
PHYSICAL REVIEW E 95, 062111 (2017)

Nonequilibrium dynamics of a pure dry friction model subjected to colored noise
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We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical
system. For that purpose, we consider the motion of a particle subjected to dry friction and colored noise.
The finite correlation time of the noise provides an additional dimension in phase space, causes a nontrivial
probability current, and establishes a proper nonequilibrium regime. Furthermore, the setup allows for the study
of stick-slip phenomena, which show up as a singular component in the stationary probability density. Analytic
insight can be provided by application of the unified colored noise approximation, developed by Jung and Hänggi
[Phys. Rev. A 35, 4464(R) (1987)]. The analysis of probability currents and of power spectral densities underpins
the observed stick-slip transition, which is related with a critical value of the noise correlation time.
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I. INTRODUCTION

Piecewise-smooth dynamical systems have attracted a
lot of interest in the past decade. They are widely used
to model switching or impact behavior in many different
areas of science, e.g., biology, engineering, physics, or
mathematics [1–5]. Systems with dry (or Coulomb) friction
are prominent examples in the context of piecewise-smooth
models [6]. The main feature of this type of friction is that an
applied force has to overcome a certain threshold to move an
object (sliding), otherwise the object rests (sticking) [7]. This
behavior is usually modeled by a sign function, and it allows a
simple macroscopic description for systems where solid-solid
interactions are important, e.g., for stick-slip dynamics [8,9].
Adding noise to the dynamical equations of a piecewise-
smooth system opens a whole new area of research, which
is still in its infancy. The interplay of dry friction and random
forces has been reported in [10–12]. Exact solutions are known
for a few piecewise-smooth stochastic models, where, e.g.,
the propagator can be obtained for the case of pure dry
friction [13,14] or in connection with Laplace transforms [15].
Other analytical results are available in the framework of
path integrals and weak noise approximations [16–18] or
first passage time problems [19]. Whereas the aforementioned
studies are dealing with Gaussian white noise, models with
Non-Gaussian noise and dry friction have been investigated
as well [20–22]. The features of systems with dry friction
subjected to random forces have also been observed in experi-
mental setups [23–27]. From a more rigorous mathematical
point of view, the impact of a stochastic perturbation on
a piecewise-smooth dynamical system has been considered
in [28,29].

A profound understanding of the impact of noise on
piecewise-smooth dynamical systems is desirable from an
intrinsic theoretical perspective, and it will contribute as well
to relevant experimental issues. For instance, nonequilibrium
properties of granular media are a topical subject; see, e.g., [30]
for recent experimental results. The corresponding theoretical
modeling uses granular material as a nonequilibrium heat
bath, and the impact on devices subjected to dry friction
is studied. Localization phenomena of the velocity and
intermittent dynamics are consequences of the underlying
stick-slip dynamics [31–33]. Realistic theoretical models are

fairly complicated, thus only very limited analytic insight can
be obtained.

The inclusion of a finite correlation time of the noise is
a simple way to emulate nonequilibrium properties of a heat
bath. If the correlation time of the noise is of the same order as
the characteristic time scale of the system, a correlated noise
(or colored noise) is required [34]. Analytical treatments of
colored noise are hampered by the lack of detailed balance. In
this context, the so-called unified colored noise approximation
(UCNA) has been developed by Jung and Hänggi to obtain
analytic expressions for the stationary probability density [35].
Colored noise has been studied in many different contexts, e.g.,
magnetic resonance systems [36] or neurodynamics [37].

The purpose of our contribution is twofold. We want to
investigate the impact of noise on piecewise-smooth dynamical
systems in a simple setup that allows for a partial analytic treat-
ment. Furthermore, the nonequilibrium aspects, the occurrence
of stationary probability currents, and transition phenomena
will be a crucial part of our investigations. This paper is
organized as follows: Section II introduces the pure dry friction
model subjected to colored noise. The stationary behavior of
the model is investigated in Sec. III. Analytic expressions
for the velocity distribution will be derived together with
an asymptotic expression for the two-dimensional stationary
distribution. Analytic results are supported by numerical
simulations for the density and for the stationary probability
current. Dynamical properties such as the power spectral
density and the distributions of sliding and sticking events are
elaborated on in Sec. IV. We conclude our studies in Sec. V.

II. THE MODEL

We consider the simplest two-dimensional case of a
piecewise-smooth stochastic system, which does not obey
detailed balance. To motivate our considerations, let us recall
the one-dimensional motion of a particle subjected to white
noise. With a slight abuse of notation, the corresponding
Langevin equation governing the velocity reads

v̇(t) = −σ0(v(t)) + ξ (t), (1)

where ξ (t) denotes a white Gaussian noise with correlation
function 〈ξ (t)ξ (s)〉 = δ(t − s), and σ0(v) = sgn(v) contains
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the deterministic part caused by Coulomb friction. We have
adopted units such that the noise intensity and the dry friction
coefficient have been normalized to 1. Equation (1) is not
well defined at v = 0. One could cure such an inconsistency
by considering the Coulomb friction as the limiting case of
the regular drift σε(v) = tanh(v/ε) for ε → 0. Such niceties
are not relevant for Eq. (1) as the white noise is not a
function with well-defined finite values, and the stochastic
model in a strict sense is not pointwise defined. The formally
written down Fokker-Planck equation with suitable matching
conditions ensuring continuity of the density and continuity
of the probability current captures all aspects of the dynamics
and has been studied intensely in the literature; see, e.g., [11].
The deterministic part without noise requires a more careful
approach in terms of piecewise-smooth dynamical systems [1],
particularly in the presence of a finite amplitude driving force
where stick-slip transitions occur [cf. Eq. (3)].

An obvious extension of the model described above,
leading toward a two-dimensional stochastic nonequilibrium
system, consists in studying the effect of colored noise. To
be precise, we intend to replace the Gaussian white noise by
an exponentially correlated Ornstein-Uhlenbeck process η(t),
which is governed by the stochastic differential equation

η̇(t) = −η(t)

τ
+ ξ (t)

τ
. (2)

The noise correlation time τ will be the only effective
parameter in our model. Since the process η(t) can be viewed as
a continuous function, some care is needed when introducing
the dynamics of the particle. For forces smaller than the dry
friction coefficient, |η| < 1, and v = 0, the particle will stick
while otherwise the sliding dynamics is still described by the
aforementioned equation of motion.

Thus we end up with

v̇(t) =
{

0 if v = 0 and |η(t)| < 1,

−σ0(v(t)) + η(t) otherwise.
(3)

Alternatively, we could use the regularized drift

v̇(t) = −σε(v(t)) + η(t) (4)

and consider results finally in the limit ε → 0. We will adopt
both views throughout our exposition while at the same time
avoiding the considerable technical difficulties that would
be related with a rigorous approach. Since we consider a
noise with finite correlation time but a damping that does
not involve a memory kernel, the system violates detailed
balance and describes a nonequilibrium process [38]. On the
contrary, the model in the white-noise limit, Eq. (1), has
a vanishing stationary probability current and describes a
process in equilibrium.

For the model defined by Eq. (3), the static friction equals
the kinetic friction. In the real world the former exceeds
the latter, and our assumption has to be considered as an
idealization from an experimental perspective. Our particular
choice does not include any hysteresis, but it has the advantage
that the piecewise-smooth dynamical system can be captured
as a singular limit of the smooth dynamics Eq. (4). Equation (3)
provides the simplest consistent version of a piecewise-smooth
dynamical system with a sliding region and an invisible tangent
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FIG. 1. Time traces of the velocity v(t) (a) and the Ornstein-
Uhlenbeck noise η(t) (b) of the dry friction model [Eqs. (2) and (3)]
for τ = 0.001.

point [1]. Above all the model captures stick-slip phenomena,
which will be a key ingredient of our analysis.

Before we enter a more detailed discussion, let us just
illustrate the main phenomenon by time traces obtained
from numerical simulations. Throughout all our numerical
investigations, we apply an Euler-Maruyama scheme with
step size h = 10−3 for different values of τ . To take the
discontinuity caused by dry friction into account [see Eq. (3)],
we set v = 0 for |v| < 10−3 and |η| < 1, as the particle sticks
in this case at the origin. Time traces from the simulations
are shown in Figs. 1–3. At a scale of order 1, the effect of
dry friction becomes visible for correlation times larger than
τ = 0.1. The particle sticks for considerable amounts of time at
v = 0, as the stochastic force η(t) is not large enough to move
the particle. It is this stick-slip phenomenon and the related
intermittent motion that will be at the center of our studies,
being the key signature of our piecewise-smooth stochastic
model.

The observed dynamics from the simulations seems to be
a key feature of dry friction subjected to noise and of general
piecewise-smooth stochastic dynamics. Signatures of such
intermittent dynamics have been found in the framework of
the Boltzmann-Lorentz equation by investigating the so-called

062111-2



NONEQUILIBRIUM DYNAMICS OF A PURE DRY . . . PHYSICAL REVIEW E 95, 062111 (2017)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100

v

t

(a)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  10  20  30  40  50  60  70  80  90  100

η

t

(b)

FIG. 2. Time traces of the velocity v(t) (a) and the Ornstein-
Uhlenbeck noise η(t) (b) of the dry friction model [Eqs. (2) and (3)]
for τ = 0.1.

independent kick model [31,32] in studies of dry friction
subjected to non-Gaussian noise in the high friction limit [22],
and in an experiment of a rotating probe subjected to a
granular gas [27]. Intermittent dynamics and a related splitting
of the velocity distribution in a regular and a singular part
can be clearly seen in numerical studies of the underlying
transport equations [33]. Despite the importance of dry friction
in engineering, only a few explicit results on its interplay
with noisy nonequilibrium environments are available in the
literature. We think that justifies a case study like Eq. (3) to
uncover potentially general features caused by discontinuities
of the flow and noise with a finite amplitude. Furthermore,
the noise correlation time τ is used as a continuous control
parameter in the analysis of our model. Such a parameter has
not been available in the studies using the Boltzmann equation,
where only limiting cases of frequent and rare collisions were
investigated [26,27,31,32].

III. STATIONARY DENSITY

Given the previous reasoning and the numerical findings,
we expect the stationary density to exhibit a singular compo-
nent caused by particles sticking at v = 0. The corresponding
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FIG. 3. Time traces of the velocity v(t) (a) and the Ornstein-
Uhlenbeck noise η(t) (b) of the dry friction model [Eqs. (2) and (3)]
for τ = 1.0.

stationary distribution is expected to consist of a Dirac δ

component at vanishing velocities and |η| < 1, and a regular
part describing moving particles with finite velocities. The
analysis will be further hampered by the lack of detailed
balance so that closed-form analytic expressions are unlikely
to be available.

A. Marginal distribution and unified colored
noise approximation

To make some analytical headway, let us first have a look at
the marginal velocity distribution Pv(v) = ∫ ∞

−∞ P (v,η)dη for
which perturbative treatments in terms of the correlation time
are available. We are interested in possible changes compared
to the white-noise case τ �= 0 (see, e.g., [14]). We apply the
unified colored noise approximation (UCNA), developed by
Jung and Hänggi [35], to our regularized system Eqs. (2)
and (4). This method can be seen as a kind of interpolation
scheme for systems with colored noise, as this method shows,
under certain conditions, exact results in the limit of vanishing
correlation τ → 0 and high correlation τ → ∞.

For the convenience of the reader, we recall the main steps
of the derivation of the stationary probability density Pv(v). If
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we eliminate the variable η from Eqs. (2) and (4), we obtain
the second-order equation

v̈(t) + v̇(t)

(
σ ′

ε(v(t)) + 1

τ

)
= −σε(v(t))

τ
+ 1

τ
ξ (t). (5)

We introduce a new time scale t̂ = τ−1/2t ,

v̈(t̂) + v̇(t̂)γ (v(t̂),τ ) = −σε(v(t̂)) + τ−1/4ξ (t̂), (6)

where we have the damping factor

γ (v,τ ) = τ−1/2 + τ 1/2σ ′
ε(v). (7)

This factor approaches infinity for both limits τ → 0 and
τ → ∞. Hence, the setup is suitable for an adiabatic elimina-
tion scheme in the limit of small correlation times. If we neglect
the second-order derivative, we obtain a simpler multiplicative
stochastic process,

v̇(t̂) = − σε(v(t̂))
γ (v(t̂),τ )

+ 1

τ 1/4γ (v(t̂),τ )
ξ (t̂), (8)

with a corresponding Fokker-Planck equation in the
Stratonovich sense,

∂t̂Pv = ∂v

(
σε(v)

γ (v,τ )
+ 1

2τ 1/2

γ ′(v,τ )

γ 3(v,τ )

)
Pv

+ 1

2τ 1/2
∂2
v

(
Pv

γ 2(v,τ )

)
. (9)

Since the adiabatic approximation has reduced the problem
to a one-dimensional Fokker-Planck equation, the stationary
distribution can be computed by straightforward integration,

Pv(v) = exp

(
−2

∫
σε(v)dv − τσ 2

ε (v) + ln[|1 + τσ ′
ε(v)|]

)
.

(10)

In the dry friction limit ε → 0 the normalized stationary
probability density reads

Pv(v) = exp
[ − 2|v| − τσ 2

0 (v)
]
[1 + τδ(v)]

exp(−τ ) + √
πτerf(

√
τ )

. (11)

Equation (11) shows that the stationary probability density
consists of two parts, a regular contribution for v �= 0 and
a singular part for v = 0. The δ contribution in the density
reflects the fact that the particle sticks at v = 0 when the
stochastic force is not large enough to move the particle.
The regular part of the density describes the sliding motion
of the particle for v �= 0. By taking the white-noise limit
τ → 0, we arrive at the exact stationary probability density for
dry friction with white noise (i.e., [14]). For high correlation
times τ , the sliding contribution decreases and the density is
mainly determined by the δ peak. Thus, by increasing τ we can
observe a gradual transition from sliding to sticking motion.
The appearance of a δ peak in the expression for the stationary
probability density has also been found in various theoretical
studies [20–22,31–33] and in experiments [27].

The accuracy of the perturbative approach can be confirmed
by direct numerical simulations; see Fig. 4 for the comparison
of the UCNA with direct numerical simulations. By taking
about 100 realizations of time traces of length T = 104, we
observe good agreement for small correlation times. However,
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FIG. 4. Regular part of the stationary density, i.e., distribution of
the sliding events, obtained from numerical simulations (dashed lines)
sampled as a histogram with resolution �v = 0.002 and the analytical
approximation, Eq. (11) (solid lines). Data have been displayed for
different values of the correlation time τ = 0.001 (a), τ = 0.1 (b),
and τ = 1.0 (c); cf. Figs. 1–3.

for values τ > 0.1, deviations between numerics and analytics
become visible.

In addition to the analysis of sliding events, Eqs. (10)
and (11) also provide an estimate for the singular part, in
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particular for the probability of sticking as a function of the
noise correlation,

PStick(τ ) =
√

πτ erf(
√

τ )

exp(−τ ) + √
πτ erf(

√
τ )

. (12)

To obtain this result, one needs to integrate the regularized
version, Eq. (10), over a small interval containing v = 0 and
then take the limit ε → 0. Figure 5 shows a comparison of the
analytical approximation with the simulations, and we observe
quite good agreement as the probability of sticking increases
with increasing τ and approaches the value 1 in the limit of
high correlation times.

Overall, the analytic approximation seems to work rather
well, especially for small τ . Deviations become visible when
the noise correlation time increases (see Fig. 4 for the case
τ = 1.0). To explain the deviations between the analytical
approximation and the direct numerical simulations for the
regular part/sliding events (Fig. 4), we need to take a look at the
conditions of validity of the UCNA; this approximation gives
proper results for the case γ (v,τ ) 	 1. But for higher values
of τ , this approximation fails as in our case the contribution
caused by the dry friction vanishes in the limit ε → 0, i.e.,
when considering the piecewise linear case. Nevertheless, this
analytic approximation scheme provides very useful informa-
tion on the underlying nonequilibrium dynamics of our model.

B. Joint distribution and probability current

To get more insight into the dynamics of our model, we
study the two-dimensional equations of motion (2) and (3) with
the aim to understand properties of the stationary probability
density P (v,η).

To begin with, we perform numerical simulations of the dy-
namics of Eqs. (2) and (3) (see above for details of the numer-
ical integration scheme). Density plots on a logarithmic scale
of the full stationary distribution (regular and singular part) are
shown in Fig. 6. For τ = 0.001 the singular part hardly matters,
and results are almost indistinguishable from the white-noise
case within the resolution of our simulations. The regular

(a)

-2 -1  0  1  2

v

-200
-150
-100
-50

 0
 50

 100
 150
 200

η

-7
-6.5
-6
-5.5
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5

(b)

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

v

-15

-10

-5

 0

 5

 10

 15

η
-6

-5

-4

-3

-2

-1

 0

 1

(c)

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

v

-3

-2

-1

 0

 1

 2

 3

η

-4

-3

-2

-1

 0

 1

 2

 3

FIG. 6. Logarithmic density plot of the stationary probability
density, obtained from numerical simulations of Eqs. (2) and (3),
for different values of the correlation time: τ = 0.001 (a), τ = 0.1
(b), and τ = 1.0 (c). The density has been sampled with a resolution
of �v = 0.002 and 300 bins in the η direction. Slices of the density
at v = 0 can be found in Fig. 9.

density shows a Gaussian profile in the η direction as well
as exponential decay in the v direction. By increasing τ , the
density changes significantly as the singular part becomes no-
ticeable [cf. Eq. (11) and Fig. 4]. Furthermore, the regular part
of the density becomes asymmetric as the two components in
the half-spaces v > 0 and v < 0 are shifted against each other.

For further analytical insight, we try to formulate the
corresponding Fokker-Planck system. Using the regularized
version of the equations of motion, Eqs. (2) and (4), the
Fokker-Planck equation reads

∂tP = ∂v[σε(v) − η]P + ∂η

(
η

τ
+ 1

2τ 2
∂η

)
P. (13)
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There is no obvious way to compute the stationary solution
because detailed balance is violated. The marginal distribution
for the noise amplitude is, however, easily computed as

Pη(η) =
√

τ

π
exp(−τη2) (14)

and it does not depend on the regularization. Hence Eq. (14)
applies as well in the dry friction limit ε → 0, which does not
come as a surprise [cf. Eq. (2)]. In the dry friction limit, the
expression

P (v,η) = exp[−2|v| + 2τσ0(v)η − τη2] (15)

formally solves the stationary Fokker-Planck equation, see
Eq. (13) in the limit ε → 0, as long as v is nonzero. It differs
from the regular part of the marginal [Eq. (11)] by the sign of
the mixed (v,η) term. Certainly Eq. (15) does not provide
an analytic solution for the stationary density as Eq. (15)
does not obey the required matching conditions at v = 0 [39].
Nevertheless, if the impact of the stick-slip phenomenon at
v = 0 remains localized, then Eq. (15) provides the asymptotic
behavior for large values of velocities. This assertion can be
verified by looking into the numerical data. In Fig. 7, slices
of the regular density taken at constant values of the velocity
show deviations from the Gaussian profile close to the singular
component, i.e., at low velocities. However, the Gaussian
profile according to Eq. (15) is restored when we increase
the velocity, i.e., at regions in phase space further away from
the sticking region. Deviations from the Gaussian profile or
strictly speaking the asymmetry of the distribution in the η

direction can also be observed in Fig. 6 (bottom) for a high
noise correlation τ . A similar feature is displayed by slices
taken at a constant noise level; see Fig. 8.

The singular part of the distribution, which means the
dynamics of sticking particles, is entirely governed by Eq. (2),
i.e., by the Fokker-Planck equation of the Ornstein-Uhlenbeck
process. But natural boundary conditions do not apply as
particles perform stick-slip transitions. For the singular part of
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of the noise amplitude η. Results of numerical simulations (dashed
lines) and the analytic asymptotic expression (solid lines), Eq. (15).
The normalization of the analytics is fitted to the numerical data.

the density at v = 0 we have already indicated that increasing
the correlation time results in a considerable decrease of
the probability of sliding particles. As a result, the main
contribution to the marginal distribution, Eq. (14), will come
from the density at v = 0 as, apart from an exponentially
small contribution, particles become immobile. That is in
quantitative agreement with direct simulations; see Fig. 9. For
small values of the correlation time, considerable deviations
from the normal distribution appear as on the one hand particles
become mobile frequently and on the other hand there is a
constant stream of mobile particles getting stuck (see also
Figs. 1–3).
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FIG. 9. Slices of the stationary density at v = 0 in the η direction,
obtained from numerical simulations (dashed lines) and analytic
results for the marginal distribution, Eq. (14) (solid lines), for different
values of the noise correlation time. The vertical solid lines indicate
the region of the singular part of the distribution (sticking regime).
The normalization of the analytics is fitted to the numerical data.
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In the region of the phase space close to the stick-slip tran-
sition, the shape of the distribution is affected at intermediate
values of the noise correlation. There is no obvious way to
tackle the issue by analytical means, e.g., with the matching
conditions between the singular and the regular part. But one
can at least have a closer look at the probability current,
which is a clear signature of the nonequilibrium properties
of our model. By using the method from [40], we compute the
probability current directly from the time series of our model
[Eqs. (2) and (3)] for different values of τ ; see Figs. 10 and 11.
The entire flow pattern is symmetric, and the main part of the
current is concentrated in regions with low velocity v. For
η > 1 the current predominantly points in the positive
v-direction as particles are dragged by the external forcing.
For larger positive values of v the current turns and finally
approaches the sticking manifold v = 0, |η| < 1, where parti-
cles change from sliding to sticking mode. As the stationary
probability current is, by definition, solenoidal [see Eq. (13)],
the current on the sticking manifold becomes large and points
in the positive or negative direction; see Fig. 12. When reaching
the critical value, |η| = 1 particles start sliding again. In
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regular part of the stationary probability current of the system Eqs. (2)
and (3) for τ = 1.0, obtained from numerical simulations. The density
plot shows the absolute value of the current in the (v,η) plane, whereas
the stream plot displays the normalized vector field of the current.
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FIG. 12. η component of the stationary probability current at
v = 0 for different values of τ , obtained from numerical simulations
of Eqs. (2) and (3).
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particular, the current on the sticking manifold v = 0 and
|η| < 1 and the current entering or leaving this manifold
obey matching conditions. Hence, for the piecewise-smooth
dynamics one can write down a system of two coupled
Fokker-Planck equations, one governing the sticking and
one governing the sliding motion, with appropriate matching
conditions and source terms. It is not obvious, however,
whether such a formulation for the regular and the singular
component of the probability distribution would give more
insight than direct numerical simulations of the associated
Langevin equation, let along providing a pathway for an
analytic approach.

Figure 12 indicates a nonmonotonic behavior of the current
by varying the correlation time of the noise τ . For low values of
τ , the current is very small, as we are close to the white-noise
limit. By increasing τ the current increases as well up to a value
close to τ = 0.2. Increasing τ further, the current decreases
and almost vanishes; see the results for τ = 3.0 in Fig. 12. For
higher values of the noise correlation, the probability current
decays rapidly outside of the interval η ∈ (−1,1). In view of
the particular structure of the stationary density this is hardly
surprising, as the singular component of the density dominates
for high correlation times, the dynamics is dominated by
sticking particles, and only a small part of the probability
density contributes to the sliding motion and finally to the
probability current.

IV. DYNAMICAL PROPERTIES OF THE PIECEWISE
LINEAR MODEL

Traditional correlation functions are a useful tool to study
dynamical properties, particularly within the context of linear-
response theories. From a theoretical perspective, their ana-
lytical properties are related with the eigenvalue spectrum of
the underlying equations of motion, e.g., with the spectrum of
Fokker-Planck operators. Furthermore, correlation functions
are experimentally accessible and they allow us to introduce
the concept of correlation times. As a shortcoming, correlation
functions may not allow for the proper characterization of
intermittent behavior, such as stick-slip transitions, which
must then be addressed separately by a suitable statistical
measure.

A. Power spectral density

To begin with, we want to investigate how the correlation
time of the noise τ influences the correlations in our system.
To be slightly more precise, we will discuss the τ dependence
of the power spectral density of the velocity v, and the
corresponding linewidth. The latter provides insight into the
structure of the eigenvalue spectrum of an underlying Fokker-
Planck operator governing the dynamics of the system. For
the dry friction model with white noise (τ = 0), a spectral gap
between the two first eigenvalues has been observed [14,41].
In [15] a closed expression for the power spectral density of
the velocity has been derived based on the Laplace transform
of the propagator.

For noise with a finite correlation time, we mainly rely
on numerical investigations since analytic expressions for the
stationary probability density are unknown. We calculate the
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FIG. 13. Double-logarithmic plot of the power spectral density
of the v-variable for τ = 0.001,0.1,1.0 (from top to bottom) and
different fit functions. Spectra have been normalized by the condition
SN (0) = 1 and shifted, respectively. Numerical simulations (dashed
lines), Lorentzian fit [∼1/(1 + ω2)] [(bronze) solid lines], and quartic
spectral fit [∼1/(1 + aω2 + bω4)] [(cyan) dot-dashed lines].

power spectral density of the variable v by averaging over 800
numerically generated time traces of length T = 104. We base
our analysis on the autocorrelations of the velocity. Hence, the
corresponding power spectral density predominantly probes
properties of the sliding phase as velocities vanish in the
sticking phase.

Figure 13 shows the numerical results of the normalized
spectral densities for different values of τ . The normalized
power spectral densities SN (ω) have a single central peak at
ω = 0 indicating an exponential decay of the corresponding
autocorrelation function. For small values of τ , and in accor-
dance with the white noise limit, SN (ω) is a Lorentzian with
power-law behavior ω−2 at an intermediate frequency range.
Such decay changes when increasing the noise correlation
time τ , resulting in a decay proportional to ω−4 at medium
frequencies. The corresponding analytic behavior indicates a
smooth autocorrelation function at time zero.

The complex valued singularities of the power spectral
density are signatures of the nonvanishing eigenvalue of
an underlying Fokker-Planck operator. For power spectral
densities with a well-defined central peak, the full width at
half-maximum �ω can be related to the correlation time of
the system tcorr via the Wiener-Khinchin theorem. Following
results for linear stochastic processes, we define here a
correlation time by tcorr = 1/�ω. Using a fit function of
the form 1/(1 + aω2 + bω4) for the power spectral densities
SN (ω), we evaluate the correlation time; see Fig. 14.

The correlation time tcorr essentially coincides with the
value of the white-noise limit as long as τ < 0.1. While there is
no sharp transition, tcorr significantly increases monotonically
when the noise correlation time exceeds a “critical” value
of τ = 0.1. Hence, signatures of the stick-slip transition
become dynamically visible above such a critical value.
The transition-like feature is in accordance with the findings
about the stationary density reported in the previous section,
e.g., see Fig. 5.
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FIG. 14. Correlation time tcorr as a function of the noise corre-
lation time τ , obtained from numerical simulations of the spectral
density and estimating the full width at half-maximum by using a
quartic spectral fit; see Fig. 13.

B. Distribution of sticking and sliding periods

The time traces shown in Figs. 1–3 suggest a closer relation
of the dynamics with intermittency phenomena. To probe
directly the dynamical features of the stick-slip transition, we
look at the distribution of sticking and sliding times, i.e., the
distribution of time intervals the particle spends in states v = 0
and v �= 0.

We start our investigations with the analysis of the sticking
time events. As the dynamics of sticking particles is mainly de-
termined by the exit time problem of the Ornstein-Uhlenbeck
process [see Eq. (2)], this problem can be treated by analytical
means; see [42]. The Laplace transform of the exit time
probability density for an Ornstein-Uhlenbeck process such
as Eq. (2) with symmetric absorbing boundaries (−a and a)
and a fixed initial condition |η0| < a reads

f̃ (s|η0) = D−sτ (
√

2τη0)+D−sτ (−√
2τη0)

D−sτ (
√

2τa)+D−sτ (−√
2τa)

exp

[
τ

2

(
η2

0 − a
)]

= exp

(
aτ (a − 1)

2

)
1F1

(
sτ
2 ; 1

2 ; η2
0τ

)
1F1

(
sτ
2 ; 1

2 ; a2τ
) , (16)

where Dν(x) is the parabolic cylinder function, 1F1(a; b; z)
denotes Kummer’s confluent hypergeometric function, and we
have used some identities for these functions [43]. We set
a = 1 because the regime where particles are sticking is the
interval (−1,1), and we integrate over all possible initial con-
ditions η0 within this regime assuming a uniform distribution
to obtain

f̃ (s) = 1

2

∫ 1

−1
f̃ (s|η0)dη0

= 1F1
(

sτ
2 ; 3

2 ; τ
)

1F1
(

sτ
2 ; 1

2 ; τ
) . (17)

As it is not possible to derive an analytic result for the inverse
Laplace transform of this expression, we use the Talbot method
to calculate the exit time distribution numerically [44,45].
The results for certain values of τ are shown in Figs. 15–17.
One observes a localized peak in the distribution at T = 0,
and for moderate to large times a simple exponential decay.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

f(
T

)

T

FIG. 15. Distribution of sticking time intervals, f (T ), on a
semilogarithmic scale for τ = 0.1, obtained numerically [(blue)
dashed line] and semianalytically from the exit time problem for the
Ornstein-Uhlenbeck process [(bronze) solid line] [the inverse Laplace
transform of Eq. (17)].

For higher noise correlation times, the exponential decay of
the distribution becomes smaller. It becomes more likely for
particles to stick at v = 0, which is in accordance with the
results in the previous sections. Our numerical findings for
the exit time distribution agree very well with the analytical
estimate, i.e., the inverse Laplace transform of Eq. (17). It
works particularly well for large values of τ and fails to be
valid if we approach the transition value τ = 0.1 as stick-slip
phenomena become noticeable around this value.

For the remainder of this section, we focus on the statistics
of the sliding events. Figures 18 and 19 show the numerically
obtained distributions over a wide range of noise correlation
times. For small noise correlation, distributions are unimodal
with a power-law decay at an intermediate range. For a larger
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FIG. 16. Distribution of sticking time intervals, f (T ), on a
semilogarithmic scale for τ = 0.5, obtained numerically [(blue)
dashed line] and semianalytically from the exit time problem for the
Ornstein-Uhlenbeck process [(bronze) solid line] [the inverse Laplace
transform of Eq. (17)].
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FIG. 17. Distribution of sticking time intervals, f (T ), on a
semilogarithmic scale for τ = 1.0, obtained numerically [(blue)
dashed line] and semianalytically from the exit time problem for the
Ornstein-Uhlenbeck process [(bronze) solid line] [the inverse Laplace
transform of Eq. (17)].

noise correlation, the distributions develop a maximum at a
finite time so that the most probable sliding time becomes
finite. Figure 19 indicates a kind of universal behavior of
the distributions at long sliding times T for large correlation
times τ . The asymptotic behavior of the distributions shows
a stunning similarity to characteristics of on-off intermit-
tency [46] as the power-law decay is of the form T −3/2 for
τ � 1.0. But in the context of our model, the roles of the
“on” and “off” states are interchanged as this power law
occurs for sliding events. Looking for an analytic approach,
the sliding events could be modeled by an exit time problem
with constant drift and colored noise. For Gaussian white
noise and constant drift, this problem can be solved analyt-
ically [47], and the exit time distribution shows an asymptotic
behavior P (T ,v0) ∼ T −3/2 exp [−(T − v0)2/2T ].
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FIG. 18. Distribution of sliding time intervals, P (T ), on a double-
logarithmic scale for different values of the noise correlation time,
obtained from numerical simulations.
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FIG. 19. Distribution of sliding time intervals, P (T ), on a double-
logarithmic scale for different values of the noise correlation time,
obtained from numerical simulations. The black line shows a decay
according to a power law T −3/2.

V. CONCLUSION

We investigated a dry friction model subjected to colored
noise with the emphasis on nonequilibrium properties in a
noisy piecewise-smooth dynamical system. By applying the
unified colored noise approximation (UCNA), we obtained an
analytical expression of the stationary probability density for
the velocity. The white-noise limit τ → 0 reproduces the exact
results, e.g., see [11]. As the noise correlation time increases,
the stationary density develops a δ peak as particles become
more and more stuck at v = 0. By varying τ , a transition
from sliding to sticking dynamics could be observed. By
considering the equivalent two-dimensional system, we were
able to derive an asymptotic expression for the stationary
density that is valid for large velocities and large noise
amplitudes, far away from the stick-slip region. There was
no obvious way to obtain a full analytic expression for the
joint probability density P (v,η) containing all the required
matching conditions at v = 0 as detailed balance is violated.
The latter has been clearly demonstrated by computing the
nonvanishing stationary probability current.

Furthermore, we studied the power spectral density numer-
ically to obtain information about the velocity correlations,
the corresponding correlation time, and the spectral gap of the
underlying Fokker-Planck operator. Below a “critical value”
one recovers the result for the white-noise limit. Increasing
the noise correlation further, the full width at half-maximum
decreases, which is connected to a higher velocity correlation
in the system. This decrease of the spectral width comes along
with a change in shape of the power spectrum. For low values of
τ the power spectral density is a Lorentzian, while for values
τ > 0.1 the shape changes to a ω−4 decay for intermediate
frequencies.

To complete our studies, we investigated the sliding and
sticking time distribution as the time traces indicated a
connection to intermittent dynamics. Results for the sticking
time distribution were accessible via the exit time problem
for an Ornstein-Uhlenbeck process with symmetric absorbing
boundary conditions. For the sliding dynamics, the related exit
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time problem with colored noise and a constant drift is hard
to tackle, and we had to rely on simulations. For high noise
correlation times, a power-law decay of the form T −3/2 occurs,
indicating a relation with on-off intermittency.

References [26] and [27] provide probably the most
comprehensive experimental and theoretical analysis of a
device subjected to dry friction and a nonequilibrium granular
heat bath. The corresponding theoretical considerations have
been based on a Boltzmann equation approach. Results such
as a ratchet effect induced by geometric asymmetries and
the localization of the velocity distribution are in accordance
with measurements. Given the sophisticated nature of the
underlying theoretical description, time correlations and power
spectra are not accessible by analytic methods.

In our analysis, we have addressed a simpler but related
theoretical model using colored noise instead of a collision in-
tegral. There is no mathematical link between both models, and
the Boltzmann equation and the dry friction model subjected
to colored noise are fundamentally different. Nevertheless, we
found various striking similarities. Time traces of the colored
noise model are surprisingly similar to those measured in
experiments if the cases of rare and frequent collision limits
are compared with large and small noise correlation time.
In addition, both models produce densities with a singular
component caused by the discontinuous drift, a feature that
is common in a large class of piecewise-smooth stochastic
models; see, e.g., [21]. Such a property can be seen as
a ubiquitous feature of stick-slip phenomena, which is not
restricted to a particular theoretical or experimental realization.

Within the analysis of the dry friction model subjected to
colored noise, we were able to derive an analytic expression
for the weight of the singular component, which is otherwise
hardly accessible (see, e.g., [21]). The analysis of the colored
noise model is facilitated by a continuous control parameter,
which has not been available in the aforementioned more
realistic studies, where only the limiting cases of frequent and
rare collisions could be addressed. We were able to identify
a critical noise correlation time separating the white-noise
regime from models where noise correlations have a visible ef-
fect in the presence of discontinuous drifts. Our model allowed
for a detailed analysis of nonequilibrium currents and power
spectra. In particular, the on-off intermittent characteristics is
a promising result that is tempting to check experimentally. In
addition to the setup used in [27], a realization along the lines
of [25] would allow us to implement noise color quantitatively
and thus would provide a direct experimental comparison.

Apart from experimental confirmations, the colored noise
model is remarkable as well from a plain theoretical per-
spective. In the extended (v,η) phase space, the model is
described by a plain Fokker-Planck equation. Because of
the particular structure of diffusion and discontinuous drift,
the two-dimensional Gaussian white-noise model develops a
singular stationary density, proving that such a localization
phenomenon is by no means a feature that requires more
complicated noise sources. Hence, features previously found
in Boltzmann equations can be certainly captured by Fokker-
Planck equations and simpler stochastic models, which may
be amenable for an analytic treatment.
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