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The search for patterns in time series is a very common task when dealing with complex systems. This is usually
accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such
measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity
measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the
Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization
of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that
is used for characterizing and classifying time series. Based on simple exact results and numerical simulations
of stochastic processes, we show that these curves can distinguish among different long-range, short-range,
and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be
distinguished based on whether these curves are open or closed. We further test this technique in experimental
scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its
usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range
correlations and interbeat intervals of healthy subjects and patients with heart disease.
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I. INTRODUCTION

The study of complex systems often shares the goal of
analyzing empirical time series aiming to extract patterns or
laws that rule the system dynamics. In order to perform this
task, it is very common to employ a complexity measure
such as algorithmic complexity [1], entropies [2], relative
entropies [3], fractal dimensions [4], and Lyapunov exponents
[5]. Researchers have actually defined several complexity
measures, a fact directly related to the difficulty of accurately
defining the meaning of complexity. However, the majority
of the available measures depends on specific algorithms and
tuning parameters, which usually creates great difficulties for
research reproducibility.

To overcome this problem, Bandt and Pompe [6] have
introduced a complexity measure based on the comparison
of neighboring values that can be easily applied to any time
series. The application of this technique (the permutation
entropy) is widely spread over the scientific community [7–13]
mainly because of its simplicity and ability to distinguish
among regular, chaotic, and random time series. Regarding
the particular issue of distinguishing between chaotic and
stochastic processes, Rosso et al. [14] have shown that the
permutation entropy alone is not enough for accomplishing
this task. They observed, for instance, that the value of the
permutation entropy calculated for the logistic map at fully
developed chaos is very close to the value obtained for
long-range correlated noises. Because of that, Rosso et al. [14]
have employed the ideas of Bandt and Pompe together with a
diagram proposed by López-Ruiz et al. [15]. This diagram
is composed of the values of a relative entropic measure
(the statistical complexity) versus the Shannon entropy, both
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calculated within the framework of Bandt and Pompe. Rosso
et al. have named this diagram as complexity-entropy causality
plane, and by using it they were able to distinguish between
several time series of stochastic and chaotic nature. The
causality plane has also proved its usefulness in several
applications [9,10,12,16–18] and has been generalized for
considering higher dimensional data [19], and different time
[20] and spatial resolutions [21].

Here, we propose to extend the causality plane for consider-
ing a monoparametric entropy in replacement of the Shannon
entropy. In particular, we have considered the Tsallis q entropy
[22,23] (that recovers the Shannon entropy for q = 1) together
with the proper generalization of the statistical complexity [24]
(q complexity). The values of the parameter q in the Tsallis
entropy give different weights to the underlying probabilities
of the system, accessing different dynamical scales and
producing a family of complexity measures that capture
some of the different meanings of complexity. Moreover,
the Tsallis q entropy has already proved to be useful for
enhancing the performance of computational techniques such
as in optimization problems [25–27] and image thresholding
[28,29] as well as has been previously implemented for
characterizing fractal stochastic processes [30].

Thus, for a given time series, we build up a parametric
curve composed of the values of the q complexity versus
the q entropy, which we will call the q-complexity-entropy
curve. Based on simple exact results, we discuss some general
properties of these curves, and next we present an exhaustive
list of applications based on numerical simulations and
empirical data. These applications show that the q-complexity-
entropy curve can capture dynamical aspects of time series
that are not properly identified only by the point for q = 1,
which corresponds to the complexity-entropy causality plane
of Rosso et al. The rest of this article is organized as follows.
Section II is devoted to reviewing the Bandt and Pompe
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approach and the complexity-entropy causality plane of Rosso
et al. Also in this section, we present our generalization for
considering the Tsallis q entropy as well as some general
properties of the q-complexity-entropy curve. Section III
presents our numerical experiments with time series from
the fractional Brownian motion, harmonic noise, and chaotic
maps. In Sec. IV, we discuss some real world applications
involving time series from laser dynamics, sunspot numbers,
stock prices, human heart rate, and Earth’s magnetic activity.
Section V ends this paper with some concluding remarks.

II. GENERALIZED ENTROPY AND COMPLEXITY
MEASURES WITHIN THE BANDT

AND POMPE FRAMEWORK

We start by reviewing the approach of Bandt and Pompe [6]
for extracting the probabilities related to the ordinal dynamics
of the elements of a time series. For a given time series
{xi}i=1,...,n, we construct (n − d + 1) overlapping partitions
of length d > 1 represented by

s → {xs−(d−1),xs−(d−2), . . . ,xs}, (1)

where s = d,d + 1, . . . ,n. For each s, we evaluate the permu-
tations πj = {r0,r1, . . . ,rd−1} of {0,1, . . . ,d − 1} defined by
the ordering xs−rd−1 � xs−rd−2 � · · · � xs−r0 , and we associate
to each permutation πj (with j = 1, . . . ,d!) the probability

pj (πj ) = the number of s that has type πj

n − d + 1
. (2)

The components of the probability distribution P =
{pj (πj )}j=1,...,d! represent the odds of finding a segment of
length d > 1 within the time series in a given order. For
instance, for the time series {2,4,3,5}, we can create tree
partitions of size d = 2: (s = 2) → {2,4}, (s = 3) → {4,3},
and (s = 4) → {3,5}. For each one, we associate the permu-
tations {0,1}, {1,0}, and {0,1}, respectively; consequently, the
probability distribution is P = {2/3,1/3}. Thus, the proba-
bility distribution P = {pj (πj )}j=1,...,d! provides information
about the ordering dynamics for a given time scale defined
by the value of d, often called the embedding dimension. In
the Bandt and Pompe framework, d is a parameter whose
value must satisfy the condition n � d! in order to obtain
reliable statistics for all d ! possible permutations occurring in
the time series.

Given the probability distribution P = {pj (πj )}j=1,...,d!,
Bandt and Pompe proposed to employ the normalized Shannon
entropy

H1(P ) = S1(P )

S1(U )
, (3)

where S1(P ) = ∑d!
j=1 pj ln 1

pj
is the Shannon entropy and

U = {1/d !}j=1,2,...d! is the uniform distribution [so S1(U ) =
ln d !], as a natural measure of complexity. By following Bandt
and Pompe’s idea together with the diagram of López-Ruiz
et al. [15], Rosso et al. [14] have proposed to further calculate
a second complexity measure defined by

C1(P ) = D1(P,U )H1(P )

D∗
1

, (4)

where D1(P,U ) is a relative entropic measure (the Jensen-
Shannon divergence) between the empirical distribution
P = {pj (πj )}j=1,...,d! and the uniform distribution U =
{1/d!}j=1,...,d!. This relative measure can be defined in terms
of the symmetrized Kullback-Leibler divergence [K1(P |R) =
−∑

pi ln ri/pi , with P and R probability distributions] and
is written as

D1(P,U ) = 1

2
K1

(
P

∣∣∣∣P + U

2

)
+ 1

2
K1

(
U

∣∣∣∣P + U

2

)

=
[
S1

(
P + U

2

)
− S1(P )

2
− S1(U )

2

]
, (5)

with P+U
2 = {pj (πj )+(1/d!)

2 }j=1,...,d!; while

D∗
1 = max

P
D1(P,U )

= −1

2

[
d ! + 1

d !
ln(d ! + 1) − ln d ! − 2 ln 2

]
(6)

is a normalization constant [obtained by calculating D1(P,U )
when one component of P is one and all others are zero].
In spite of the fact that the statistical complexity C1(P ) is
defined by the product of D1(P,U ) and H1(P ), C1(P ) is not
a trivial function of H1(P ) in the sense that, for a given value
of H1(P ), there is a range of possible values for C1(P ) [24].
Because of that, Rosso et al. [14] proposed a representation
space composed of the values of C1(P ) versus H1(P ), building
up the complexity-entropy causality plane and finding that
chaotic and stochastic time series occupy different regions of
this diagram.

Despite being successfully applied for studying several
systems, the values of C1(P ) and H1(P ) are not enough for
capturing different scales of the system dynamics as well
as different meanings for complexity. Because of that, we
propose to replace the normalized Shannon entropy [Eq. (3)]
and the statistical complexity [Eq. (4)] by monoparametric
generalizations based on the Tsallis q entropy. This entropic
form is a generalization of the Shannon entropy and can be
defined as [22,23]

Sq(P ) =
d!∑

j=1

pj lnq

1

pj

, (7)

where q is a real parameter and lnq x = ∫ x

1 t−q dt is the

q logarithm (lnq x = x1−q−1
1−q

if q �= 1 and ln1 x = ln x for
any x > 0) [23]. We will use the convention 0 lnq(1/0) = 0
whenever q > 0. It is worth noting that S1 is the Shannon
entropy.

Once defined the q entropy, we further consider its
normalized version [analogously to the Eq. (3)]

Hq(P ) = Sq(P )

Sq(U )
, (8)

where Sq(U ) = lnq d! is the maximum value of the q entropy
[23]. Furthermore, by following the developments of Martin,
Plastino, and Rosso [24], we assume the generalized version
of the statistical complexity (4), the q complexity, to be

Cq(P ) = Dq(P,U )Hq(P )

D∗
q

, (9)
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where

Dq(P,U ) = 1

2
Kq

(
P

∣∣∣∣P + U

2

)
+ 1

2
Kq

(
U

∣∣∣∣P + U

2

)

= −1

2

d!∑
i=1
pi �=0

pi lnq

pi + 1/d!

2pi

− 1

2

d!∑
i=1

1

d!
lnq

pi + 1/d!

2/d!
(10)

is a distance between P and U , Kq(P |R) = −∑
pi lnq ri/pi

a generalization of Kullback-Leibler divergence within the
Tsallis formalism [24], and

D∗
q = max

P
Dq(P,U )

= 22−qd! − (1 + d!)1−q − d!(1 + 1/d!)1−q − d! + 1

(1 − q)22−qd!

(11)

is a normalization constant.
Thus, the quantities Hq and Cq are generalizations of

the normalized entropy and complexity within the symbolic
approach of Bandt and Pompe [6], introduced by Rosso et al.
[14], which are included as the particular case q = 1. Here, we
are interested in the parametric representation of the ordered
pairs (Hq(P ),Cq(P )) on q > 0 for a fixed distribution P .
We call this curve the q-complexity-entropy curve, and we
shall see that this representation has superior capabilities
of distinguishing time series when compared with the point
(H1(P ),C1(P )) in the complexity-entropy causality plane.

Before we proceed to the applications, let us enumerate
some general properties of the q-complexity-entropy curves.
For a given probability distribution P = {pj (πj )}j=1,...,d!, let r
be the number of nonzero components of P (that is, the number
of permutations πj that actually occurs in the time series) and
γ = r−1

d!−1 (essentially the fraction of occurring permutations
among all d! possible). From the definitions of Hq and
Cq , it is not difficult to prove the following statements (see
Appendix A):

(1) If r = 1, then Hq(P ) = 0 and Cq(P ) = 0 for any
q > 0.

(2) Hq(P ) → γ and Cq(P ) → γ (1 − γ ) as q → 0+.
(3) If r > 1, then Hq(P ) → 1 and Cq(P ) → 1 − γ as

q → ∞.
These general properties of Hq and Cq have the following

consequences for the q-complexity-entropy curves:
(1) The q-complexity-entropy curve of a time series that

only displays one permutation πj (that is, for r = 1) collapses
onto the point (0,0).

(2) For a time series that has all possible permutations πj

(that is, r = d! and γ = 1), the q-complexity-entropy curve is
a loop that starts at the point (1,0) for q = 0+ and ends at the
same point for q → ∞.

(3) For a time series that does not display all permutations
πj , the q-complexity-entropy curve starts at the point (γ,γ (1 −
γ )) for q = 0+ and ends at the point (1,1 − γ ) for q → ∞.
Here, 0 < γ < 1, and the number of occurring permutations r

can be obtained from γ via r = (d! − 1)γ + 1.

We shall see that noisy time series are usually characterized
by closed q-complexity-entropy curves, whereas chaotic time
series have open curves (especially for large embedding
dimensions). This last feature is related to the existence of
forbidden ordinal patterns in the chaotic dynamics that is
common in several chaotic maps [31–34], but that can also
appear in stochastic processes depending on the time series
length [35–37].

III. NUMERICAL APPLICATIONS

In this section, we present several applications of the
q-complexity-entropy curve for numerically generated time
series of stochastic and chaotic nature.

A. Fractional Brownian motion

As a first application, we study time series generated from
the fractional Brownian motion [4]. The fractional Brownian
motion is a stochastic process that has stationary, long-range
correlated, and Gaussian increments. It is usually defined in
terms of a parameter h (the so-called Hurst exponent): for h <
1
2 , the fractional Brownian motion is antipersistent, meaning
that positive increments are followed by negative increments
(or vice versa) more frequently than by chance; while for
h > 1

2 , it is persistent, meaning that positive increments are
followed by positive increments and negative increments are
followed by negative increments more frequently than by
chance. Also, we have fully persistent motion in the limit
of h → 1, whereas the usual Brownian motion is recovered in
the limit of h → 1

2 .
In order to calculate the q-complexity-entropy curves as-

sociated with the fractional Brownian motion, we numerically
generate time series of length 217 following the procedure of
Hosking [39] for different values of the Hurst exponent h.
Figures 1(a) and 1(b) show these curves for the embedding
dimension d = 3 and h in (0.2,0.3, . . . ,0.9), while Figs. 1(c)
and 1(d) are the same for d = 4. These plots show the
average values (over 100 realizations) of the ordered pairs
(Hq(P ),Cq(P )), with q from 10−4 (assumed to be q = 0+) to
1000 in steps of 10−4. We note that all q-complexity-entropy
curves are closed, indicating that time series of length 217 of the
fractional Brownian motion displays all possible permutations
πj for d = 3 and 4. The presence of forbidden ordinal patterns
in the fractional Brownian motion was studied by Rosso et al.
[35,36] and Carpi et al. [37], where they observed that the
number of forbidden ordinal patterns decreases with the time
series length with a rate that depends on the Hurst exponent
h. In particular, Carpi et al. [37] showed that for d = 4
and very small time series (around 100 steps), the fractional
Brownian motion may have a few number of forbidden
patterns; however, this number vanishes for series of length
larger than 500 terms, which agrees with our findings. Also,
for the fractional Brownian motion is possible to obtain the
exact expression for the q-complexity-entropy curves, because
Bandt and Shiha [38] have calculated the exact form of the
probability distribution P = {pj (πj )}j=1,...,d! for d = 3 and
4 [all values of pj (πj ) are provided in Appendix B]. By
using these distributions, the expressions (8) and (9) lead
to the exact values for the ordered pairs (Hq(P ),Cq(P ))
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FIG. 1. Dependence of the entropy Hq and complexity Cq on the
parameter q for the fractional Brownian motion. Panels (a) and (b)
show the q-complexity-entropy curves with d = 3 and several values
of the Hurst exponent h [h in (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9), as
indicated in the plots]. The values of q are increasing (from q = 0+

to q = 1000 in size steps of 10−4) in the clockwise direction. Panels
(c) and (d) show the same, but with embedding dimension d = 4.
All colored curves represent the average value of Hq and Cq over
100 realizations of a fractional Brownian walker with 217 steps. The
shaded areas indicate the 95% confidence intervals estimated via
bootstrapping (over 100 independent realizations). The dashed lines
are the exact results calculated by using the probabilities of Bandt and
Shiha [38] (see also Appendix B). It is worth noting that all curves
form loops in this representation space, starting at (1,0) for q = 0+

and ending at (1,0) for q → ∞.

for all q. The dashed lines in Fig. 1 show the exact q-
complexity-entropy curves for the fractional Brownian motion,
where we observe an excellent agreement with the numerical
results.

The results of Fig. 1 also reveal that the q-complexity-
entropy curves distinguish the different values of the Hurst
exponent h. We observe that the larger the value of h, the
broader the loop formed by the q-complexity-entropy curve.
We also find that the normalized entropy Hq as a function of q

has a minimum value at q = q∗
H and that the complexity Cq as

a function of q has a maximum value at q = q∗
C , both extreme

values of q depend on the Hurst exponent h and also on the
embedding dimension d. This dependence is shown in Fig. 2
for d = 3 and 4, where a good agreement between the exact
and the numerical values of these extreme values is observed.
We further notice that q∗

H increases with h up to a maximum
and then starts to decrease [Figs. 2(a) and 2(c)], whereas q∗

C is
a monotonically increasing function of the Hurst exponent h

[Figs. 2(b) and 2(d)].
The extreme values of the normalized q entropy and the

q complexity-entropy (Hq∗
H

and Cq∗
C
) represent the largest

contrast between Hq (as well as Cq) calculated for the
system distribution P = {pj (πj )}j=1,...,d! and the uniform
distribution U = {1/d !}j=1,...d!. In the context of ecological
diversity, the values of Hq∗

H
were found to enhance contrast

among ecological communities when compared with usual
diversity indexes [40]. Similarly, the values of Hq∗

H
and Cq∗

C
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FIG. 2. Comparison between the extreme values q∗
H and q∗

C

obtained from the simulations and the exact results for the fractional
Brownian motion. Panel (a) shows the values of q = q∗

H for which Hq

reaches a minimum as a function of the Hurst exponent h and d = 3.
Each dot corresponds to the average value of q∗

H obtained from 100
realizations of a fractional Brownian walker with 217 steps. Error bars
stand for 95% confidence intervals estimated via bootstrapping (over
100 independent realizations). Panel (b) shows the values of q = q∗

C

for which Cq reaches a maximum as a function of the Hurst exponent
h and d = 3. Again, the dots are the average value calculated from
100 independent realizations of a fractional Brownian walker with 217

steps, and the error bars are 95% confidence intervals. In both plots,
the continuous lines are the exact results. Panels (c) and (d) are the
analogous of (a) and (b) when considering the embedding dimension
d = 4. In all cases, we note an excellent agreement between the
simulations and the exact results.

may enhance the differentiation among time series of the
fractional Brownian motion with different Hurst exponents.
In order to verify this hypothesis, we test the performance
of the values Hq∗

H
and Cq∗

C
(in comparison with H1 and

C1) for classifying time series of the fractional Brownian
motion with different Hurst exponents. For this, we generate
an ensemble with 100 time series for each value of the
Hurst exponent h in (0.03,0.05, . . . ,0.97). Next, we train a k

nearest neighbors algorithm [41] in a threefold cross-validation
strategy, considering these 48 different values of h as possible
classes for the algorithm. This machine learning classifier is
one of the simplest algorithms for supervised learning [41]; it
basically assigns a class (here the value of the Hurst exponent)
to an unlabeled point based on the class of the majority of the
nearby points.

Figure 3(a) shows the confusion matrices (that is, the
fractions of time series with a particular Hurst exponent
that are classified with a given Hurst exponent, accuracy)
when considering H1 and C1 [usual causality plane, q = 1
(left panel)] and the Hq∗

H
and Cq∗

C
[optimized causality plane

(right panel)] for time series with n = 210 terms. We observe
that both matrices have nonzero elements only around the
diagonal, indicating that the misclassified Hurst exponents
are labeled with values close to actual values. We also note
that the “diagonal stripe” of these matrices is narrow for the
optimized causality plane (specially for h > 0.5), showing
that the optimized values enhance the performance of the
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FIG. 3. Predicting the Hurst exponent based on the values of Hq

and Cq via the nearest neighbors algorithm. (a) Confusion matrices
obtained from the nearest neighbors algorithm when considering
the values of Hq and Cq for q = 1 (usual case, left panel) and the
optimized values of Hq∗

H
and Cq∗

C
(optimized case, right panel) for

time series of length n = 210. The rows of these matrices represent
the actual Hurst exponents (the value employed in the simulation) and
the columns represent the values predicted by the machine learning
algorithm. Values of the Hurst exponents vary from 0.03 to 0.97 in
steps of size 0.02. The color code indicates the fraction of occurrences
for each combination of actual and predicted Hurst exponent. In
(b) we show the same analysis for longer times series (n = 212).
We note that in both classification scenarios the predicted values
are always very close to the actual values (that is, the confusion
matrices have “diagonal stripes”). However, we further notice that
the “diagonal stripe” is narrower in the optimized case (especially
for persistent processes). (c) Overall accuracy (fraction of correctly
classified Hurst exponents) for the two classification scenarios (error
bars are the standard errors) for different time series length. We notice
that the use of Hq and Cq with q = q∗

H and q = q∗
C (optimized case)

provides a greater overall accuracy when compared with the case
q = 1, regardless of the length n.

classification task. Figure 3(b) shows the same analysis with
longer time series (n = 212), where we note the narrowing of
the “diagonal stripe” of the confusion matrices. This happens
because the variance in the estimated values of Hq and Cq

decreases with the length n of the time series, enhancing the

performance of the classifiers in both scenarios. However, we
still observe that the accuracy is larger when employing the
optimized values Hq∗

H
and Cq∗

C
. In fact, Fig. 3(c) shows that

overall accuracy is always enhanced (regardless of n) when
considering the optimized causality plane in comparison with
usual causality plane.

B. Harmonic noise

For another numerical application, we consider times series
generated from the harmonic noise [42]. This stochastic
process is a generalization of the Ornstein-Uhlenbeck process
[43] and can be defined by the following system of Langevin
equations [42]:

dy

dt
= s,

ds

dt
= −�s − �2y +

√
2ε �2ξ (t), (12)

where ξ (t) is a Gaussian noise with zero mean, 〈ξ (t)〉 = 0
(here 〈. . . 〉 stands for ensemble average) and uncorrelated,
〈ξ (t)ξ (t ′)〉 = δ(t − t ′). That is, a harmonic oscillator driven
by a white noise. This noise has an oscillating correlation
function given by [42]

〈y(t)y(t + τ )〉 = ε�2

�
exp

(
− �

2
τ

)

×
[

cos(ωτ ) + �

2ω
sin(ωτ )

]
, (13)

where

ω =
√

�2 − (�/2)2 (14)

is the frequency of oscillation. In practical terms, this noise is
a mixture of random and periodic behaviors. Notice that the
Ornstein-Uhlenbeck process is recovered in the limit � → ∞
and � → ∞, while the ratio �/�2 remains fixed [for this case,
〈y(t)y(t + τ )〉 ∼ exp(−τ )].

In order to produce time series from the harmonic noise,
we integrate the system of equations (12) by using the Euler
method with a step size dt = 10−3 [an approach that produces
a good agreement between the exact correlation function of
Eq. (13) and the numerical results] up to maximum integration
time of 1320 and for particular values of parameters �, �, and
ε. In particular, we first investigate the role of the frequency ω

on the form of the q-complexity-entropy curve. To do so, we
choose ε = 1, � = 0.05, and several values of ω ranging from
1 to 60 [� is obtained from Eq. (14)]. For these parameters, the
shape of the correlation function is similar to an underdamped
simple harmonic motion. Figure 4 shows some q-complexity-
entropy curves for the embedding dimension d = 3. We note
that all curves form loops and the broader the loop, the smaller
the value of ω. Also, the largest contrasts among the values of
ω occur around the regions of minimum entropy and maximum
complexity (as indicated by the insets). The curves are strongly
overlapped for very small or very large values of q. We further
observe that values of the complexity for q = 1 (black dots in
the first inset) practically do not change with ω.

Figures 4(b) and 4(c) depict the individual behavior of Hq

and Cq versus q (now for more values of ω), where the insets
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FIG. 4. Dependence of the entropy Hq and complexity Cq on
the parameter q for the harmonic noise: changes with the frequency
parameter ω. Panel (a) shows the q-complexity-entropy curves with
embedding dimension d = 3, � = 0.05, ε = 1, and some values of
the parameter ω (shown in the plot). The values of q are increasing
(from q = 0+ to 1000 in size steps of 10−4) in the clockwise direction.
The two insets highlight the regions of the causality plane where the
entropy reaches a minimum (q = q∗

H , indicated by cross markers)
and the complexity passes to its maximum value (q = q∗

C , indicated
by asterisk markers). The points (Hq , Cq ) for q = 1 are indicated by
black dots. Panel (b) shows the dependence of Hq on q for several
values of ω (indicated by the color code) and the inset highlights the
region where the minimums occur (q = q∗

H , indicated by black dots).
Panel (c) shows the dependence of Cq on q for several values of ω

[the same of panel (b)] and the inset highlights the region where the
maximums occur (q = q∗

C , indicated by black dots). Panels (d) and
(e) show the dependence of the extreme values of q (q∗

H and q∗
C) on the

frequency parameter ω (the markers are the average values over 100
realizations of the harmonic noise with maximum integration time of
1320 and step size of 10−3, and the error bars stand for 95% bootstrap
confidence intervals). We note that q∗

H monotonically increases with
ω in a relationship that is approximated by an exponential approach
to the value q∗

H = 0.867 (that is, q∗
H = 0.867 − 0.279e−0.018ω, as

indicated by the continuous line). We further notice that q∗
C decreases

with ω and that around ω = 16.5 there is a discontinuous behavior.
The continuous lines in this last plot are linear approximations to the
behavior of q∗

C .

show the form of these curves around their extreme values (that
are indicated by small dots). Finally, in Figs. 4(d) and 4(e) we
study the dependence of the extreme values q∗

H and q∗
C on the

parameter ω. We find that q∗
H monotonically increases with ω

in a relationship that can be approximated by an exponential
approach to the value q∗

H = 0.867. The shape of q∗
C is more

intriguing because it suddenly changes around the value ω ≈
16.5, a behavior that is similar to a phase transition in a bistable
system.

We further investigate the shape of the q-complexity-
entropy curves in a situation that is closer to a pure Ornstein-
Uhlenbeck process, that is, a process with a correlation
function that decays exponentially. For this, we fix ω = 10−4

and choose different values for �, ranging from close to zero up
to 104 [again ε = 1 and � is obtained from Eq. (14)]. The small
value of ω ensures that the oscillation period of the correlation
function [Eq. (13)] is much larger than the integration time.
Figure 5(a) shows some q-complexity-entropy curves for
the embedding dimension d = 3 and different values of �

ranging from 0.55 to 100. These curves form loops whose
broadness decreases as � increases; in fact, the form of these
curves is approaching a limit loop that is similar to the one
observed for the fractional Brownian motion with h = 1

2 .
Thus, the q-complexity-entropy curve can also distinguish
among different time series with short-range correlations.
Figures 5(b) and 5(c) show the individual behavior of Hq

and Cq versus q, where we find that the extreme values q∗
H

and q∗
C depend on �, as illustrated in Figs. 5(d) and 5(e). For

small values of �, q∗
H logarithmically increases with � up

to � ≈ 300, where it saturates around q∗
H ≈ 1.12. Similarly,

q∗
C logarithmically decreases with � up to � ≈ 1000, where

it saturates around q∗
C ≈ 2.53. These limit values for q∗

H

and q∗
C are very close to those obtained for the fractional

Brownian motion with h = 0.5 [a random walk, see Figs. 2(a)
and 2(b)].

C. Chaotic maps at fully developed chaos

We now focus on analyzing the shape of the q-complexity-
entropy curves for time series associated with chaotic pro-
cesses. To do so, we generate time series by iterating
eight chaotic maps: Burgers, cubic, Gingerbreadman, Henon,
logistic, Ricker, sine, and Tinkerbell. We set their parameters to
ensure a fully chaotic regime and iterate over 217 + 104 steps,
dropping the initial 104 steps for avoiding transient behaviors.
Also, for the two-dimensional maps (Burgers, Gingerbread-
man, Henon, and Tinkerbell), we have considered the squared
sum of the two coordinates. The definition of each map and
the parameters employed are given in Appendix C. Figure 6
shows the q-complexity-entropy curves for each map and for
the embedding dimensions between d = 3 and 6. Differently
from our previous results for noises, these curves do not form
loops for all embedding dimensions, showing that there are
permutations of πj that never appear in these time series.

For comparison, we also show in Fig. 6 some q-complexity-
entropy curves for the fractional Brownian motion and har-
monic noise, calculated from time series of the same length
used for the chaotic maps. For the fractional Brownian motion,
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FIG. 5. Dependence of the entropy Hq and complexity Cq on
the parameter q for the harmonic noise: changes with the damping
coefficient �. Panel (a) shows q-complexity-entropy curves with
embedding dimension d = 3, ω = 10−4, ε = 1, and for some values
of the parameter � (shown in the plot). The values of q are increasing
(from q = 0+ to 1000 in size steps of 10−4) in the clockwise direction.
The black dots indicate the points (Hq , Cq ) for q = 1, cross markers
for q = q∗

H , and asterisk markers for q = q∗
C . Panel (b) shows the

dependence of Hq on q for several values of � (indicated by the
color code), where the black dots indicate the values of q = q∗

H

that minimize Hq . Panel (c) shows the dependence of Cq on q for
several values of � [the same of panel (b)], where the black dots
indicate the values of q = q∗

C that maximize Cq . Panels (d) and (e)
show the dependence of the extreme values of q (q∗

H and q∗
C) on the

damping parameter � (the markers are the average values over 100
realizations of the harmonic noise with maximum integration time of
1320 and step size of 10−3, and the error bars stand for 95% bootstrap
confidence intervals). We note that q∗

H logarithmically increases with
� up to � ≈ 300 [q∗

H = 0.73 + 0.07 ∗ ln(�), as indicated by the
continuous line], where it saturates around q∗

H ≈ 1.12 (continuous
line). We further notice that q∗

C logarithmically decreases with � up to
� ≈ 1000 [q∗

C = 5.70 − 0.47 ∗ ln(�), as indicated by the continuous
line], where it saturates around q∗

C ≈ 2.53 (continuous line).

loops are observed for all values of d and h; however, for the
harmonic noise there are some open q-complexity-entropy
curves (when ω = 10−3 and � = 0.55 or 1.30), indicating that
this noise presents forbidden permutations, even for time series

of length 217. As reported by Rosso et al. [35,36] and Carpi
et al. [37] for the fractional Brownian motion, we expect the
number of forbidden permutations to vanish with the length of
the time series, and loops should appear for longer time series.
For instance, we find that the curves for the harmonic noise
shown in Fig. 6 become loops for time series 1000 times longer,
which does not happen for the chaotic maps. Thus, the shape
of the q-complexity-entropy curve (closed or open) can be
used as an indicative of chaos (open curves) or stochasticity
(closed curves). Another characteristic that can distinguish
between chaotic and stochastic time series is the existence of
a minimum value for the normalized entropy Hq . We note that
a minimum value exists in all time series from harmonic and
fractional noise for 3 � d � 6, which does not happen for the
chaotic maps (Hq → 1 monotonically for most d values).

D. Logistic map

Still on chaotic processes, we investigate the logistic map
in more detail. This map is a quadratic recurrence equation
defined as [44]

yk+1 = a yk(1 − yk), (15)

where a is a parameter whose values of interest are in the
interval 0 � a � 4 (for which 0 � yk � 1). Depending on a,
this map can exhibit simple periodic behavior (e.g., a = 3.05),
stable cycles of period m (e.g., m = 4 for a = 3.5 and m = 8
for a = 3.55), and chaos (most values of a > 3.569 945 67 . . .

and a = 4).
This map is particularly interesting for our study because

we can find the exact expression of the q-complexity-entropy
curve when d = 3 and a = 4. Amigó et al. [31–34] have shown
that the list {yk,yk+1,yk+2} always corresponds to the ordinal
pattern {0,1,2} when 0 < yk < 1

4 . Similarly, the ordinal pattern

{0,2,1} occurs for 1
4 < yk < 5−√

5
8 , {2,0,1} for 5−√

5
8 < yk <

3
4 , {1,0,2} for 3

4 < yk < 5+√
5

8 , {1,2,0} for 5+√
5

8 < yk < 1,
and the ordinal pattern {2,1,0} never appears. Combining
these results with the fact that the probability distribution
of yk is a beta distribution [45], ρ(y) = [π

√
y(1 − y)]−1, we

can find the probability distribution P = {pj (πj )}j=1,...,d! by
integrating the beta distribution over each one of the previous
intervals of yk [for instance, the probability associated with the
pattern {0,1,2} is

∫ 1/4
0 ρ(y) dy = 1/3]. These integrals yield

P = {1/3,1/15,4/15,2/15,1/5,0} (in the same order that the
intervals were presented), from which we build the exact form
of the curve (Hq(P ),Cq(P )) for d = 3 and a = 4. The left
panels of Fig. 7 show a comparison between the numerical
results for a time series of length 217 (after dropping the initial
104 terms) and the exact form of the q-complexity-entropy
curve, where an excellent agreement is observed.

We further estimate the q-complexity-entropy curve for
other values of a, as shown in Fig. 7(b) for d = 4. In these
plots, we choose values of a for which the map oscillates
between two values (a = 3.05), four values (a = 3.50), and
for two chaotic regimes: one (a = 3.593) close to the onset of
chaos and another at fully developed chaos (a = 4). We note
that these different regimes of the logistic map correspond to
different curves. However, the values of H1 and C1 alone are
not enough for a complete discrimination; for instance, these
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FIG. 6. Dependence of the entropy Hq and complexity Cq on the parameter q for chaotic maps at fully developed chaos and stochastic
processes. Each plot shows the q-complexity-entropy curve for a chaotic map (first two rows) or a stochastic process (last two rows)
for embedding dimensions d = 3,4,5,6 (the different colors). The first two rows show the results for the chaotic maps: Burgers, cubic,
Gingerbreadman, Henon, logistic, Ricker, sine, and Tinkerbell at fully developed chaos (see Appendix C for more detail). The third row refers
to the fractional Brownian motion (Hurst exponent h is indicated in the plots) and the last row refers to the harmonic noise (parameters � and
ω are indicated in the plots). In each panel, the star markers indicate the points (Hq,Cq ) for q = 0+, while the open circles are the same for
q → ∞. We note that stochastic processes are mostly characterized by loops for all embedding dimensions, whereas chaotic maps usually form
open curves in the causality plane. We further note that, differently from stochastic processes, Hq of chaotic maps does not exhibit a minimum
value for all embedding dimensions.

values are practically the same for a = 3.50 and 3.593, while
the values for q ∼ 0 are very different for these two regimes.

IV. EMPIRICAL APPLICATIONS

Another important test for the q-complexity-entropy curve
is related to empirical time series. These time series usually
have some degree of randomness only associated with the
experimental technique employed to study a system, a feature
that is well known to hinder the discrimination between
experimental chaotic and stochastic signals [20]. Thus, in order
to test the q-complexity-entropy curve in an experimental
scenario, we first consider two empirical time series of
well-known origin: the chaotic intensity pulsations of a laser
[46] and the fluctuations of crude oil prices. The chaotic time
series has length n = 9093 and is freely available in Ref. [47],
whereas the crude oil prices refer to daily closing spot price of

the West Texas Intermediate from January 2, 1986 to July 10,
2012 (freely available in Ref. [48]). The results are shown
in Figs. 8(a) and 8(b). We observe that the shape of the
curve for the laser intensity is similar to those reported for
chaotic maps, that is, it forms a loop only for d = 3 (such as
the Burgers map), while for higher embedding dimensions the
curve is open. On the other hand, the curves for price time
series form loops with a shape that resembles those of the
fractional Brownian motion. We further study a time series
of the monthly smoothed sunspot index, whose stochastic
or chaotic nature is still debated [49–55]. By analyzing the
13-month smoothed monthly sunspot number from 1749 to
2016 (n = 3202, freely available in Ref. [56]), we have built
the q-complexity-entropy curves shown in Fig. 8(c). We note
that the curve is closed for d = 3 and open for d = 4 and
5, showing a minimum value for Hq for the three values of
d; moreover, the shapes of the curves are similar to those of
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FIG. 7. Dependence of the entropy Hq and complexity Cq on
the parameter q for the logistic map. Panel (a) shows a comparison
between the values Hq and Cq (as well as their dependence on q)
obtained from the simulations and the exact results for the logistic
map with a = 4 and d = 3. Notice that a practically perfect agreement
is found. Panel (b) shows the q-complexity-entropy curve and the
dependence of Hq and Cq on q for d = 4 and four values of the
parameter a: a = 3.05 (oscillating behavior between two values), a =
3.50 (oscillating behavior among four values), a = 3.593 (chaotic
behavior), and a = 4 (fully developed chaos). We note that the
complete differentiation among these regimes of the logistic map
is only possible when considering different values of q. In particular,
we observe that the points (Hq,Cq ) for q = 1 (indicated by the black
dots) are in about the same location for a = 3.50 and 3.593.

the harmonic noise. Thus, our results suggest that the sunspot
index can be described by an oscillatory behavior combined
with irregularities of stochastic nature. A similar description
was proposed by Mininni et al. [53,54], where a Van der Pol
oscillator with a noise term was found to reproduce several
features of the sunspot index. Figure 8(d) shows the values
of q that optimize Hq and Cq (q∗

H and q∗
C) for each system.

For d = 4 and 5, we note that q∗
H is substantially smaller

for the laser intensities than the values observed for the two
other systems (which are very similar). This agrees with the
results observed in Fig. 6, where we verified that Hq does not
have a minimum value for all embedding dimensions in the
case of chaotic maps (which corresponds to q∗

H → 0). The
price dynamics presents the smallest values of q∗

C , followed
by the laser intensities and the sunspots index (respectively),
indicating that q∗

H and q∗
C are associated to different dynamical

scales of these systems.
Next, we test if the q-complexity-entropy curve can

improve the discrimination of physiological signals of healthy
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FIG. 8. Dependence of the entropy Hq and complexity Cq on
the parameter q for empirical time series. Panel (a) shows the
q-complexity-entropy curve for the chaotic intensity pulsations of
a single-mode far-infrared NH3 laser. Panel (b) shows the curves
for crude oil prices (daily closing spot price of the West Texas
Intermediate from January 2, 1986 to July 10, 2012), and panel (c)
for the monthly smoothed sunspots index (from 1749 to 2016). In
all panels, the different colors refer to the embedding dimensions
(d = 3,4,5), the star markers indicate the points (Hq,Cq ) for q = 0+,
while the open circles are the same for q → ∞. Also, the gray dots
indicate the points (Hq , Cq ) for q = 1, cross markers for q = q∗

H ,
and asterisk markers for q = q∗

C . We note that causality plane for the
laser intensity is similar to those reported for chaotic maps, while the
crude oil prices and sunspot index have a behavior similar to those
reported for noisy time series (see Fig. 6). (d) Extreme values q∗

H and
q∗

C obtained for each system and d = 3,4,5 (different bar colors).

subjects and patients with congestive heart failure. In
particular, we investigate time series of the interbeat intervals
from 46 healthy subjects (age = 65.9 ± 4.0, n = 106 235 ±
10 900) and 15 patients (age = 69.7 ± 6.4, n = 109 031 ±
12 826) with severe congestive heart failure (NYHA class III).
All time series are made freely available by the PhysioNet
web page [57,58]. Figure 9(a) shows the average curves of
all healthy subjects and patients, where loops are found for
both conditions. However, the loop is broader for patients than
for healthy subjects, which is compatible with the fact that
the Hurst exponents of these time series are usually larger
for patients than for healthy subjects [59]. We also verify
whether the values of Hq∗

H
and Cq∗

C
, in comparison with H1

and C1, can enhance the differentiation among time series
from healthy subjects and patients in a classification task.
To do so, we proceed as in the fractional Brownian motion
case, that is, we train a k nearest neighbors algorithm in
a threefold cross-validation strategy. Our results show that
optimized values provide a greater accuracy when compared
with the usual values for q = 1 (≈80% against ≈76%), as
shown in Fig. 9.

Finally, as a last application, we consider a time series
related to the Earth’s magnetic activity: the disturbance storm
time index (DST). This index reflects the average change
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FIG. 9. Distinguishing between the interbeat intervals of healthy
subjects and patients with congestive heart failure based on the values
of Hq and Cq via the nearest neighbors algorithm. Panel (a) shows
the causality plane (for the embedding dimension d = 3) evaluated
from heart rate time series of 15 patients (age = 69.7 ± 6.4) with
severe congestive heart failure (NYHA class III, gray curve) and
from the time series of 46 healthy subjects (age = 65.9 ± 4.0, green
curve). The continuous lines are the average values of Hq and Cq

over all subjects in each group and the shaded areas are the standard
error of the mean values. Panel (b) shows the accuracy of the nearest
neighbors algorithm (fraction of correctly classified subjects) when
employing the optimized values of Hq and Cq (q = q∗

H and q = q∗
C ,

blue bar) and when using the values of Hq and Cq for q = 1 (usual
case, red bar). The error bars are 95% confidence intervals calculated
via cross validation. We notice that the optimized values of Hq and
Cq provide a greater accuracy when compared with the usual case
(≈80% against ≈76%).

in the Earth’s magnetic field based on measurements of the
equatorial ring current from a station network located along
the equator on the Earth’s surface. The injection of energetic
ions from the solar wind into the ring current produces a
magnetic field that (at the equator) is opposite to the Earth’s
field, often resulting in a sharp decreasing of the DST index
and defining a geomagnetic storm [60]. Figure 10(a) shows the
evolution of the DST index (hourly resolution) from January
1, 1989 to May 24, 1989 based on data freely available by
the World Data Center for Geomagnetism [61]. During this
period, a great geomagnetic storm occurred (the March 13,
1989 geomagnetic storm [62]), making the DST as lower
as −600 nT. In order to verify if the q-complexity-entropy
curve can distinguish between the different regimes present in
the DST index, we segment the data of Fig. 10(a) into time
series of 18 days (n = 432) and calculate the curves for each
segment with d = 3. Figure 10(b) shows that all curves are
characterized by loops of different broadness. In particular,
the period just after the beginning of the storm is characterized
by the broadest loop, whereas the next data segment has the
narrowest loop. We further note that, after the storm, the curve
width is progressively restored to a shape similar to the one
observed before the storm, reflecting the recovering dynamics
of a geomagnetic storm [60]. We find that the values of q

that optimize Hq (q∗
H ) are close to 1 [Fig. 10(c), upper panel]

and that they are not efficient for identifying the geomagnetic
storm. However, the values of q that optimize Cq (q∗

C) are
very different from 1 [Fig. 10(c), bottom panel] and capable
of identifying the geomagnetic storm (notice that q∗

C ≈ 2.85
during the geomagnetic storm, and q∗

C < 2.75 in all other
periods). We also study the q-complexity-entropy curves for
shuffled versions of each time series segment, as shown in
Fig. 10(d). After shuffling, the loops are very narrow, and

FIG. 10. Dependence of the entropy Hq and complexity Cq on
the parameter q for the Earth’s magnetic activity: changes during a
geomagnetic storm. Panel (a) shows the hourly time series of the
disturbance storm time index (DST, a measure of the Earth magnetic
activity) from January 1, 1989 to May 24, 1989 (144 days). Within
this period, a severe geomagnetic storm struck Earth on March 13,
1898, when the DST dropped to about −600 nT. The time series is
segmented in 8 periods (indicated by different colors) of 18 days
and the period containing the geomagnetic storm is plotted in black.
Panel (b) shows the q-complexity-entropy curves evaluated for each
18-day period for the embedding dimension d = 3. The gray dots
indicate the points (Hq , Cq ) for q = 1, cross markers for q = q∗

H , and
asterisk markers for q = q∗

C . We notice that during the geomagnetic
storm the q-complexity-entropy curve has the smallest value for the
entropy Hq and largest value for the complexity Cq (that is, a broader
loop). It is also worth mentioning that the period just after the storm
is characterized by the shortest loop. (c) Extreme values q∗

H and
q∗

C obtained for time series segment. (d) The q-complexity entropy
curves evaluated for shuffled versions of each 18-day period. The
continuous lines are the average values of curves over 100 realizations
and the shaded areas indicate 95% bootstrap confidence intervals. The
color code employed in each plot is the same used for the DST time
series.

no significant differences among the curves are observed. It
is worth noting that the fluctuations in the values of Cq are
not much larger than 10−3. Assuming that the fluctuations in
the original time series would have the same magnitude, this
result suggests that the difference observed in Fig. 10(b) is
statistically significant.

V. SUMMARY AND CONCLUSIONS

We have proposed an extension to the complexity-entropy
causality plane of Rosso et al. [14] by considering a monopara-
metric generalization of the Shannon entropy (Tsallis q

entropy, Hq) and of the statistical complexity (q complexity,
Cq). Our approach for characterizing time series is based on the
parametric representation of the ordered pairs (Hq(P ),Cq(P ))
on q > 0, which we have called the q-complexity-entropy
curve. In a series of applications involving numerically
generated and empirical time series, we have shown that
the q-complexity-entropy curves can be very useful for
characterizing and classifying time series, outperforming the
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original approach in several cases. In particular, the optimized
version of the complexity-entropy causality plane (when using
the values of H ∗

q and C∗
q ) showed to be more efficient

for classifying time series from the fractional Brownian
motion and for distinguishing between healthy subjects and
patients with congestive heart failure. These curves were
also able to distinguish among different periodic behaviors
of the logistic map as well as different parameters of
the harmonic noise. Regarding the issue of distinguishing
between chaotic and stochastic processes, we have shown
that the q-complexity-entropy curves related to stochastic
processes are usually characterized by loops, while chaotic
processes display open curves, a feature that is associated
with the existence of forbidden ordinal patterns in the time
series.

Thus, we believe the q-complexity-entropy curves can
be employed in a wide range of applications as a tool for
characterizing time series. Naturally, other generalizations of
the Shannon entropy could be employed in place of the Tsallis
q entropy, eventually leading to an efficient tool. One of these
possibilities is the Rényi α entropy [63]. For this case, it is
possible to show that the normalized Rényi α entropy [the
analogous of Eq. (8)] is a monotonically decreasing function of
the entropic parameter α; therefore, all α-complexity-entropy
curves will be open and the distinction between chaos and noise
based on the formation of open or closed curves is not possible.
This fact does not eliminate other features of the α-complexity-
entropy curves of being used for distinguishing chaos and
noise as well as for classifying and characterizing time series.
For instance, in a preliminary study we have observed that
concavity properties of the α-complexity-entropy curves can
also be used for this task. However, a detailed study of other
entropic forms and a comparison among them is outside the
scope of this work.
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APPENDIX A: LIMITING EXPRESSIONS FOR Hq AND Cq

WHEN q → 0+ AND q → ∞
Theorem. Let P = {pj }j=1,...,d! be a probability distribu-

tion, r be the number of nonzero components of P , and
γ = r−1

d!−1 . The following statements are true:
(1) if r = 1, then Hq(P ) = 0 and Cq(P ) = 0 for any

q > 0;
(2) Hq(P ) → γ as q → 0+;
(3) Cq(P ) → γ (1 − γ ) as q → 0+;
(4) if r > 1, then Hq(P ) → 1 as q → ∞;
(5) if r > 1, then Cq(P ) → 1 − γ as q → ∞.
Proof.
(1) This follows immediately from the definition of Hq and

Cq , given in Eqs. (8) and (9).

(2) For any x > 0, it is clear that lnq x → x − 1 as q → 0+.
Using this fact in Eq. (8), we obtain

lim
q→0+

Hq(P ) = 1

d! − 1

d!∑
i=1
pi �=0

pi

(
1

pi

− 1

)
= r − 1

d! − 1
.

(A1)

(3) It follows immediately from Eq. (11) that D∗
q → d!−1

4d!
as q → 0+. From Eq. (10) we have

lim
q→0+

Dq(P,U ) = −1

2

d!∑
i=1
pi �=0

pi

(
pi + 1/d!

2pi

− 1

)

− 1

2

d!∑
i=1

1

d!

(
pi + 1/d!

2/d!
− 1

)

= −1

4

d!∑
i = 1
pi �= 0

(
1

d!
−pi

)
− 1

4

d!∑
i=1

(
pi − 1

d!

)

= 1

4

(
1 − r

d!

)
. (A2)

Using these results and item (2), we obtain from Eq. (9) that

lim
q→0+

Cq(P ) =
(

4d!

d! − 1

)(
d! − r

4d!

)(
r − 1

d! − 1

)

=
(

1 − r − 1

d! − 1

)(
r − 1

d! − 1

)
. (A3)

(4) For q > 1, Eq. (8) can be written as

Hq(P ) =
d!∑

i=1

pi − p
q

i

1 − (d!)1−q
. (A4)

Then, if r > 1, Hq(P ) → ∑d !
i=1 pi = 1 as q → ∞.

(5) We have from Eq. (11) that

D∗
q = Kq

(1 − q)22−q
, (A5)

where

Kq = 22−qd! − (1 + d!)1−q − d!(1 + 1/d!)1−q − d! + 1

d!
.

(A6)

We note immediately that Kq → (1 − d!)/d! as q → ∞. We
have from Eq. (10) that, for q > 1,

Dq(P,U )

D∗
q

= −21−q

Kq

⎡
⎢⎢⎢⎣

d!∑
i=1
pi �=0

pi

(
1

2
+ 1

2pid!

)1−q

+
d!∑

i=1

1

d!

(
pid!

2
+ 1

2

)1−q

− 2

⎤
⎥⎥⎥⎦
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= − 1

Kq

⎡
⎢⎢⎢⎣

d!∑
i=1
pi �=0

pi

(
1 + 1

pid!

)1−q

+
d!∑

i=1

1

d!
(pid! + 1)1−q − 22−q

⎤
⎥⎥⎥⎦. (A7)

Hence, for r > 1,

lim
q→∞

Dq(P,U )

D∗
q

=
(

d!

d! − 1

)(
d! − r

d!

)

= 1 − r − 1

d! − 1
. (A8)

Therefore, using these results and item (4) on Eq. (9),
Cq(P ) → 1 − γ as q → ∞ whenever r > 1.�

APPENDIX B: ORDINAL PROBABILITIES FOR THE
FRACTIONAL BROWNIAN MOTION

By following the results of Bandt and Shiha [38], we can
write the ordinal probabilities (for the embedding dimension
d = 3) of the fractional Brownian motion with Hurst exponent
h as

p({0,1,2}) = α

2
,

p({0,2,1}) = 1 − α

4
,

p({1,0,2}) = 1 − α

4
,

p({2,0,1}) = 1 − α

4
,

p({1,2,0}) = 1 − α

4
,

p({2,1,0}) = α

2
,

where

α = 2

π
arcsin(2h−1). (B1)

Similarly, for the embedding dimension d = 4, we have [38]

p({0,1,2,3}) = 1

8
+ 1

4π
(arcsin α1 + 2 arcsin α2),

p({0,1,3,2}) = 1

8
+ 1

4π
(arcsin α7 − arcsin α1 − arcsin α5),

p({0,2,1,3}) = 1

8
+ 1

4π
(arcsin α4 − 2 arcsin α5),

p({0,2,3,1}) = 1

8
+ 1

4π
(arcsin α3 + arcsin α8 − arcsin α5),

p({0,3,1,2}) = 1

8
+ 1

4π
(arcsin α7 − arcsin α4 − arcsin α5),

p({0,3,2,1}) = 1

8
+ 1

4π
(arcsin α6 − arcsin α8 + arcsin α2),

p({1,0,2,3}) = p({0,1,3,2}),
p({1,0,3,2}) = 1

8
+ 1

4π
(2 arcsin α6 + arcsin α1),

p({1,2,0,3}) = p({0,3,1,2}),
p({1,2,3,0}) = p({0,3,2,1}),
p({1,3,0,2}) = p({0,2,3,1}),
p({1,3,2,0}) = p({0,2,3,1}),
p({2,0,1,3}) = p({0,2,3,1}),
p({2,0,3,1}) = p({0,3,2,1}),
p({2,1,0,3}) = p({0,3,2,1}),
p({2,1,3,0}) = p({0,3,1,2}),
p({2,3,0,1}) = p({1,0,3,2}),
p({2,3,1,0}) = p({0,1,3,2}),
p({3,0,1,2}) = p({0,3,2,1}),
p({3,0,2,1}) = p({0,3,1,2}),
p({3,1,0,2}) = p({0,2,3,1}),
p({3,1,2,0}) = p({0,2,1,3}),
p({3,2,0,1}) = p({0,1,3,2}),
p({3,2,1,0}) = p({0,1,2,3}),

where

α1 = 1 + 32h − 22h+1

2
,

α2 = 22h−1 − 1,

α3 = 1 − 32h − 22h

2 × 6h
,

α4 = 32h − 1

22h+1
,

α5 = 2h−1,

α6 = 22h − 32h − 1

2 × 3h
,

α7 = 32h − 22h − 1

2h+1
,

α8 = 22h − 1

3h
.

By using these values, we find the exact form of the distribu-
tion P = {p(πj )}j=1,...,d! and the q-complexity-entropy curve
(Hq(P ),Cq(P )).

APPENDIX C: DEFINITION OF THE EIGHT CHAOTIC
MAPS EMPLOYED IN OUR STUDY

The Burgers map is defined as

xk+1 = axk − y2
k ,

yk+1 = byk + xkyk,

and we have chosen a = 0.75 and b = 1.75. The time series
that we have analyzed is (xk + yk)2 with x0 = −0.1 and
y0 = 0.1.
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The cubic map is defined as

xk+1 = axk

(
1 − x2

k

)
,

and we have chosen a = 3 and x0 = 0.1.
The Gingerbreadman map is defined as

xk+1 = 1 − yk + |xk|,
yk+1 = yk,

and we have chosen x0 = 0.5 and y0 = 3.7. The time series
that we have analyzed is (xk + yk)2.

The logistic map is defined as

xk+1 = axk(1 − xk),

and we have chosen a = 4 and x0 = 0.1.
The Hénon map is defined as

xk+1 = 1 − ax2
k + yk,

yk+1 = bxk,

and we have chosen a = 1.4 and b = 0.3. The time series that
we have analyzed is (xk + yk)2 with x0 = 0 and y0 = 0.9.

The Ricker map is defined as

xk+1 = axk e−xk ,

and we have chosen a = 20 and x0 = 0.1.
The sine map is defined as

xk+1 = a sin(πxk),

and we have chosen a = 1 and x0 = 0.1.
The Tinkerbell map is defined as

xk+1 = x2
k − y2

k + axk + byk,

yk+1 = 2xkyk + cxk + dyk

and we have chosen a = 0.9, b = −0.6, c = 2.0, and d = 0.5.
The time series that we have analyzed is (xk + yk)2 with x0 =
−0.1 and y0 = 0.1.
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