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Multicritical points and topology-induced inverse transition in the random-field
Blume-Capel model in a random network
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The interplay between quenched disorder provided by a random field (RF) and network connectivity in
the Blume-Capel (BC) model is the subject of this paper. The replica method is used to average over the
network randomness. It offers an alternative analytic route to both numerical simulations and standard mean
field approaches. The results reveal a rich thermodynamic scenario with multicritical points that are strongly
dependent on network connectivity. In addition, we also demonstrate that the RF has a deep effect on the inverse
melting transition. This highly nontrivial type of phase transition has been proposed to exist in the BC model
as a function of network topology. Our results confirm that the topological mechanism can lead to an inverse
melting transition. Nevertheless, our results also show that as the RF becomes stronger, the paramagnetic phase
is affected in such way that the topological mechanism for inverse melting is disabled.
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I. INTRODUCTION

The interplay between quenched disorder and many-spin
interactions is a continual and challenging problem. For
instance, it has been shown that the quenched disorder can
replace a first order transition by a second one and suppress
tricritical points [1–3]. Therefore, techniques such as the use
of random networks [4] can be very helpful not only to check
the predictions of others techniques, such as the standard mean
field approach, but also because it can bring novel information
about that difficult interplay.

The Blume-Capel (BC) model [5,6] is one of the most
widely studied spin models and the simplest one that presents
a tricritical point. Renewed interest in this model is due to
the recent discovery of numerous physical realizations within
condensed-matter physics that exhibit inverse transitions (see
Ref. [7] for a recent review). In this counterintuitive phase
transition the ordered phase has higher entropy than the
disordered one. The crystal field D conjugated to the local
quadratic three-state spin σ (σ ∈ {−1,0,1}) term in the
Hamiltonian is a natural ingredient to produce a first order
transition. It allows one to control the population of the active
spin state, playing the role of a chemical potential and giving
rise to a competition between the ferromagnetic (F) phase
(m ≡ 〈σi〉 �= 0, Q ≡ 〈σ 2

i 〉 �= 0) and the nonmagnetic (NM)
phase (m = 0, Q = 0). In the standard mean field approach, at
a certain value of D, the phase transition between F and NM
presents a tricritical point [5,8]. This global phase diagram has
been confirmed by other techniques (see, for instance, Ref. [9]
and references therein).

The introduction of a random field (RF) following a bimodal
distribution substantially increases the richness of the BC
model. This can be seen in the standard mean field approach
of the Random Field Blume-Capel (RFBC) model introduced
by Kaufman and Kanner [10]. The phase diagrams of the
RFBC model present tricritical points, a critical line, and,
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particularly, an isolated critical end point depending on the
balance between the crystal field and the RF. Besides the NM
phase, there is an onset of another type of paramagnetic (P)
phase (m = 0, Q �= 0). Most importantly, there is also the
onset of a novel phase at a sufficiently strong RF, the so-called
ferromagnetic-nonmagnetic (F/NM) phase. The onset of this
mixed F/NM phase can be seen as a staggering manifestation
of RF effects weakening the first order phase transition present
in the BC model. However, could the existence of these
multicritical points and the mixed phase F/NM also not be
seen as an artifact of the standard mean field approach? In the
random network approach, this standard mean field prediction,
which corresponds to the limit of infinite connectivity, can
be checked, since the network connectivity (the averaged
coordination number) is a controllable parameter. It should be
remarked that contrary to the Ghatak-Sherrington model [11],
which has quenched bond disorder assuming both positive and
negative values, the bonds in the BC model are always positive.
The quenched disorder that we deal with in this work, beyond
the RF, is that one associated with existence (or not) of a
connection between two given sites. Since antiferromagnetic
interactions are absent, this model does not present frustration.
Therefore, we do not expect the existence of a spin-glass order.
We also remark that our approach is essentially a mean field
theory, in fact, a quite improved mean field theory as compared
with the standard one since we can control the network
connectivity. In that sense, our theory is also distinct from other
recent approaches considering effects of bond randomness in
the BC model with spatial dimensionality d = 2 [12–14].

In addition, more recently, the standard BC model in a
random network has also been studied, showing the existence
of an inverse melting transition. This transition in which
the F phase has higher entropy than the NM phase can
be topologically induced, as suggested by De Martino and
collaborators [15]. In other words, when the temperature is
increased, a reentrant first order transition in the sequence
NM-F phases can be observed depending on the network
architecture. This topological mechanism becomes active only
at sufficiently low spin connectivity. The large connectivity
limit should come close to the standard mean field approach
(infinite connectivity) with no reentrant transition in the BC
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model. In the case of the RFBC model, how does the RF affect
the topological mechanism for inverse melting? Since the RF
deeply affects the P phase in the RFBC model, one can expect
that the topological mechanism for inverse transition may also
be deeply affected.

The present work offers an alternative approach to study
the RFBC model which can provide an answer to the question
raised in the previous paragraphs. It is an extension to spin
S = 1 of finite connectivity techniques developed some years
ago to study binary Ising spin glasses and related systems
[4,16–20]. Since disorder is concerned with the random
network, the replica method is applied. This method allows
one to treat the quenched disorder given by the random
network. As consequence, it is the free energy that has to
be averaged rather than the partition function. The theoretical
development conduces to a saddle-point equation for an order
function, which can be solved self-consistently by a population
dynamics technique. All physically relevant order parameters
can be calculated through this order function.

The main question addressed in this paper concerns the
interplay between quenched disorder (provided by the RF) and
the network connectivity. The existence of multicritical points,
the F/NM mixed phase, and the inverse melting transition will
be tested depending on the network connectivity in the RFBC
model. For instance, in our approach, the onset of the mixed
phase F/NM and multicritical points it is expected at large
connectivity values as reported in the mean field approach for
the RFBC model [10]. However, do they still appear at low
connectivity values? The disappearance of the mixed phase
F/NM and some of the multicritical points at low connectivity
values would indicate that their existence may be a mean field
artifact. It should be noted that the answer to that question,
particularly concerning the tricritical point, is also relevant to
clarify the role of RF for the topology-induced inverse melting
in the BC model.

The outline of the paper is as follows. In the next section
the finite-connectivity replica theory for the BC model with
a random field is developed. In Sec. 3 results for the relevant
order parameters, free energy, and phase diagrams for some
representative values of the mean connectivity are presented
discussed. The paper ends with a summary and concluding
remarks.

II. MODEL AND REPLICA PROCEDURE

A system of N interacting three-state Ising spins σi , i =
1, . . . ,N , as described by the Hamiltonian, was considered:

H = −J

c

∑
i<j

σicij σj + D
∑

i

σ 2
i +

∑
i

θiσi . (1)

The cij are independent, identically distributed random vari-
ables (i.i.d.r.v) indicating if a given pair of spins (i,j ) are
connected (cij = 1) or not (cij = 0). We assume that the
connections are bidirectional, i.e., cij = cji . They are chosen
according to the distribution

p(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0, (2)

where the connectivity c, the average number of connections
per spin, remains finite in the thermodynamic limit, such that
limN→∞ c/N = 0. The connected sites interact through a F
coupling J > 0. The crystal field favors the population of the
zero state, if D > 0, or the active states σ = ±1, if D < 0.
If D is sufficiently large and negative, the binary Ising model
with finite connectivity and spins σi ∈ {−1,1} is retrieved [21].
The local fields θi are i.i.d.r.v., chosen according to a bimodal
distribution

p(θi) = 1
2δ(θi − θ ) + 1

2δ(θi + θ ), (3)

where θ is the local field amplitude.
Although the coupling J is assumed to be constant, the

random nature of the connectivity variable cij introduces a
quenched disorder. In order to obtain the thermodynamic
properties of the system, the disorder-averaged free energy
is calculated through the standard replica procedure,

f (β) = − lim
N→∞

1

βN
lim
n→0

1

n
log〈Zn〉, (4)

where

Z =
∑

σ1...σN

e−βH (5)

is the partition function. The angle brackets in Eq. (4) stand
for the disorder average. In the limit c/N → 0, the disorder-
average replicated partition function becomes

〈Zn〉 =
∑

σ 1···σ n

〈
exp

[
β

∑
i,α

θiσ
α
i − βD

∑
i,α

(
σα

i

)2

+ c

2N

∑
i �=j

(
e

βJ

c

∑
α σα

i σ α
j − 1

)]〉
{θi }

, (6)

with α = 1, . . . ,n denoting the replica index, and σ α being
the a vector with N components representing the state of
replica α. Note that, since the connectivity c is finite, one
cannot expand the inner exponential and introduce the order
parameters, like in standard infinite-connectivity calculations.
Instead, in order to extract the variables into summation from
the inner exponential, we follow Ref. [4] and introduce the
order function P (σ ), which represents the fraction of sites
with the replica configuration σ and obtain the free energy
(see the Appendix)

f (β) =− lim
n→0

1

βn

[
− c

2

∑
στ

P (σ )P (τ )
(
e

1
c
βJ

∑
α σατα − 1

)

+ log
∑
σ

〈
exp

[
βθ

∑
α

σα − βD
∑

α

σ 2
α

+ c
∑
τ

P (τ )
(
e

1
c
βJ

∑
α σατα − 1

)]〉
θ

]
, (7)

with P (σ ) given by the self-consistent relationship

P (σ ) =N−1

〈
exp

[
βθ

∑
α

σα − βD
∑

α

σ 2
α

+ c
∑
τ

P (τ )
(
e

βJ

c

∑
α σατα − 1

)]〉
θ

, (8)
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where

N =
∑
σ

〈
exp

[
βθ

∑
α

σα − βD
∑

α

σ 2
α

+ c
∑
τ

P (τ )
(
e

βJ

c

∑
α σατα − 1

)]〉
θ

(9)

is a normalization factor.
Our search for solutions of Eq. (8) will be restricted to

the replica symmetry (RS) ansatz, [4,17]. This means that
P (σ ) should remain invariant under replica permutations, and,
consequently, for three-state spins, it should depend only on
the summations

∑
α σα and

∑
α σ 2

α Thus, in extension of the
RS ansatz for the order function in finite-connectivity two-
state Ising models [21], for the three-state model we follow
Ref. [22] and assume

P (σ ) =
∫

DW
eβh

∑
α σα−βh̃

∑
α σ 2

α

χn
0 (h,h̃)

(10)

for any real n, where DW ≡ dh dh̃ W (h,h̃), h and h̃ are the
two components of the local field, W (h,h̃) is a density which
has to be determined self-consistently, and

χσ (h,h̃) = 1 + 2e−βh̃ cosh

[
β

(
h + J

c
σ

)]
. (11)

Introducing this ansatz in Eq. (8), expanding the exponential,
summing over τ l

α , and using the identity
∑

σ δσσα
= 1 in order

to extract the appropriate dependence on
∑

α σα and
∑

α (σα)2,
we obtain

P (σ ) =〈
eβθ

∑
α σα−βD

∑
α σ 2

α

〉
θ

∞∑
k=0

e−cck

k!

×
∫ k∏

l=1

DWl

e
∑

α

∑
σ δσσα log χσ (hl,h̃l )

χn
0 (hl,h̃l)

. (12)

For three-state spins we use the representation

δσσα
= 1 − σ 2 − σ 2

α + σσα/2 + 3σ 2σ 2
α /2. (13)

Summing over σ and introducing the RS ansatz on the left-
hand side of Eq. (12) we obtain a self-consistent relationship
for W (h,h̃),

W (h,h̃) =
∞∑

k=0

e−cck

k!

〈 ∫ k∏
l=1

DWlδ

[
h−θ− 1

β

k∑
l=1

φ(hl,h̃l)

]

× δ

[
h̃ − D + 1

β

k∑
l=1

ψ(hl,h̃l)

]〉
θ

, (14)

where

φ(h,h̃) = 1

2
log

χ+1(h,h̃)

χ−1(h,h̃)
(15)

and

ψ(h,h̃) = 1

2
log

χ+1(h,h̃)χ−1(h,h̃)

χ2
0 (h,h̃)

. (16)

To determine the density W (h,h̃) we proceed numerically
by means of population dynamics of a large number of fields

updated as follows. First, a number k is chosen from a Poisson
distribution of mean c. Then cells (hl,h̃l) with l running from
1 to k are selected at random from the population, and the
summations in the delta functions are calculated. Next, one
selects at random a new cell (h,h̃) from the population and
sets

h = θ + 1

β

k∑
l=1

φ(hl,h̃l), (17)

h̃ = D − 1

β

k∑
l=1

ψ(hl,bl) (18)

continuing the procedure until it converges to a limiting
W (h,h̃).

The relevant order parameters for this problem are the per
site magnetization m ≡ 〈σ 〉 and the correlation parameter Q ≡
〈σ 2〉. In the replica symmetric approach they are calculated
through the knowledge of W (h,h̃):

m =
∫

DW 〈σ 〉 (19)

and

Q =
∫

DW 〈σ 2〉, (20)

where

〈σ 〉 = 2e−βh̃ sinh(βh)

1 + 2e−βh̃ cosh(βh)
(21)

and

〈σ 2〉 = 2e−βh̃ cosh(βh)

1 + 2e−βh̃ cosh(βh)
. (22)

As usual, m �= 0 indicates magnetic ordering, m = 0, Q �= 0
are P, and m = 0 = Q are NM.

The free-energy has energetic and entropic contributions,
f = fen + fentr, that are, respectively, the first and second
terms of the right-hand side of Eq. (7). Introducing the RS
ansatz and considering that the replicas are noninteracting, the
energy contribution can be written, in the n → 0 limit, as

fen(β) = c

2β

∫
DW DW ′ log U(h,h̃,h′,h̃′), (23)

where

U(h,h̃,h′,h̃′)

= (1 + 2e−β(h̃+h̃′){e βJ

c cosh[β(h + h′)]

+ e− βJ

c cosh[β(h − h′)]} + 2e−βh̃ cosh(βh)

+ 2e−βh̃′
cosh(βh′))χ−1

0 (h,h̃)χ−1
0 (h′,h̃′). (24)

The entropy contribution becomes, in the n → 0 limit,

fentr = − 1

β

∑
k

e−cck

k!

∫ ∏
l

DWl〈logS({hl},{h̃l},θ )〉θ ,

(25)
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where

S({hl},{h̃l},θ ) = 1 + e−β(D−θ)
∏

l

χ+1(hl,h̃l)

χ0(hl,h̃l)

+ e−β(D+θ)
∏

l

χ−1(hl,h̃l)

χ0(hl,h̃l)
. (26)

III. RESULTS AND DISCUSSION

The implementation of population dynamics requires an
initial guess for W (h,h̃). A population of N two-component
fields was distributed in two distinct ways: (1) the components
h and h̃ of each field being randomly chosen satisfying
0 � h < 1 and −1 < h̃ � 0, corresponding to an F initial
condition; and (2) for each field h = 0 and −1 < h̃ < 0,
corresponding to a P initial condition. For each set of
parameters c, D/J , θ/J and T/J the population dynamics is
allowed to run until a stationary distribution W (h,h̃) is reached.

Illustrative examples of stationary distributions for c = 5,
D/J = 0.6, and T/J = 0 are shown in Fig. 1. The population
size was N = 1 × 105 fields. Figure 1(a) shows the station-
ary distribution for θ/J = 0.2. This narrow and symmetric
distribution corresponds to a NM phase, with m = 0 and
Q ≈ 0. Figure 1(b) shows the stationary distribution for θ/J =
0.4. This wider and asymmetric distribution corresponds to
the F phase, with m �= 0 and Q �= 0. Figure 1(c) shows
the stationary distribution for θ/J = 0.6. This wide and
symmetric distribution corresponds to the P phase with m = 0
and Q �= 0.

Before discussing the phase diagrams, it is worth showing
some examples of curves for the order parameters and free
energy as functions of the temperature. Figure 2(a) shows
m, Q, and f versus T/J at constant θ/J = 0.25 and c = 5.
There are two regimes, depending on D/J . At high D/J , e.g.,
D/J = 0.6, and low T/J , the magnetization is zero and the
correlation parameter is small, as shown in Fig. 2(a). This is
the NM phase, reported in Ref. [10] for the fully connected
network. The reason for the presence of this phase is that the
high value of D/J favors the local NM state σ = 0. As the
temperature increases, there is a discontinuous transition to an
F phase. At constant θ/J = 0.25 the thermodynamic transition
is located at T/J ≈ 0.093, a value that is found by the crossing
of the NM and F free energies, as shown in the bottom panel
of Fig. 2(a). This means that the thermal noise is capable
of disrupting the network symmetry and giving rise to an
F phase, where both m and −m magnetizations are equally
probable. We will return to this subject later in this paper.
When the thermal noise becomes too large the F phase is
destroyed, giving rise to a P phase, with zero m and large
Q. The continuous transition, for θ/J = 0.25, is located at
T/J ≈ 0.256. Incidentally, at low D/J , as the temperature
increases, there is only a continuous F-P transition, e.g.,
T/J ≈ 0.546 at D/J = 0.25 (not shown in the figure). The
critical exponent for the continuous F-P transition does not
depend on the value of c, being consistent with a mean field
theory, i.e., β = 0.5. This is because our approach allows
us to control the average connectivity, but the length scale
of the interactions remains the same as the standard mean
field theory.

h

h̃ W

h

h̃ W

h

h̃ W

(a)

(b)

(c)

FIG. 1. Local field distribution W (h,h̃) for c = 5, D = 0.6, and
T = 0.2, for (a) θ = 0.2 (NM phase), (b) θ = 0.4 (F phase), and (c)
θ = 0.6 (P phase).

Figure 2(b) shows curves of the order parameters and free
energy versus RF amplitude θ/J at constant T/J = 0.02,
D/J = 0.4 for two representative values of c. For c = 10,
as θ/J increases, there is, first, a smooth decrease in the
magnetization m to a lower plateau and then a continuous F-P
transition at θ/J ≈ 0.6. Conversely, for a larger c = 25 there
are two discontinuous transitions as θ/J increases. First, there
is a transition from a large m F phase to a lower m, F/NM
phase at θ/J ≈ 0.362. This lower m F phase is presented
in Ref. [10] as the F/NM phase, and it is argued there that
it would remain a distinct phase even for low-connectivity
three-dimensional systems. Here we show that this phase is
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0.0

0.2m

0.0

0.2Q

0.1 0.2
T / J

-0.02

-0.01

0.00

f

(a)

0.0

0.4

0.8
m

0.6

0.8

1.0

Q

0.2 0.4 0.6
θ / J

-0.3

-0.2

-0.1

f

(b)

FIG. 2. (a) Per-site magnetization (top), correlation parameter
(middle), and per-site free energy (bottom) versus temperature, with
c = 5, θ/J = 0.25, and D/J = 0.6 for increasing and decreasing
T in solid and dashed lines, respectively. The arrow indicates the
discontinuous thermodynamic transition. (b) Per-site magnetization
(top), correlation parameter (middle), and per-site free energy
(bottom) versus random-field amplitude, with c = 25 (black lines)
or c = 10 (brown lines), T/J = 0.02, and D/J = 0.4 for increasing
and decreasing θ in solid and dashed lines, respectively. The arrow
indicates the discontinuous thermodynamic transition.

a mean field artifact which is suppressed already for c = 10.
As θ/J increases further, for c = 25, there is a discontinuous
F/NM-P transition at θ/J ≈ 0.629.

A. Zero-temperature phase diagrams

Phase diagrams at zero temperature are elucidative of the
role that is played by network connectivity. Figure 3 shows
the D/J versus θ/J phase diagram for c = 5, c = 10, and

0.0 0.5 1.0
θ / J

0.0

0.5

1.0

D / J

NM

F
P

F/NM

*

FIG. 3. Phase diagram D/J vs θ/J at T = 0 for c = 5 (black
heavy lines), c = 10 (brown heavy lines), and c = 25 (black light
lines). Continuous and discontinuous phase boundaries are repre-
sented, respectively by solid and dashed lines. NM, F, P, and F/NM
represent, respectively, nonmagnetic, ferromagnetic, paramagnetic
and ferromagnetic-nonmagnetic phases. The asterisk indicates a
tricritical point, over the F-P transition, for c = 10.

c = 25. There are four thermodynamic phases. First, at a small
D/J and θ/J the system organizes in ferromagnetic phase F.
In this region, the landscape is dominated by ferromagnetic
couplings. The crystal field D favors the NM state σ = 0
and destroys the F ordering. Consequently, as D/J increases,
a NM phase appears. The transition between F and NM is
discontinuous. Conversely, the bimodal RF ±θ favors the
active states σ = ±1. The ferromagnetic ordering also is
destroyed, and a P phase appears as the RF amplitude θ/J

increases. The F-P transition is continuous for c = 5, but for
c = 10 it shows a tricritical point located at Dtric/J ≈ 0.3 and
θtric/J ≈ 0.507, indicated by an asterisk in the figure. The
transition is discontinuous at a small D/J and continuous
otherwise. It is not shown in the figure, but the tricritical
point displaces upwards through the F-P transition line as c

increases. At c = 25, this critical point is beyond the investi-
gated range, approaching the full connectivity limit presented
in Ref. [10], where this transition is fully discontinuous. The
figure also shows that the F/NM phase is a diagonal region
between NM and P phases when D/J and θ/J are both large.
It is important to stress that, according to Fig. 2(b), this is not
a distinct phase from the F phase for c = 5 and c = 10. Only
for c = 25 is there a discontinuous transition, indicated by the
light dashed line. The crystal field can be negative, and the F-P
transition lines extend vertically to the negative D/J region.

It is worth to discuss the underlying physical mechanisms
that are responsible for the strong dependence on the average
connectivity c presented by the the nature of the F-P transition.
It is possible to explain this dependence by looking to the local
field on site i:

hi = J

2c

∑
j

cij σj − Dσi + θi . (27)
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The spin at site i adjusts its state according to hi . For small D,
there is a competition between the first and the third terms of hi .
The first term on hi is prone to quenched disorder through the
random variable cij . For large c, the fluctuations in the first term
induced by the random connectivity are very small, and the F
phase remains as the ground state provided θ/J < 0.5 [10]. At
θ/J = 0.5 the system undergoes an abrupt transition to the P
phase because the third term, i.e., the RF, becomes larger than
the F interaction at every site. This picture changes when c is
small. In this case, the fluctuations in the first term increase
due to the quenched disorder, favoring a gradual transition
to the P phase. This is an evidence that the disorder softens
the transitions. Furthermore, the crystal field D favors the
NM state σ = 0. For small θ/J , the second term in Eq. (27)
becomes dominant for D/J � 0.5 and, therefore, produces
the NM phase.

The disappearance of the mixed F/NM phase boundary in
the low-connectivity regime can be also undertood from the
Eq. (27) when both D/J and θ/J are sufficiently large. In
this situation, because the RF distribution is symmetric [see
Eq. (3)], the system organizes in a way that half of the sites
align parallel to one of the two possible direction of the RF
and the other half assumes the state σ = 0. This results, at
small temperature, m ≈ ±1/2 and Q ≈ ±1/2, as shown in
Fig. 2(b). For a sufficiently large connectivity, like c = 25,
F/NM and F are distinct phases, while for low to moderate,
e.g., c = 10, there is only a smooth decrease on the mag-
netization. The smoothing of the transition also results from
the disorder, which becomes more important the smaller the
connectivity.

B. Finite-temperature phase diagrams

Temperature effects will be discussed in terms of T/J

versus θ/J phase diagrams for several values of D/J and
connectivity c.

The T/J versus θ/J phase diagram for the low-
connectivity regime c = 5 is presented in Fig. 4(a) for
three representative values of the crystal field, D/J = 0.25,
0.56, and 0.60. For D/J = 0.25, onset of the F phase
occurs in the region below T/J ≈ 0.60 and 0 � θ/J � 0.49.
The P phase appears in the remaining phase diagram. The
transition between these two phases, the F-P transition, is
continuous. For increasing D/J there is a rapidly evolving
change in the shape of the phase diagram. In the range
0.5 � D/J � 0.6, the crystal field D favors the local state
σ = 0. As a consequence, for D/J = 0.56, the NM phase
appears at a low T/J and small θ/J . Then there is a
NM-F discontinuous transition. For a higher T/J and larger
θ/J , the F-P transition remains continuous. However, for
D/J = 0.6, the F phase is completely suppressed at a small
θ/J .

Nevertheless, for intermediate values of θ/J , the continu-
ous transition NM-F becomes discontinuous at lower temper-
atures with a tricritical point located at θtric/J = 0.231 and
Ttric/J = 0.150. Most importantly, there is a strong reentrance
in the discontinuous part of the NM-F transition indicating the
onset of an inverse melting transition. In contrast, at a large
θ/J , the F-P transition is not affected. It remains continuous
and nonreentrant. The phase diagrams for c = 10 are shown
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*
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θ / J
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T / J
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D / J = 0.502
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* *

(c)

**

*

**

*

NM F/NM
F

P

P

F F/NM

FIG. 4. (a) Phase diagram T/J vs θ/J for c = 5, for D/J =
0.56, D/J = 0.6, and D/J = 0.25 (in the inset). (b) Phase diagram
T/J vs θ/J for c = 10, for D/J = 0.25 and D/J = 0.6. (c) Phase
diagram T/J vs θ/J for c = 25, for D/J = 0.4 and D/J = 0.502.
In the inset, D/J = 0.5. Solid and dashed lines represent continuous
and discontinuous phase boundaries, respectively.

in Fig. 4(b). For D/J = 0.25, the F-P transition becomes
discontinuous at lower temperatures with the emergence of
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a tricritical point located at θtric/J = 0.468 and Ttric/J =
0.252. Furthermore, for D/J = 0.60, reentrance in the NM-F
transition is less pronounced.

More expressive changes are observed in Fig. 4(c) for
a larger connectivity, e.g., c = 25 for D/J = 0.4, 0.5 (see
the inset), and 0.502. This is a large connectivity value that
allows the appearance of most of the features observed in the
fully connected network regime (c → ∞). For D/J = 0.4,
the phase diagram is basically the same as already found
in the Fig. 4(b). The main difference is concerned with the
location of the tricritical point. The phase diagrams start to
become very sensitive to crystal field changes at D/J � 0.50.
For D/J = 0.50, the F-P transition becomes discontinuous
at a low θ/J with a tricritical point located at T/J ≈ 0.22
and θ/J ≈ 0.22. Moreover, as θ/J enhances, a critical line
appears between F and the mixed F/NM phases, then an
F/NM-P discontinuous transition and a second tricritical
point at T/J ≈ 0.08 and θ/J ≈ 0.72. For a slightly higher
value, D/J = 0.502, the most important qualitative difference
compared to the previous case is that the NM phase appears at a
low temperature. This phase increases quickly, so that already
at D/J = 0.503 the F phase is suppressed at a low θ/J . It
should be noted that the increase of the NM phase prevents the
appearance of the critical end point observed in the mean field
approximation (see Ref. [10]).

It is possible to explain the reentrant behavior found in
the Figs. 4(a) and 4(b) by a competition between the crystal
field and the thermal noise, for a given RF amplitude θ . In
the reentrant region, at a low temperature, the crystal field
dominates, favoring inactive state σ = 0. Here we extend
the argument recently proposed in Ref. [15] to include RF
effects. In the random network topology with moderate to low
mean connectivity, a fraction of the nodes have a very low
degree. We consider a node with degree 2 and compute the
effective coupling Jeff between its neighbors as a function of
the temperature, by partially summing the partition function
of the three-spin system over the states of the central spin.
Assuming J = 1, taking the average over the bimodal RF with
amplitude θ , we obtain Jeff = cψ(θ,D)/2β, ψ being defined
by Eq. (16). Some representative curves of Jeff versus T are
shown in Fig. 5. For a constant θ = 0.3, and D > 0.5, in the
upper panel of that figure, there is a null effective coupling
at a low temperature. So the existence of low-degree nodes,
associated with a large crystal field, prevents the appearance of
a long-range order. As the effective coupling increases with the
temperature, a reentrant NM to F transition is allowed to take
place. As the average connectivity increases, the number of
low-degree nodes decreases, resulting in a less pronounced
reentrant behavior, as we can conclude by comparing the
T/J versus θ/J phase diagrams for c = 5 and c = 10, in
Figs. 4(a) and 4(b), respectively. This means that the reentrant
behavior is clearly related to the finite connectivity and cannot
be captured by a fully connected, mean field theory. The
known mean field result that shows no reentrance is retrieved
when c → ∞ [23]. On the other hand, a large RF favors the
active states. Consequently, for large θ the effective coupling
is monotonically decreasing as a function of T , as shown in
the lower panel of Fig. 5. This means that the P to F transition,
which occurs in the high-θ side of the F phase, is not reentrant,
even for low c.

0.0

0.2

0.4

Jeff

D / J = 0.3
D / J = 0.4
D / J = 0.5
D / J = 0.6

0.0 0.2 0.4 0.6
T

0.0

0.2

0.4

Jeff

θ = 0.3
θ = 0.4
θ = 0.5
θ = 0.6

FIG. 5. Effective coupling between the neighbors of a node of
degree 2 as a function of the temperature. Upper panel for several
values of D and constant θ = 0.3; lower panel: for several values of
θ and D = 0.6.

IV. SUMMARY AND CONCLUDING REMARKS

The equilibrium statistical mechanics of the BC model in
a random network with finite connectivity and a random local
field that follows a bimodal distribution was investigated. The
replica approach was applied to account for quenched disorder.
The present approach, where it is possible to control network
connectivity, allows us to vary, analytically, between a mean
field theory to a low-connectivity theory that, although still in
the infinite range, is closer to the real world, unveiling all the
thermodynamic richness of the BC model.

In our work it was shown that the NM-F transition, at low
connectivity, displays an inverse melting transition given by
a reentrant behavior with a tricritical point in the reentrant
branch. However, the amount of reentrance decreases when
the connectivity increases and approaches the known mean
field result, with no reentrance, as in the limit c → ∞
[10]. Besides the small connectivity, the conditions for the
reentrance are high crystal field and low-RF amplitude. So
there is a reentrance in the NM-F transition, but there is not
in F-P, as can be seen in Fig. 4. This results demonstrate that
the topological mechanism for inverse melting in the RFBC
model is active only for the NM phase and disabled for the
P phase. This distinct behavior can be explained in terms of
a temperature-dependent effective coupling, which is more
effective under low connectivity.

One of the most important findings of this investigation
is that the mixed thermodynamic phase F/NM does not
appear at low connectivity. This important result affects
the subsequent phase diagrams when the crystal field D

is changing. As a consequence, the critical line between F
and F/NM is suppressed at low temperatures. When the
connectivity increases, e.g., c = 25 the mixed phase F/NM
does appear. Nevertheless, the critical end point reported in
the standard mean field approach still does not appear. The
reason is that the F phase is suppressed, at low θ/J , before the
critical end point takes place.
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Despite the presence of quenched disorder, this study does
not deal with frustration, since the couplings are always F. This
means that the RS solution is stable, and no significant changes
should be expected by changing to a replica symmetry-
breaking solution.

A natural extension of this study could be to introduce
disorder into the coupling constant J , which means to
investigate the properties of the Blume-Emery-Griffiths [23]
model in a random network.
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APPENDIX

In order to extract the variables under summation from the
inner exponential in Eq. (6), we introduce the identity

1 =
∑
σ

δσσ i
≡

∑
σ

n∏
α=1

δσασα
i
. (A1)

Here σ and σ i are vectors with n components representing
replica states and δσσ i

= 1 if σ = σ i and zero otherwise. The
averaged replicated partition function becomes

〈Zn〉 =
∑

σ 1···σ n

〈
exp

[
β

∑
i,α

θiσi − βD
∑
i,α

(
σα

i

)2

+ c

2N

∑
i �=j

∑
στ

δσσ i
δτσ j

(
e

βJ

c

∑
α σατα − 1

)]〉
{θi }

. (A2)

Then we introduce the order function P (σ ) = (1/N)
∑

i δσσ i

through the identity

1 =
∫ ∏

σ

dP (σ ) dP̂ (σ )

× exp

{∑
σ

P̂ (σ )

[
P (σ ) − 1

N

∑
i

δσσ i

]}
, (A3)

where P̂ (σ ) is an auxiliary order function. Summing over
σ 1 · · · σ n and changing P̂ (σ ) to NP̂ (σ ), Eq. (A2) becomes

〈Zn〉 =
∫ ∏

σ

dP (σ ) dP̂ (σ ) exp N

[∑
σ

P̂ (σ )P (σ )

+ log
∑
σ

〈
eβθ

∑
α σα−βD

∑
α σ 2

α −P̂ (σ )〉
θ

+ c

2

∑
στ

P (σ )P (τ )
(
e

βJ

c

∑
α σατα − 1

)]
. (A4)

In the large-N limit, the integral in this equation can be
evaluated by the saddle-point method. The free energy is given
by the extreme

f (β) = − lim
n→0

1

βn
Extr

[∑
σ

P̂ (σ )P (σ )

+ log
∑
σ

〈
eβθ

∑
α σα−βD

∑
α σ 2

α −P̂ (σ )
〉
θ

+ c

2

∑
στ

P (σ )P (τ )
(
e

βJ

c

∑
α σατα − 1

)]
(A5)

over the set of densities {P (σ ),P̂ (σ )}. The saddle-point
equations are

P (σ ) =
〈
eβθ

∑
α σα−βD

∑
α σ 2

α −P̂ (σ )
〉
θ∑

σ
〈
eβθ

∑
α σα−βD

∑
α σ 2

α −P̂ (σ )
〉
θ

(A6)

and

P̂ (σ ) = −c
∑
τ

P (τ )
(
e

1
c
βJ

∑
α σατα − 1

)
. (A7)

Eliminating P̂ (σ ) in Eq. (A6) by means of Eq. (A7) we obtain
the self-consistent relationship (8).
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