that
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FIG. 11. Performance comparison for AR signals with and without sinusoidal trends: alteration of signal properties and entropy estimates. (a)
and (b) show exemplary realizations of a stationary AR process with amplitude ρ = 0.6 and frequency f = 0.25 before and after superposition
of a sinusoidal trend with amplitude A = 1 and period T = 100; the corresponding probability distributions are shown on the right. Signals
are normalized to zero mean and unit variance. (c), (d) 2D phase plots of (Xn,Xn−2) derived from the time series in (a), (b). The generating
equation of this AR process with ρ = 0.6 and f = 0.25 is Xn = −0.36Xn−2 + Un, which yields the theoretical temporal relation between Xn

and Xn−2 shown by the solid black line; the estimated temporal relation obtained through linear least-squares fit of the two clouds of points is
shown by the red dashed lines. (e), (f) Entropy (shaded bars), conditional entropy (white bars) and information storage (gray bars) expressed
as theoretical values computed for the stationary AR process without trends and estimated values computed for the time series in (a), (b).
Estimations are performed using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10 neighbors.
Results: The presence of a sinusoidal trend superimposed to a realization of the AR process alters the probability distribution of Xn and distorts
the temporal relation between Xn and Xn−2. This results in a significant decrease of the conditional entropy and in a significant increase of the
information storage for all estimators.

the linear estimates of conditional entropy and information
storage are highly affected by spikes, which blunt the ca-
pability of the measures to respond to changes in the AR
amplitude [Figs. 14(b) and 14(c), except for the case of

low spike amplitude (A = 1) and percentage (P = 5%) in
which a certain performance is preserved]. On the other hand,
spikes were found to be less problematic for the kernel and
knn estimates of the entropy measures. Figures 14(d)–14(i)
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FIG. 12. Effects of nonstationarity due to sinusoidal trends on the estimation of entropy measures. Plots depict the behavior of entropy (a),
(d), (g), conditional entropy (b), (e), (h) and information storage (c), (f), (i) computed as a function of the amplitude ρ of an AR process with
fixed frequency f = 0.25, expressed as theoretical values computed for the original process without trends (black solid lines), and estimated
distributions (mean and 25%–75% percentiles) computed over 100 realizations of N = 300 samples of the process, each corrupted with an
additive sinusoidal trend of period T and amplitude A and normalized to zero mean and unit variance (colored symbols and error bars:
T = 100,A = 1, red crosses and solid lines; T = 100,A = 5, blue open squares and long-dashed lines; T = 400,A = 1, pink full triangles and
short-dashed lines; T = 400,A = 5, green open circles and dotted lines). Estimates are performed using the linear estimator (a)–(c), the kernel
estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with k = 10 neighbors (g)–(i). Results: The presence
of trends impairs the ability of all estimators to quantify the changes of conditional entropy and information storage induced by variations in
the AR amplitude ρ. Moreover, trends induce an estimation bias bias proportional to the trend amplitude A.
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FIG. 13. Performance comparison for AR signals with and without random spikes: alteration of signal properties and entropy estimates. (a),
(b) Exemplary realizations of a stationary AR process with amplitude ρ = 0.8 and frequency f = 0.25 before and after superposition of spikes
with amplitude A = 5 to 5% of the time series points; the corresponding probability distributions are shown on the right. Signals are normalized
to zero mean and unit variance. (c), (d) 2D phase plots of (Xn,Xn−2) derived from the time series in (a), (b). The generating equation of this
AR process with ρ = 0.8 and f = 0.25 is Xn = −0.64Xn−2 + Un, which yields the theoretical temporal relation between Xn and Xn−2 shown
by the solid black line; the estimated temporal relation obtained through linear least-squares fit of the two clouds of points is shown by the
red dashed lines. (e)–(f) Entropy (shaded bars), conditional entropy (white bars), and information storage (gray bars) expressed as theoretical
values computed for the stationary AR process without spikes and estimated values computed for the time series in (a), (b). Estimations are
performed using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10 neighbors. Results: The
presence of spikes superimposed to a realization of the AR process concentrates the probability distribution of the process and adds random
outliers, which blurs the detection of the temporal relation between between Xn and Xn−2. This results in the inability of the linear estimator
to detect the information storage in the process, while the kernel and knn estimators are less affected.

display that, apart from a negative bias in the estimation
of entropy and conditional entropy, the estimated values of
the entropy measures could correctly follow the variations in
their theoretical values for the original process induced by

changing the AR amplitude. The kernel and knn estimates of
information storage exhibit a lower bias and a higher variance
than the corresponding estimates of conditional entropy. The
dependence of the estimation biases on the spike percentage P
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FIG. 14. Effects of nonstationarity due to random spikes on the estimation of entropy measures. Plots depict the behavior of entropy (a),
(d), (g), conditional entropy (b), (e), (h), and information storage (c), (f), (i) computed as a function of the amplitude ρ of an AR process with
fixed frequency f = 0.25, expressed as theoretical values computed for the original process without spikes (black solid lines), and estimated
distributions (mean and 25%–75% percentiles) computed over 100 realizations of N = 300 samples of the process, each corrupted with additive
random spikes of amplitude A occurring with probability P and normalized to zero mean and unit variance (colored symbols and error bars:
P = 5%,A = 1, red crosses and solid lines; P = 5%,A = 5, blue open squares and long-dashed lines; P = 20%,A = 1, pink full triangles
and short-dashed lines; P = 20%,A = 5, green open circles and dotted lines). Estimates are performed using the linear estimator (a)–(c), the
kernel estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with k = 10 neighbors (g)–(i). Results: The
presence of spikes partially impairs the ability to quantify the changes of conditional entropy and information storage induced by variations in
the AR amplitude ρ; the impairment is more evident for the linear estimator and for high percentages of spikes. Moreover, spikes induce an
estimation bias proportional to both the amplitude and the percentage of spikes.
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and the spike amplitude A varies across estimators: the linear
estimator fails when P > 5% or A > 1, the kernel estimator
is equally affected by P and A and the knn estimator is more
affected by P than A.

Overall, these results indicate that spikes have a deleterious
impact on the model-based estimation of the measures of
dynamical complexity. Since spikes are commonly encoun-
tered in a large variety of practical settings, we conclude that
cautions should be used in adopting linear approaches to the
computation of conditional entropy and information storage
in the presence of these artifacts. On the contrary, model-free
estimates are less affected by spikes and, in the presence of
a moderate amount and amplitude of spikes, they are still
sensitive to variations in the dynamical complexity of the clean
time series.

3. Nonstationarity due to local changes in the signal variance

As a third nonstationary behavior, we consider the alteration
in the amplitude of segments of the original AR process. As
shown in Figs. 15(a) and 15(b), the local alteration of the
signal variance has the effect of concentrating the probability
distribution of Xn in a similar way than for the case of spikes.
Similarly, the 2D phase plot of (Xn−2,Xn) exhibits a percentage
of outliers that surround the cloud of points representing the
non-corrupted portions of the original time series [Fig. 15(d)].
However, since this type of nonstationarity does not destroy the
temporal relation between the time series samples, the linear
fit in the 2D phase plot of (Xn−2,Xn) is still quite accurate.
As a result, the linear estimation of conditional entropy and
information storage is a bit degraded, but not fully impaired
as in the case of random spikes [see Figs. 15(e) and 15(f)].
In this individual realization, the kernel and knn estimators
provide slightly better performances in terms of estimation of
conditional entropy and information storage. Note that, as in
the case of random spikes, the concentration of the probability
distribution is reflected by lower values of the entropy
estimated using the kernel and knn estimators, while the
linear estimates are again unaffected by the shape of the
distribution.

Figure 16 reports the results of the complete analysis
whereby the estimation of entropy measures is performed as
a function of the AR amplitude for different values of the
percentage and maximal amplitude of the segments of high
variance imposed in the AR process. The main effect of the
presence of segments of high variance is the introduction of
a negative bias in the model-free estimates of entropy and
conditional entropy, as well as of a positive bias in the model-
free estimates of information storage [Figs. 16(d)–16(i)]; the
bias in the information storage is higher for the kernel estimates
than for the knn estimates. The linear estimates of the entropy
measures are less affected by this bias [Figs. 16(a)–16(c)].
In spite of the bias we found that, in all conditions of local
alteration of the signal variance, the values of the entropy
measures computed using all estimators could follow the
changes in their theoretical value imposed by varying the AR
amplitude ρ.

These results suggest that the presence of nonstationarity
due to segments of high variance is not as detrimental as other
types of nonstationary behaviors, as it introduces a bias in the

entropy measures but does not preclude the capability of these
measures to detect changes in dynamical complexity induced
by alterations of the predictable structure of the observed
process.

C. Performance of entropy estimators and entropy measures
for fractionally integrated white noise processes

In this section, we investigate the theoretical behavior of the
entropy measures, as well as the performance of all entropy
estimators in computing these measures, for processes with
power-law long-range correlations. After setting the properties
of fractionally integrated white noise processes as described in
the methods (Sec. II C 3), the theoretical values of the entropy
measures are computed as a function of the differencing
parameter d, which controls the sign and the strength of
long range correlations using the derivations described in the
Appendix. We then compare these theoretical values with
the distribution of the estimated values, in order to evaluate
comparatively the efficacy of the various entropy estimators.

Results of this analysis are reported in Fig. 17. First, we
find that both the theoretical and the estimated values of
conditional entropy decrease, and the values of information
storage increase, with the strength of long-range correlations
modulated by the differencing parameter d. Additionally, the
asymmetric behaviors of conditional entropy and information
storage in response to positive or negative variations of the dif-
ferencing parameter d [Figs. 17(b), 17(c), 17(e), 17(f), 17(h),
and 17(i)] document that entropy measures are more sensitive
to positive long-range correlations than to anti-correlations of
the same strength. These results mirror the fact that signals with
positive correlation are often associated with longer memory
than signals with a negative correlation of the same strength.

Moreover we investigate the dependence of the entropy
estimates on the time series length N , finding that not only the
variance, but also the bias of of the estimates of conditional
entropy and information storage, decrease for longer time
series; this behavior is particularly evident for positive long-
range correlations [Figs. 17(b), 17(c), 17(e), 17(f), 17(h),
and 17(i)]. Similar discrepancies between numerical and mean
estimated values of complexity measures were observed in
[12] for 1/f noise time series, indicating that stationarity is
an important prerequisite for the analysis of short time series,
and trend-like behaviors may impair entropy estimation. A
potential explanation for this finding lies in the the fact that,
since signals with stronger positive correlation exhibit more
trendlike behaviors [see Fig. 6(a) for a representative example],
longer time series are needed to capture the similarity in
the patterns that determines accurate estimates of conditional
entropy and information storage. These results hold for all
estimators, and also confirm the higher variance of the
kernel estimator, compared to the linear and nearest-neighbor
estimators, as is previously observed for the simulations of
pure AR processes.

The findings reported in this section document that, in addi-
tion to traditionally used analytical tools for the quantification
of long-range correlations such as the detrended fluctuation
analysis (DFA), also the entropy measures studied in this work,
which are commonly used to assess short-range dependencies,
are able to quantify the the degree of long-range dependency
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FIG. 15. Performance comparison for AR signals with and without segments of high variance: alteration of signal properties and entropy
estimates in the presence of local changes in signal variance. (a), (b) Exemplary realizations of a stationary AR process with amplitude ρ = 0.9
and frequency f = 0.25 before and after inflating random segments by an amplification factor σ = 5 (a total of P = 20% of the time series
points are inflated); the corresponding probability distributions are shown on the right. Signals are normalized to zero mean and unit variance.
(c), (d) 2D phase plots of (Xn,Xn−2) derived from the time series in (a), (b). The generating equation of this AR process with ρ = 0.9 and
f = 0.25 is Xn = −0.81Xn−2 + Un, which yields the theoretical temporal relation between Xn and Xn−2 shown by the solid black line; the
estimated temporal relation obtained through linear least-squares fit of the two clouds of points is shown by the red dashed lines. (e), (f)
Entropy (shaded bars), conditional entropy (white bars), and information storage (gray bars) expressed as theoretical values computed for the
stationary AR process without changes in variance and estimated values computed for the time series in (a), (b). Estimations are performed
using the linear estimator, the kernel estimator with threshold r = 0.2, and the knn estimator with k = 10 neighbors. Results: The presence of
segments with higher variance concentrates the probability distribution of the process and disperses a portion of the points without distorting
their temporal relation. This results in a mild decrease of the conditional entropy and increase of the information storage for the kernel and knn
estimators, while opposite changes are appreciated for the linear estimator.
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FIG. 16. Effects of nonstationarity due to local changes in the signal variance on the estimation of entropy measures. Plots depict the
behavior of entropy (a), (d), (g), conditional entropy (b), (e), (h), and information storage (c), (f), (i) computed as a function of the amplitude ρ

of an AR process with fixed frequency f = 0.25, expressed as theoretical values computed for the original process without changes in variance
(black solid lines), and estimated distributions (mean and 25%–75% percentiles) computed over 100 realizations of N = 300 samples of the
process, each corrupted by randomly distributed inflated segments and normalized to zero mean and unit variance. Each inflated segment lasts 20
points and is generated by magnifying original data points by a factor of σ , with the percentage of inflated points to the total signal length being
P % (colored symbols and error bars: P = 5%,σ = 5, red crosses and solid lines; P = 5%,σ = 10, blue open squares and long-dashed lines;
P = 20%,σ = 5, pink full triangles and short-dashed lines; P = 20%,σ = 10, green open circles and dotted lines). Estimates are performed
using the linear estimator (a)–(c), the kernel estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with
k = 10 neighbors (g)–(i). Results: The presence of segments with high variance does not impair significantly the ability to quantify the changes
of conditional entropy and information storage induced by variations in the AR amplitude ρ. However, local changes in the signal variance
induce an estimation bias proportional to the percentage of inflated points and—to a lower extent—to the amplitude of inflation.
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FIG. 17. Performance of entropy estimators and entropy measures for fractionally integrated processes with long-range power-law
correlations. Plots depict the theoretical values (black solid lines) and the estimated distributions (mean and 25%–75% percentiles over
100 realizations of length N = 100 (red crosses and solid lines), N = 300 (blue open squares and long-dashed lines), N = 500 (pink solid
triangles with short-dashed lines), and N = 2000 (green open circles with dotted lines)) of entropy (a), (d), (g), conditional entropy (b), (e), (h),
and information storage (c), (f), (i) computed as a function of the differencing parameter d . Estimates are obtained using the linear estimator
(a)–(c), the kernel estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with k = 10 neighbors (g)–(i).
Results: Signals with positive correlations present lower conditional entropy and higher information storage than signals with anticorrelation
of the same strength. All estimators reflect the changes in entropy measures with the type and strength of power-law correlation, with a higher
accuracy for longer time series length, but exhibit a bias which increases with the correlation strength.
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FIG. 18. Exemplary realizations of fractionally integrated autoregressive processes for varying AR amplitude ρ and differencing
(correlation) parameter d . Plots depict signals with (a) weak autoregression (ρ = 0.3) and strong anti-correlation (d = −0.5), (b) weak
autoregression (ρ = 0.3) and strong positive correlation (d = 0.5), (c) strong autoregression (ρ = 0.9) and strong anticorrelation (d = −0.5),
(d) strong autoregression (ρ = 0.9) and strong positive correlation (d = 0.5). Slow trends in the signal are present for strong positive long-range
correlation, and less evident for anticorrelated signals or in the presence of a strong AR component.

of the present of a process on its past values. However, the
accuracy of the estimates is highly dependent on the time
series length, indicating that—contrary to what happens for
the estimation of short-range AR dependencies—very long
realizations would be needed to yield accurate estimation of
conditional entropy and information storage in the presence of
strong positive long-range correlations.

D. Performance of entropy estimators and entropy measures
for fractionally integrated autoregressive processes

The results reported in the previous sections describe
the capability of entropy measures and entropy estimators
to reflect changes in the temporal structure of both pure
AR processes producing stochastic oscillations and pure
fractionally integrated white noise processes exhibiting power-
law long-range correlations. Here we extend the analysis
by investigating whether and how the theoretical properties
of the entropy measures and the performance of the en-
tropy estimators change when the analyzed processes display
both short-term AR dependencies and power-law long-range
correlations. Representative examples of these processes are
reported in Fig. 18, suggesting that their dynamical structure
is altered in a different way depending on the strength of
the stochastic oscillation and the sign of the long-range
correlations. Specifically, we see that long-range correlations
of the same strength (|d| = 0.5) determine different structure
in the signals depending on their sign when the AR amplitude
is low [ρ = 0.3, Figs. 18(a) and 18(b)], while they do not affect
substantially or differently the dynamical structure when the
AR amplitude is high [ρ = 0.9, Figs. 18(c) and 18(d)].

Results of the analysis performed at varying the AR
amplitude ρ for different values of the differencing parameter
d are reported in Fig. 19. First, the analysis confirms that,
for these Gaussian normalized time series, the expected
values of entropy are not dependent on the parameters ρ

and d, and the estimates, apart from the bias of the kernel
method known also before, are accurate for all approaches

Figs. 19(a), 19(d), and 19(g). The theoretical values of
conditional entropy and information storage deviate from
their behavior for pure AR processes (pink short-dashed
curves) in a way depending on the sign of long-range
correlations: for anticorrelated processes (d < 0, red solid and
blue long-dashed curves) the trend is similar to the case d = 0
apart from a shift of the curves toward lower conditional
entropy and higher information storage; for positive long-
range correlated processes (green dotted and gray dash-dot
curves) conditional entropy and information storage are no
more increasing monotonically with ρ, showing a nontrivial
dependency especially for high values of the differencing
parameter. As seen in Figs. 19(b), 19(c), 19(e), 19(f), 19(h),
and 19(i), these theoretical trends were followed by the
estimated values with a performance comparable to that
observed for the various estimators applied to pure AR or
fractionally integrated processes (i.e., with the strong bias
typical of the kernel estimator and with a slightly better
performance of the linear estimator compared with the knn
estimator). The main difference is that in this case of combined
AR and fractionally integrated processes all estimators (even
the linear) produced biased estimates of the entropy measures.
The bias was positive for conditional entropy estimates and
negative for information storage estimates, increased with the
differencing parameter d, and was more marked for positive d

than for negative d.
Thus, the combined presence of stochastic oscillations aris-

ing from short-term interactions and of power-law long-range
correlations, which is a very common situation of real-world
time series, complicates both the theoretical behavior and the
practical estimation of entropy measures. The interpretation of
the values taken by these measures, as well as their accurate
estimation, become problematic in the presence of very regular
stochastic oscillations, when the increase of the conditional
entropy (and the decrease of the information storage) with
the strength of long-range correlations is more subtle, or in
the presence of strong positive correlations, when it may
happen that the conditional entropy does not decrease (and
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FIG. 19. Performance of entropy estimators and entropy measures for fractionally integrated autoregressive processes. Plots depict the
theoretical values (lines) and the estimated distributions (mean and 25%–75% percentiles over 100 realizations lasting N = 300 samples,
colored symbols and error bars) of entropy (a, d, g), conditional entropy (b), (e), (h), and information storage (c), (f), (i) computed using the
linear estimator (a)–(c), the kernel estimator implemented with threshold r = 0.2 (d)–(f), and the knn estimator implemented with k = 10
neighbors (g)–(i). Each measure is computed as a function of the AR amplitude varying in the range ρ ∈ (0,0.9) for fixed AR frequency
(f = 0.25) and different values of the differencing parameter (d = −0.5, red crosses and solid lines; ρ = −0.25, blue long-dashed lines and
open squares; ρ = 0, pink short-dashed lines and full triangles; ρ = 0.25, green dotted lines and open circles; ρ = 0.5, gray dash-dotted lines
and open circles). Results: The presence of strong positive correlation alters markedly the dependence of conditional entropy and information
storage on the AR amplitude, whereas anticorrelation induces only a shift in the measures without affecting substantially the dependence on
ρ. All estimators are biased in approximating conditional entropy and information storage for fractionally correlated AR signals. The bias is
more evident for positive than negative correlations and for stronger than weaker correlations.

062114-27



WANTING XIONG, LUCA FAES, AND PLAMEN CH. IVANOV PHYSICAL REVIEW E 95, 062114 (2017)

FIG. 20. Exemplary signals of consecutive heart beat intervals for one healthy subject (a), (c) and one CHF subject (b), (d), during day (a),
(b) and night (c), (d). The original signals of healthy subjects typically exhibit larger variability and amplitude than those of CHF subjects.

the information storage does not increase) while increasing
the regularity of the stochastic oscillations.

IV. APPLICATION TO HEART RATE VARIABILITY

Heart rate variability (HRV), the variation over time of the
period between consecutive heartbeats, is a reliable reflection
of the many physiological factors modulating the rhythm of the
heart in healthy conditions, as well as of the alteration of these
factors related to pathological states [114,115]. It is widely
accepted that the assessment of HRV over temporal scales
ranging from seconds to a few minutes allows the indirect
investigation of the short-term mechanisms underlying car-
diovascular control [116–118]. To investigate these short-term
dynamics and their structural complexity, a viable and widely
exploited approach is the use of entropy-based methods such
as approximate entropy (ApEn), sample entropy (SampEn),
corrected conditional entropy (CCE), and various refinements
of these measures [2–4,19,20,30,119,120]. On the other hand,
it is also known that heartbeat fluctuations exhibit long-
range correlation properties manifested in 1/f -like behavior,
power-law correlations, multifractal spectrum and scaling
behaviors that change with physiological state and disease
[57,58,66,68,69,121,122]. Therefore, the assessment of the
dynamical complexity of HRV remains a challenge because
of the poorly investigated effects of long-range correlation
properties on the patterns of short-term dynamics, and of the
unclear role played by nonstandardized preprocessing steps
and utilization of different entropy measures and estimators.

In order to test the ability of entropy measures in detecting
changes in the static and dynamical properties of HRV signals
in different physiological states and clinical conditions, as
well as to assess the sensitivity of these measures to the
adopted entropy estimator and preprocessing steps, here we
study heartbeat dynamics measured in healthy subjects and
congestive heart failure patients (CHF) during wake and sleep
conditions [123]. Specifically, we considered a group of 18
healthy subjects (13 females and 5 males, with ages between
20 and 50, average 34.3 years) and a group of 12 patients
suffering from CHF (3 females and 9 males, with ages between
22 and 71, average 60.8 years), in whom the time series of the
consecutive heartbeat intervals were measured from the holter
ECG recordings acquired continuously during six hours of
wake (12 p.m. to 6 p.m.) and 6 h of sleep (12 a.m. to 6 a.m.);
an example for one healthy subject and one CHF patient is
reported in Fig. 20.

For each recording, entropy, conditional entropy, and in-
formation storage were computed over consecutive sequences
of 300 interbeat intervals overlapped by half using the linear,
kernel, and nearest-neighbor estimators. The analyses were

performed under three types of preprocessing procedure:
(1) the originally measured HRV time series in which the
mean is removed within each 300-point window (local mean
removal); note that removing the mean within each window
will not affect the computation of entropy measures, but only
serves as a prerequisite for the linear estimator because it
was implemented without a constant term; (2) the same time
series normalized to zero mean and unit variance within each
300-point window (local normalization); and (3) the same time
series filtered by a linear high-pass filter (IIR with zero-phase,
cutoff frequency at 3dB: 0.02 cycles/beat [124]) to remove
slow trends and normalized to zero mean and unit variance
within each 300-point window (slow-trend removal and local
normalization). Exemplary signals for all three preprocessing
procedures are given in Fig. 21.

Estimations were performed by setting standard commonly
used values for the embedding and estimator-specific param-
eters, which also correspond to those used in the simulations:
m = 2 points were chosen for representing the past of the
processes; kernel entropy estimates were computed setting the
threshold r equal to 0.2 times the standard deviation of the
time series, and knn estimates were computed using k = 10
neighbors.

Then, the median value of the distribution of each entropy
measure computed for each healthy subject or CHF patients
during wake (W) and sleep (S) was retained for statistical
analysis. A paired t-test was used to test the difference between
measures derived during W and S inside the same group
(Healthy or CHF), while an unpaired t-test was used to check
differences between Healthy and CHF for a given analysis
condition (W or S). A p < 0.05 was always considered as
statistically significant.

Figure 22 collects the results of the analysis of the
three entropy measures, computed using the three considered
estimators applied to the HRV time series measured from the
CHF patients and the healthy controls during wake and sleep
conditions, as well as to the normalized and filtered versions
of these time series. Results illustrate that different entropy
measures can reflect different aspects of cardiac dynamics
across physiological states and pathological conditions. They
also provide evidence for the sensitivity of the measures to the
estimator adopted and the preprocessing procedures applied.
Our major findings are listed in the following.

A. Static measure of complexity in HRV signals: Entropy

Let us start by analyzing the entropy of the cardiac dynamics
[Figs. 22(a), 22(d), and 22(g)]. Note that estimated values of
Entropy measured by the linear and knn estimators depend on
the units of measure of the time series amplitudes (in this case,
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FIG. 21. Exemplary HRV time series of 300 points measured from the same CHF subject during day shown in Fig. 20(b) under different
pre-processing procedures. Panels depict the original signal (a), the same signal in (a) normalized to zero mean (b), the same signal in (a)
normalized to zero mean and unit variance (c), the same signal in (a) with slow trends removed by a linear high pass filter and normalized to
zero mean and unit variance.

seconds), thus being little informative. As shown in Figs. 22(a)
and 22(g), the values of entropy measured by the linear and knn
estimators were negative for signals that are not normalized to
unit variance and were positive for signals with unit variance,
which is reasonable given that their estimations are dependent
on signal variance [Eqs. (10) and (20)]. On the other hand, the
kernel estimation of Entropy, being implemented by taking
a percentage of the signal variance as similarity threshold
when computing probabilities, is not sensitive to alterations
in variance and thus yields very stable estimates for all
preprocessing conditions [Fig. 22(d)].

The main finding about entropy is that it was markedly
lower in CHF patients than in healthy subjects both during
wake and sleep and was higher during sleep than during wake
in both groups. These results, which were observed using the
linear and knn estimators and hold only for the zero-mean
time series without pre-processing, reflect, respectively, a
depressed HRV in CHF patients [125,126] and a higher
variance of the cardiac dynamics during sleep. Normalization
of the time series to unit variance affects dramatically the
values of Entropy as well as their variations across conditions:
since the linear estimator relies only on variance to estimate
entropy, after normalization it fails to detect changes in the
overall signal variability [Fig. 22(a)]; the decrease of the knn
estimates of entropy from wake to sleep in healthy subjects
was statistically significant after normalization to unit variance
[Fig. 22(g)], suggesting that the amplitude distribution of HRV
is less skewed during sleep than wake.

B. Dynamic measures of complexity in HRV signals:
Conditional entropy and information storage

Moving to the analysis of the measures of dynamical
complexity of HRV, the first main finding is the significant
increase of the conditional entropy and decrease of the
information storage, observed moving from wake to sleep
in healthy subjects. This behavior was consistently found
for all three estimators and for both the original and the
normalized time series (Figs. 22(b), 22(c), 22(e), 22(f), 22(h),
and 22(i)] and confirms previous findings showing that HRV

displays a higher short-term complexity during nighttime than
during daytime, potentially due to the sympathetic withdrawal
and parasympathetic enhancement commonly observed dur-
ing sleep [21,120]. Interestingly, this increase of the HRV
complexity during sleep was not observed anymore when
conditional entropy and information storage were computed
on the time series without slow trends obtained through the
high-pass filtering. Thus, also according to our simulation
results (see, e.g., Fig. 17), the higher conditional entropy
and lower information storage during sleep than during wake
for unfiltered signals with slow trends are likely to reflect a
decrease of long-range correlations from wake to sleep, rather
than alterations in the short-term dynamics. To support this
hypothesis, we performed detrended fluctuation analysis on
the whole 6-h time series measured for each subject in the wake
and sleep conditions under the above mentioned preprocessing
steps. Similar to previous work [52,53,66,67,69,127], we
found that significant differences exist in the DFA exponents
between wake and sleep as well as between healthy and CHF
subjects for original time series, indicating stronger long range
correlations during wake than during sleep, for CHF subjects
than healthy subjects. Moreover, after normalizing and filtering
the data, the DFA exponents decrease for all signals and the
differences in DFA exponents across physiological states and
clinical conditions are diminished, indicating the removal of
long-range correlations due to the preprocessing procedure of
normalization and filtering.

The second main result is the higher complexity in the short-
term dynamics of HRV signals displayed by the CHF patients
compared with the healthy subjects during both wake and
sleep, which is consistent with previous findings [128]. This
finding is documented by the significantly higher conditional
entropy [Figs. 22(b), 22(e), and 22(h)] and lower information
storage (Figs. 22(c), 22(f), and 22(i)] measured in CHF patients
than healthy subjects in most cases of physiological condition
and for most preprocessing procedures. This observation
is consistent for all estimators applied to the preprocessed
signals after normalization and detrending, suggesting that the
short-term dynamics of HRV play a crucial role in de-
termining the difference in the cardiac dynamics between
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FIG. 22. Performance of entropy estimators and entropy measures for heart rate variability signals of healthy subjects and congestive heart
failure (CHF) patients measured during wake (W) and sleep (S) states. Panels contain the behavior of entropy (a), (d), (g), conditional entropy
(b), (e), (h), and information storage (c), (f), (i) computed for signals normalized to zero mean within each window (shaded bar), signals
normalized to zero mean and unit standard deviation within each window (open bar), and signals detrended by a linear high-pass filter and
normalized to zero mean and unit standard deviation within each window (solid bar) for healthy subjects (left side with white background
and red bars) and CHF subjects (right side with gray background and blue bars) during wake (W) and sleep (S). Barplots depict the mean +
standard deviation across subjects of the median value of entropy measures computed for consecutive windows of 300 data points with a 150
points overlap using m = 2 lagged components and implemented with the linear estimator (a)–(c), the kernel estimator with threshold r = 0.2
(d)–(f), and the knn estimator with k = 10 neighbors (g)–(i). Symbols denote statistical significance (p < 0.05) of the differences between W
and S (∗, paired t-test) or between healthy and CHF (#, unpaired t-test). Results: Compared to healthy subjects, CHF patients exhibit lower
entropy values reflecting depressed HRV, and higher conditional entropy and lower information storage reflecting higher dynamical complexity.
Healthy subjects display a day-to-night increase of the dynamical complexity (higher conditional entropy and lower information storage during
S than during W) that is not observed in CHF patients.
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CHF patients and healthy subjects, as was also reported in
previous studies of the short-term dynamics of HRV time
series [120].

On the other hand, the results for signals without slow
trends removal evidence nonunivocal behaviors of the entropy
measures and entropy estimators. This suggests the impact of
normalization and the role of trends on the short-term analysis
of HRV complexity, which complicates the interpretation of
results. Using the linear estimator, the conditional entropy
computed for the original zero-mean signals is lower in CHF
patients than healthy subjects, while it is higher if computed on
signals normalized to unit variance [Fig. 22(b)]. Nevertheless,
such a discrepancy in the comparison between the healthy and
CHF groups before and after normalization to unit variance
was not observed for the linear estimation of information
storage. This result documents the importance of normal-
ization to unit variance, or of using the information storage
as measure of dynamical complexity, in situations where
the signal variance changes substantially across conditions.
Using the kernel estimator, results for conditional entropy
were independent of the pre-processing [Figs. 22(e) and 22(f)],
confirming that this estimator is less sensitive to alterations in
the signal variance across conditions. Using the knn estimator,
results were highly dependent on the preprocessing, with
CHF patients exhibiting lower conditional entropy and higher
storage than healthy subjects for the original HRV series, no
significant differences for the normalized series, and higher
conditional entropy and lower storage for the detrended series
(Figs. 22(h) and 22(i)]; besides the effects of changes in the
signal variance, these different trends may be also ascribed to
changes in the shape of the probability distribution of the
HRV time series related to different impact of trends and
long-range correlations in the CHF group. Indeed, the effect of
stronger long-range correlations documented for CHF patients
[67,126,129] may explain the lower dynamical complexity that
was associated with heart failure in previous studies [128] and
is here documented by the low conditional entropy and high
storage measured for the original HRV series.

To summarize, in this section we reported a paradigmatic
application to show on real signals the performance of entropy
measures and entropy estimators in a field in which a big
volume of work was performed using these approaches. The
analysis of physiological time series reported in this Section
indicates that entropy measures can only reveal specific types
of dynamical features of real-world complex systems, which
are also dependent on the choice of entropy estimators and
preprocessing procedure. To achieve correct estimation and
meaningful interpretations, careful assessment of entropy
estimators and appropriate signal preprocessing have to be
carried out. Specifically, our results document the usefulness
of entropy measures to assess the overall signal variance, and
also the importance of normalization in order to detect more
cleanly alterations of the dynamical structure across states or
conditions. They document also the big impact of long-range
correlations on the values of entropy measures, which makes
it important to remove slow trends in computing conditional
entropy and information storage when the purpose is to
use these measures to characterize the short-term dynamical
properties of the observed system.

V. SUMMARY AND CONCLUSIONS

There is a large volume of studies in the literature where
various entropy measures with different entropy estimators
are applied to diverse dynamical systems across the fields
of physics, biology, engineering, medicine, and economics.
These studies consider a range of experimental conditions
with different types of data artifacts and data limitations.
It is a challenge to compare results obtained for different
entropy measures applied to different systems, and to deduce
information about the intrinsic complexity and underlying
mechanisms. Thus, it is of paramount importance to assess
the performance of entropy measures for different types of
dynamics, often in the presence of nonstationarity and artifacts,
and to be aware of how estimated values of these measures are
affected by the choice of estimator-specific parameters. This
paper provides a detailed recipe for the application of the
most widely used entropy measures and entropy estimators on
the most general dynamic processes encountered in physical
and biological systems, and is a first account of the biases and
limitations of entropy methods in presence of nonstationarities
and data artifacts.

In this paper, we investigate the theoretical behavior of
entropy measures, as well as the performance of entropy
estimators, for various types of dynamical processes encoun-
tered in real-world systems. Specifically, we consider the
measures of entropy, conditional entropy and information
storage, computed by means of linear parametric estimators,
and nonlinear nonparametric estimators, such as the kernel and
nearest-neighbor methods.

We first define a set of models to generate stochastic
processes. We obtain theoretically the true values of the
entropy measures through analytical derivations where we
incorporate the known parameter values of the models used
to simulate stochastic processes. We next compare the true
theoretical values of the entropy measures with the numerically
estimated values of the same measures obtained from the
generated time series.

Our investigations include the following dynamic pro-
cesses: (i) stationary AR processes; (ii) nonstationary AR
processes corrupted by sinusoidal trends, random spikes, and
local changes in variance; (iii) fractionally integrated processes
with long-range power-law correlations; (iv) AR processes
combined with long-range correlations. We also apply linear,
kernel, and nearest-neighbor estimators of entropy, conditional
entropy, and information storage to physiological signals of
consecutive heartbeat intervals recorded in different popula-
tions (healthy and congestive heart failure) and during different
physiological states (wake and sleep).

Our major findings and observations are listed in the
following points:

(i) We find that even for a process as simple as the
stationary AR process, both the theoretical interpretation and
the practical estimation of entropy measures are not always
straightforward (Figs. 8 and 10). The dynamical complexity
of the AR process, reflected by high values of conditional
entropy and low values of information storage, varies not only
with the AR amplitude ρ, a parameter which controls the
predictability of the process, but also with the AR frequency
parameter f , which defines the frequency of the stochastic
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oscillations. Moreover, the accuracy in the estimation of
entropy measures by all estimators is higher for longer time
series [Figs. 8(d)–8(f)]. We find that the kernel and knn
estimates of all entropy measures are biased and provide low
accuracy for processes with high AR amplitude and very low
or very high AR frequency. This bias is significantly reduced
for AR processes with low and intermediate values of the
AR amplitude in combination with intermediate values of AR
frequency parameter. In contrast, we find that the accuracy of
the linear estimator does not depend on the AR parameters
[Figs. 8(g)–8(l)].

(ii) We also find that the estimation results of nonparamet-
ric estimators are affected by estimator-specific parameters
(Fig. 9). For the knn estimator, changes in the number of
neighbors k only have negligible impacts whereas the kernel
estimates of entropy and conditional entropy can be strongly
biased and highly variant when the threshold r (the width of
Heaviside kernel function) varies. The sensitive dependence
of the kernel estimator on its model parameter is not specific
to any particular kernel function but results from the general
approach adopted by the kernel methods to partition the
state space. Despite such a defect, the kernel estimates of
the conditional entropy are ubiquitously employed by the
approximate entropy (ApEn) and sample entropy (SampEn)
measures to assess the dynamical complexity of time series in
a wide range of empirical studies. Although it is commonplace
to consider a range of values for the threshold parameter r as
appropriate for the computation of ApEn or SampEn (typically
r is chosen between 0.1 and 0.3 times the standard deviation
of the observed signal), it is noteworthy that kernel estimates
of the conditional entropy can vary with the threshold r to
an extent that can easily exceed any difference between the
intrinsic complexity of the studied dynamics [Figs. 9(d)–9(f)].

(iii) The effects of nonstationarities due to various data
artifacts on the estimation of entropy measures vary with
the type of nonstationary behavior and with the type of the
estimator that is used. Sinusoidal trends are detrimental to all
estimators, reducing dramatically the capability of conditional
entropy and information storage to reflect changes in the
dynamical complexity of these processes (Figs. 11 and 12).
Spikes impair the performance of the linear model-based
estimates of dynamical complexity, while they affect less
model-free methods, such as the kernel and nearest-neighbor
estimators (Figs. 13 and 14). Local changes in signal variance
appear to be less problematic, as they do not compromise
the ability of all estimators to detect changes in dynamical
complexity despite introducing a bias (Figs. 15 and 16).
In addition to these systematical studies on the effects of
nonstationarities, future studies are foreseeable, which assess
comparatively the performance of different nonparametric
entropy estimators in describing the complexity of signals
exhibiting nonlinear and/or chaotic dynamics.

(iv) For processes with power-law long-range correlations
(Fig. 17), we establish the theoretical dependence of the en-
tropy measures on the correlation strength using the analytical
derivations of the true values of entropy measures based
on given parameters of the stochastic processes presented
in the Appendix. We observe lower theoretical values of
conditional entropy and higher values of information storage
when increasing the strength of positive correlations or

anticorrelations, while the theoretical values of entropy remain
unchanged as it depends only the variance and is independent
of the correlations in the signal. Moreover, we find that
when the strength of long-range correlations is the same, the
conditional entropy is higher and the information storage is
lower for signals with anticorrelations than for signals with
positive correlations. Such theoretical properties of conditional
entropy and information storage are approximated fairly well
by all estimators. The estimation bias is related to not only
data length but also the sign and strength of the long-range
correlations. In specific, the estimations by all estimators
are less accurate when the data length is shorter and the
absolute correlation strength is higher. In addition, for data
with the same absolute correlation strength, the entropy
estimates are more biased for signals with positive correlations
than for signals with negative correlations.

(v) For processes with both AR dynamics and long-range
power-law correlations (Fig. 19), we study both the theoretical
behaviors of the entropy measures and the corresponding esti-
mates by all three estimators. We show that the combined effect
of autoregression and long-range correlations complicates the
interpretation of conditional entropy and information storage
already at the theoretical level. Specifically, for anticorrelated
signals, we find that the response of conditional entropy and
information storage to changes in the correlation strength or in
the AR amplitude is preserved compared with the cases of pure
correlated noise or pure AR process: the conditional entropy
decreases and the information storage increases with stronger
short-term dependence due to autoregression and with stronger
long-range correlations (either positive or anticorrelations). On
the contrary, for signals with positive long-range correlations,
such a response may be inverted: when increasing the strength
of short-term dependence due to autoregression in the presence
of strong positive long-range correlations or when increasing
the strength of positive long-range correlations in the presence
of strong short-term dependence due to autoregression, the
conditional entropy increases and the information storage
decreases. As regards the estimation accuracy of entropy
estimators we find that, with relatively short data length
common of real-world time series, all estimators display a
non-negligible bias, which is more pronounced when long-
range correlations are positive and/or strong.

(vi) The practical analysis of the HRV series (Fig. 22)
documents that, when properly applied, entropy measures are
able to characterize changes of specific types in the cardiac
system that are associated with different physiological and
clinical states. However, a correct interpretation of the behavior
of entropy measures for varying conditions requires clear
understandings of the properties of the specific chosen measure
and adopted estimator, and proper choice of preprocessing
applied to the measured signals. In the reported application,
(1) we observe that the linear estimate of entropy for data
not normalized to unit variance successfully detected the
wake-to-sleep increase of HRV and the depressed HRV of
heart failure patients (smaller standard deviation). In contrast,
such difference in the estimated values of entropy across
physiological states and clinical conditions is not observed
when other estimators are adopted or when the analyzed
signals are normalized. This finding indicates that Entropy
is a useful measure in characterizing the variability in the data
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value, which is preferable to be computed on the original time
series prior to any normalization; (2) for healthy subjects, we
find that the conditional entropy is lower and the information
storage is higher during wake than sleep (indicating higher
dynamical complexity) when their estimated values are ob-
tained by all three estimators both for the original and for
the normalized signals. Such changes of these two entropy
measures are lost when slow trends are removed from the
analyzed signals through high-pass filtering. In addition, by
comparing the results of detrended fluctuation analysis for
the same data set before and after filtering as well as during
wake and during sleep, we find that both the preprocessing
procedure of detrending and the switch of physiological
state from wake to sleep leads to decrease of long-range
correlations, which indicates that the observed changes in
conditional entropy and information storage may result from
the variations of trending behaviors in the signals due to
long-range correlations; (3) during both wake and sleep, we
find that for normalized and detrended signals the estimates of
conditional entropy are lower and the estimates of information
storage are higher by all estimators for healthy subjects than
CHF patients [black bars in Figs. 22(c), 22(f), 22(i)], indicating
higher predictability in the short-term dynamics of HRV
recordings in healthy subjects compared to CHF patients.
For normalized signals without detrending, the results are
inconsistent across entropy estimators and entropy measures
when comparing clinical conditions and physiological states.
When entropy methods are directly applied to original HRV
signals, there are various factors present in the data, such as
different signal variance, trends, or long-range correlations,
which affect differently the entropy measures and estima-
tors, and may thus lead to inconsistent results and impairs
interpretation.

In conclusion, this paper provides a systematic overview
of the entropy-based approaches to the quantification of the
complexity of time series measured from dynamical systems.
Entropy measures and estimators used in this paper represent
or directly relate to very popular measures of complexity such
as approximate entropy (ApEn), sample entropy (SampEn),
multiscale entropy and permutation entropy, which are utilized
in thousands of publications in all possible fields. We demon-
strate that it is a challenging task to choose an entropy measure
that adequately quantifies the target dynamical process and to
provide a correct estimate of this measure from real-life time
series.

Based on the summarized findings above, we give the
following recommendations for the practical application of
the discussed entropy methods:

(1) Entropy reflects the static properties of the investigated
process, describing its amplitude distribution; it should be
computed on original, nonnormalized time series, as this
measure is related to the variance of the signal.

(2) Conditional entropy and information storage are com-
plementary measures of the dynamical structure of the process,
reflecting respectively its complexity and regularity intended
in terms of predictability of the present given the past.

(3) Information storage should be preferred to conditional
entropy, as it is less dependent on the signal variance and
in general its estimated values are less biased for all entropy
estimators.

(4) Linear estimates of the entropy measures are the
most appropriate for Gaussian processes; this property is lost
for nonstationary and nonlinear dynamics, which should be
studied employing nonparametric and model-free estimators.

(5) Among model-free approaches, the knn estimator
outperforms the kernel estimator in terms of bias and ro-
bustness for short time series. The kernel estimator, despite
being extremely popular for the computations of approximate
entropy and sample entropy computation, is highly biased
with strong dependence on the threshold parameter r . Thus,
we recommend to compute the conditional entropy using the
knn estimator rather than the kernel estimator. If the kernel
estimates of conditional entropy are computed (as in the
extensive literature based on approximate entropy and sample
entropy), we advise against the utilization of different values
of the threshold r when comparing different experimental
conditions.

(6) Entropy measures are affected in a different way by
different types of artifacts and nonstationarities in the time
series: slow trends are the most detrimental for all entropy
estimators, and should be removed in preprocessing; spikes
impair the linear estimation but have less impact on the kernel
and the nearest neighbor estimators; in comparison, local
changes in the variance of the time series lead to less bias
for all three estimators considered in this study.

(7) In order to ensure that the variations in conditional
entropy and information storage purely reflect changes in
the dynamical properties of the underlying process (e.g.,
autoregression or long-range correlations), these measures
should be computed after the normalization of the time series
to zero mean and unit variance.

(8) In order to ensure that the variations in conditional
entropy and information storage purely reflect short-term
dynamical properties of the process (and not due to long-range
correlations), conditional entropy and information storage
should be computed after removing the slow trends in the time
series through a high-pass filter with an appropriate cutoff
frequency.

(9) The computation of conditional entropy and information
storage on the original time series with intrinsic trends may
reveal alterations of the long-range correlation properties
across conditions, with a sensitivity that increases with the
length of the analyzed time series.

The comprehensive evaluation of entropy measures and
entropy estimators provided here can be used as a reference
guide to compare and interpret results of existing studies.
This systematic investigation of the performance of entropy
measures and entropy estimators and their bias when applied
to real-life time series from diverse systems with complex
dynamics, nonstationarities, and artifacts can serve as a primer
for researchers who apply entropy methods.

ACKNOWLEDGMENTS

We acknowledge support from the Fundamental Research
Funds for the Central Universities (Grants No. 2014KJJCB29
and No. 2015KJJCA06), W. M. Keck Foundation, National
Institutes of Health (NIH Grant No. 1R01-HL098437), and the
Office of Naval Research (ONR Grant No. 000141010078).

062114-33



WANTING XIONG, LUCA FAES, AND PLAMEN CH. IVANOV PHYSICAL REVIEW E 95, 062114 (2017)

APPENDIX: THEORETICAL COMPUTATION OF
ENTROPY MEASURES FOR AUTOREGRESSIVE

FRACTIONALLY INTEGRATED PROCESSES

The practical computation of the entropy measures pre-
supposes to provide estimates of the entropy and conditional
entropy for vector variables. In the most general case, and
when nonlinear effects are relevant, nonparametric approaches
are recommended to yield model-free estimates. In the case
of Gaussian processes, exact computation can be performed
according to the approach proposed in Ref. [13] for pure
autoregressive processes, which is here extended to the more
general case of fractionally integrated autoregressive processes
with Gaussian distribution. In such a case, exact values of
entropy, conditional entropy, and information storage are those
obtained by Eqs. (10), (12), and (13), showing that these
measures can be derived from the variance of the zero-mean
process X, σ 2

X = E[X2
n], and from the partial variance of the

process given its past, σ 2
U = E[U 2

n ], where U is the residual
of a linear regression of the present of X on its past values
[Eq. (11)]. A known result [96] is that for Gaussian variables
the partial variance of Xn given Xl

n = [Xn−1 · · · Xn−l] (l is the
number of points used to approximate the past of the process)
can be expressed in terms of covariance matrices as

σ
(
Xn|Xl

n

) = σ 2
U = σ 2

X − �
(
Xn; Xl

n

)
�

(
Xl

n

)−1
�

(
Xn; Xl

n

)T
,

(A1)

with �(·) and �(·; ·) indicating, respectively, covariance and
cross-covariance matrix. Thus, the computation of entropy
measures amounts to calculate the terms in (A1) and use
them in the definitions given by Eqs. (10), (12), and (13).
In order to determine the subtrahend of Eq. (A1), we have to
compute the autocovariance of the process X, which is defined
as Rk = E[XnXn−k] for any time lag k � 0. In the following,
we describe the procedure to derive the autocovariance of
autoregressive fractionally integrated (ARFI) processes from
the parametric representation of these processes.

The representation of an ARFI process is given by Eq. (30),
from which the polynomial part can be rewritten as

A(L)(1 − L)d =
(

1 +
m∑

k=1

AkL
k

)( ∞∑
k=0

GkL
k

)
, (A2)

where Gk = �(k−d)
�(−d)�(k+1) (note that G0 = 1). Thus, the ARFI

process can be approximated as a finite order AR repre-
sentation by truncating the fractional integration part at a
given (arbitrarily high) lag q and solving the polynomial
multiplication of Eq. (A2). This leads to representing the ARFI
process as an AR process of order p = m + q:

Xn =
p∑

k=1

BkXn−k + Un, (A3)

where the coefficients Bk results from the polynomial multi-
plication. In the simulations treated in this paper where m = 2
[Eq. (27)], the coefficients become

B1 = A1 − G1, (A4)

Bk = A2Gk−2 + A1Gk−1 − Gk, ∀k � 2, (A5)

Bq+1 = A2Gq−1 + A1Gq, (A6)

Bq+2 = A2Gq. (A7)

Then, we recall that the autocovariance of the process
Eq. (A3) is related to the AR parameters Bk via the well-known
Yule-Walker equations:

Rk =
p∑

l=1

BlRk−l + δk0σ
2
U , (A8)

where δk0 is the Kronecker product. In order to solve Eq. (A8)
for Rk,k = 0,1, . . . ,p − 1, we first express Eq. (A3) in a
compact form as �n = A�n−1 + En, where

�n = [XnXn−1 · · · Xn−p+1]T , (A9)

A =

⎡
⎢⎢⎣

A1 · · · Ap−1 Ap

1 · · · 0 0
...

. . .
...

...
1 · · · 0 0

⎤
⎥⎥⎦, (A10)

En = [
σ 2

U 0 · · · 0
]T

. (A11)

Then, the covariance matrix of �n, �, takes the following
form:

� = E
[
�n�

T
n

] =

⎡
⎢⎢⎣

R0 R1 · · · Rp−1

R1 R0 · · · Rp−2
...

...
. . .

...
Rp−1 Rp−2 · · · R0

⎤
⎥⎥⎦. (A12)

Since � can be also expressed as a discrete-time Lyapunov
equation, � = A� AT + �, where � = E[En ET

n ] is the
covariance of En, we can solve for � and obtain the auto-
covariance values R0 = σ 2

X and R1, . . . ,Rp−1. Afterwards, by
repeatedly applying Eq. (A8), the autocovariance Rk can be
calculated recursively for any lag k � 0. This shows how the
autocovariance sequence can be computed up to arbitrarily
high lags starting from the parameters of ARFI representation
of the observed Gaussian process. The autocovariances can
then be used as elements in the covariance matrices in Eq. (A1)
to obtain the partial variance of Xn given Xl

n.
The parameters determining the accuracy of the procedure

are the number of lags q used to truncate the AR representation
of the ARFI process, and the number of lags l used to
approximate the past history of the process for the calculation
of conditional entropy and information storage. In fact,
considering the past up to lag l corresponds to calculating
the autocovariance of the process Eq. (A3) up to the element
Rl . As a rule of thumb, given that for a pure AR process
the autocovariance decays exponentially with the lag, with
a rate of decay depending on the modulus of the largest
eigenvalue of A, ρ(A), it has been suggested to compute the
autocovariance up to a lag l such that ρ(A)l is smaller than
a predefined numerical tolerance [130]. This approximation
should hold also for a stationary ARFI process when the lag
q is chosen sufficiently high to detect the decay over time
of the coefficients Gk in Eq. (A2). In this study, we set
q = 100, observing that for this value both the coefficients
Gk and the autocorrelation Rk (which was computed up to
k = p = q + m = 102) decayed to very low values.
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