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Representation of the direct correlation function of the hard-sphere fluid
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An accurate representation of the structural pair correlation functions of the hard sphere (HS) fluid up to
the freezing density is proposed which combines the pole expression for the total correlation function h(r),
the Ornstein-Zernike equation, and molecular dynamics (MD) computer simulation data. In the scheme, h(r) is
expressed in terms of a set of pole parameters, which reveals how the tail of the Fourier transform of h(r) contains
information on the discontinuities in the derivatives of the direct correlation function (DCF). This formulation
leads to a DCF expressed as the sum of a numerically obtainable part and an analytic part which consists of
elementary integral terms, some of which are found to give rise to the discontinuities. An exact formula for the
magnitude of these discontinuities is derived, which indicates that there is a particular density (ρ ∼= 0.133) below
which the magnitude of the discontinuities decreases with increasing order of the derivative. With the accurate
MD simulation data the set of parameters that specifies h(r) was determined. These can be used to obtain the
different structural functions of the HS fluid, and following the calculation stages of the pole structure scheme
the DCF is obtained. From this route to the DCF the second pole of the HS fluid can be determined and the
non-negligible role of the “out of core” part of the DCF at high densities is revealed. The density-dependent
separation range where the two pole approximation represents well the h(r) has been determined.
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I. INTRODUCTION

Among the various properties of the liquid phase, the class
of pair molecule structural correlation functions (SCFs) are of
particular importance. The basic structural characterization of
a simple homogeneous liquid is given by the radial distribution
function (RDF) or g(r), where r is the interparticle separation.
This function can be obtained from the static structure factor
from x-ray and neutron scattering experiments [1,2]. The RDF
plays a fundamental role in statistical mechanical theories of
liquids and, assuming the interactions between the molecules
are pairwise additive, a wide range of thermodynamic proper-
ties can be expressed in terms of g(r) [3], knowledge of which
therefore leads to their calculation. Also, this function is a
useful means of describing short-range order in amorphous
solids [4–6].

In view of its fundamental importance it is no surprise
that g(r) has been the subject of numerous investigations for
many years. The primary practical theoretical methods used
to obtain the SCF are computer simulation and the integral
equation liquid state theories based on the Ornstein-Zernike
(OZ) relation [7],

h(r12) = c(r12) + ρ

∫
h(r13)c(r23) dr3, (1)

where ρ is the number density, c(r) is the direct correlation
function (DCF), and h(r) = g(r) − 1 is the total correlation
function. The subscripts, 1,2,3 denote the positions of three
molecules, where the separation between particles, i and
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j is rij =| ri − rj |. The DCF is the second derivative
of the intrinsic free energy functional with respect to ρ

[7], but is often defined through its inclusion in Eq. (1).
The DCF represents that part of h(r) which results from
the direct correlation between particles, 1 and 2, and is
connected with the isothermal compressibility via the exact
relation, κ = 1 − ρ

∫
drc(r). There are other SCFs that can

be expressed in terms of the h(r) and c(r) functions which
have also attracted interest. These include the indirect correla-
tion function, s(r) = h(r) − c(r), the bridge function, b(r) =
ln[h(r) + 1] + φ(r) − h(r) + c(r), and the cavity distribution
function, y(r) = exp[h(r) − c(r) + b(r)]. The φ(r) here is
the interaction pair potential between particles in the fluid
expressed in units of kBT , where T is the temperature and kB

is Boltzmann’s constant.
It is noteworthy that the basic functions, g(r) and c(r), are

still only approximately known even for the simplest of model
particles. Computer simulation, usually Monte Carlo (MC) or
molecular dynamics (MD), gives numerical values for g(r)
within a finite radius rc, but in practice the data generated
are always within a certain level of precision, and the long-
range behavior or “tail” where r > rc, is not accessible directly
from the simulation, which means, for example, that the small
wave vector region (q → 0) cannot be obtained without further
approximation and assumptions. The integral equation liquid
state theories can provide information on the tail but yield
g(r) at a more approximate level because solution of the OZ
equation is subject to an imposed closure relation which can
only ever be an approximation [7]. Even in this case, some
aspects of the SCF remain incomplete even in the case of such
a basic system as the hard sphere (HS) fluid.

The HS fluid constitutes one of the most fundamental
examples of a model many-body system. The HS interaction
mimics the extremely strong repulsion that atoms experience
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at close distance and is defined as the potential between two
impenetrable spheres that cannot overlap i.e., φ(r < σ ) =
∞, φ(r > σ ) = 0, where σ is the HS diameter. Distance in
this work is expressed in units of σ , and it is set equal to 1.
The HS potential is the most basic representation of particles
with excluded volume interactions, and as such has been
used widely as the basis of theoretical studies of the physical
properties and equation of state of a wide range of systems
such as simple liquids, glasses, colloidal particles, and granular
materials [8,9]. The HS model has been the foundation of many
statistical mechanical models of the liquid state.

In this work we propose a framework which allows us to
obtain an accurate representation of the SCF of the HS fluid.
The approach combines the residue theorem analysis, accurate
simulation data, and the OZ equation. Our aim is to obtain a
more comprehensive representation and bring to light some
new features of the HS fluid SCF. In the scheme adopted
the contribution from the tail part is considered without any
approximate closures, and its key role in providing an accurate
description of the SCF is established. The focus here is on
the DCF, which is considered to be the most inaccessible
example of the different SCFs, and has perhaps surprisingly
been the subject of relatively few investigations as a property
in its own right. This situation may have arisen because the
analytical formula for it from the Percus-Yevick approximation
(PY), cPY (r) [10–13], has been available for many decades
and is widely considered to be one of the most important
results in the history of statistical mechanical liquid state
theory. Also, some approximate analytical formulas for c(r)
have been proposed, mainly to overcome limitations of the
PY theory. Tejero and López de Haro [14] derived analytic
approximations for c(r) based on a generalization of the
PY result using the Rational Function Approximation, which
circumvents the thermodynamic consistency problem [15,16].
Fukudome obtained improvements on the PY result for c(r)
derived from an extended version of scaled particle theory
[17]. A powerful framework for determining the DCF is
classical density functional theory. In particular, Rosenfeld’s
fundamental measure theory [18] and the White Bear II version
of it provides accurate results for the DCF [19,20].

There have been several attempts to extract the HS c(r)
directly from the OZ equation using simulation data, often
supplemented by extra parametrization of some parts of g(r)
or c(r). The results obtained in this way by Groot et al. with MC
[21] can be considered to be the first that showed convincingly
the nontrivial behavior of c(r) over a broad range of densities
and r . These results were used by others to represent the HS
c(r) to test new methods and approximations of various liquid
theories [14,22,23].

There have been a number of significant developments in
the use of the HS c(r). A method based on a pole analysis
of the OZ equation has been developed [24–27] to study the
decay of the pair correlation functions in simple liquids. It was
shown by using the residue theorem of complex analysis how
a pole structure determines the asymptotic behavior of g(r). In
particular, the method enables the crossover from monotonic to
damped oscillatory decay or the so-called Fisher-Widom (FW)
line [28] to be determined. The asymptotic decay of several
model fluids (and their mixtures), e.g., the Lennard-Jones, HS
[23,27], and Yukawa liquids [29], has been made using the

pole approach. Also, it has been used to investigate the decay
of structural correlations in the one-component plasma [30]
and inverse power fluid [31]. Basically, the scheme requires
c(r) as input, and usually studies of the asymptotic decay have
employed its approximate representation. In the case of the HS
fluid the PY approximation was considered the most suitable
one, and the pole structure in this approximation has been
the subject of several studies [32–34]. The first study of the
asymptotic decay exploiting simulation data was performed
by Dijkstra and Evans [23]. The numerical procedure was
restricted to the calculation of the two leading poles, and it
was shown that the two-pole formula based on the leading
complex and purely imaginary poles captures well the FW
line. In this work the pole scheme is used to go beyond the
asymptotic analysis and treat formally the RDF of the HS fluid
as represented by a set of poles.

Extensive studies determining the bridge function of HSs
have been performed using accurate simulation data and
the OZ equation [35,36]. The calculated b(r > 1; ρ), for a
number of densities within the whole fluid range (including the
metastable region) up to ρ = 1.02 are available numerically
and as functional fits [36]. From those studies the DCF for the
distance range r > 1 can be estimated. At low densities, the
SCF can be expressed as an expansion in density, where it is
feasible to calculate the expansion coefficients and functions
by diagrammatic techniques. An expansion of the bridge and
radial distribution function up to the sixth order in density
was obtained by Kolafa and Labík [37]. The presence of
discontinuities in the higher derivatives of the corresponding
expansion functions and coefficients [i.e., En(r) and Hn(r)]
were discussed. In particular, it was shown that the finite
distance (r) range of the expansion functions caused a “jump”
or discontinuity in their (2k − 2)-th derivative at r = k, where
k = 1,2, . . .. This work is organized as follows. In Sec. II
the theory of the radial and direct distribution functions is
covered, focusing especially on the small and large wave vector
limits. In Sec. III MD computer simulation results are used to
compute these distribution functions. A summary of the main
conclusions of this work is given in Sec. IV.

II. THEORY

From the general properties of the c(r) and h(r) functions
it follows that for a wave vector q in the complex plane [24]
the following formula applies:

h(r) = 1

4π2ir

∫ +∞

−∞
dqqeiqr c(q)

1 − ρc(q)
, (2)

where c(q) denotes the Fourier transform of c(r). Any poles
at q = ω + iα are given by the zeros of the denominator,
1 − ρc(q) = 0, and from this equation, by equating real and
imaginary parts, the formulas [25]

4πρ

∫ ∞

0
drr2c(r)

sinh(αr)

αr
cos(ωr) = 1, (3)

4πρ

∫ ∞

0
drr2c(r) cosh(αr)

sin(ωr)

ωr
= 1, (4)
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are obtained. If c(r) is known and decays sufficiently rapidly,
the above equations provide a practical route to obtain the poles
[23,25,26]. The integral in Eq. (2) can be evaluated using the
residue theorem to give

h(r) =
∞∑
i=1

Ri

r
eiqi r , (5)

where qi = ωi + iαi is the ith pole, and Ri is the residue at
q = qi . In the case of the HS model the complex poles occur
only in conjugate pairs, so after summing conjugated poles,

h(r) =
∞∑
i=1

2Ai

r
e−αir sin(ωir + δi), (6)

is obtained, where Ai and δi are the amplitude and phase,
which can be calculated according to the formulas derived in
Refs. [23,25]. It follows directly from Eq. (6) that the rate
of decay of h(r) is determined by the exponential terms,
so at large r the dominant contribution comes only from
terms with the smallest α. Thus, to determine the asymptotic
behavior of the radial distribution function it is sufficient to
calculate [e.g., with Eqs. (3)–(4)] the leading pole, i.e., the
one which is closest to the real axis. For a given ρ, the set
{A1,α1,ω1,δ1,A2,α2,ω2,δ2, . . .} ≡ {X } completely represents
the h(r) and from the nature of the HS interaction it follows
that for any r < 1 the series must sum up to −1. So the final
representation of h(r) of the HS fluid in terms of the pole
structure or {X } is

h(r) =
{−1 for r < 1,∑∞

i=1
Ai

r
e−αir sin(ωir + δi) for r > 1,

(7)

where now Ai is used for 2Ai . It is noteworthy that the Fourier
transform of the above representation for h(r) is given by the
analytic expression

h(q) = −4π

q2

[
sin(q)

q
− cos(q)

]
+ 2π

q

∞∑
i=1

Aie
−αi

×
[
αi cos(δi + ωi − q) − (ωi − q) sin(δi + ωi − q)

α2
i + (ωi − q)2

− αi cos(δi + ωi + q) − (ωi + q) sin(δi + ωi + q)

α2
i + (ωi + q)2

]
.

(8)

A. Large q-limit

Next it is important to note that the large q-limit or tail of
the above h(q) [Eq. (8)] can be expressed (see Appendix A) in
the relatively simple form

htail(q) = cos(q)

[ ∞∑
n=1

Cn

q2n

]
+ sin(q)

[ ∞∑
m=1

Dm

q2m+1

]
. (9)

The Cn and Dm coefficients depend on the {X } set, and the
few first coefficients are given in Appendix A. It is also shown
in Appendix A that these coefficients are related and can be
expressed in terms of derivatives of the RDF at contact (i.e., at

r = 1), where

C1 = 6Z

ρ
, D1 = −4π

[
g(r) + dg(r)

dr

]
r=1

, (10)

C2 = −4π

[
2
dg(r)

dr
+ d2g(r)

dr2

]
r=1

,

D2 = −4π

[
3
d2g(r)

dr2
+ d3g(r)

dr3

]
r=1

, (11)

and Z = P/ρkBT − 1, P is the pressure. Thus, as seen from
Eqs. (10)–(11), the tail of the structure factor, S(q) = 1 +
ρh(q) contains considerable information about g(r) at contact.

Taking into account the OZ relation and that for large wave
vectors ρh(q) < 1, the expression, ctail(q) = htail(q)/[1 +
ρhtail(q)] = ∑∞

k=1(−ρ)k−1hk
tail(q), can be derived. Exploiting

the binomial formula, (a + b)k = ∑k
s=0

(
k

s

)
ak−sbs for the

hk
tail(q), the following formula for ctail(q) is obtained:

ctail(q) =
∞∑

k=1

(−ρ)k−1
k∑

s=0

(
k

s

)
cos(q)k−s

× sin(q)s
[ ∞∑

n=1

Cn

q2n

]k−s[ ∞∑
m=1

Dm

q2m+1

]s

. (12)

Finally, the part of the DCF produced by the tail of c(q) is

cA(r) = 1

2π2

∫ ∞

Q

dqq2ctail(q)
sin(qr)

qr

= 1

2π2r

∞∑
k=1

(−ρ)k−1
k∑

s=0

(
k

s

) ∫ ∞

Q

dqq sin(qr)

× cos(q)k−s sin(q)s
[ ∞∑

n=1

Cn

q2n

]k−s[ ∞∑
m=1

Dm

q2m+1

]s

,

(13)

where Q denotes an arbitrarily large wave vector. The DCF
is thus considered to be a sum of two components, c(r) =
cN (r) + cA(r), the analytically derived cA(r) part in Eq. (13),
and a numerically obtainable term,

cN (r) = 1

2π2

∫ Q

0
dqq2 h(q)

1 + ρh(q)

sin(qr)

qr
, (14)

with h(q) given in Eq. (8). Both cA(r) and cN (r) display
oscillations which are particularly noticeable near r = 0 and
r = 1. This effect is seen in Fig. 1, where an example of the
DCF, and its cA(r) and cN (r) parts are plotted near r = 1 for
two different Q values. Their relative contributions to c(r) as
well as their form is regulated by the Q value, but the sum is Q

independent, at least for some sufficiently large Q value (see
the bold line in Fig. 1). Therefore, cA(r), and consequently the
function, ctail(q) [or equivalently htail(q)] contain important
and necessary information which cannot be omitted in any
accurate representation of c(r).

In principle, the complete pole structure {X } would be
required to determine cA(r) and cN (r) completely. Although
it is expected that for distances r > 1, the series involved
in the expressions will converge sufficiently rapidly that a
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S. PIEPRZYK, A. C. BRAŃKA, AND D. M. HEYES PHYSICAL REVIEW E 95, 062104 (2017)

r
0.9 1 1.1 1.2

c(
r)

-4

-2

0

2

cN Q = 100
cN Q = 200
cA Q = 100
cA Q = 200
cWM = cA + cN

FIG. 1. The DCF (bold solid line) near the discontinuity at r = 1,
expressed as a sum of the analytically derived part cA(r) [see Eq. (13)]
and numerically obtained part cN (r) [see Eq. (14)] and determined
according to the scheme in Sec. III. Examples for two different Q

values are shown, denoted by solid and dashed thin lines. The HS
density is ρ = 0.75.

summation over all the terms is not required for an accurate
result. This issue is treated further in Sec. III. The expression
in Eq. (13) for cA(r) reveals some general features of the DCF.
As may be seen, cA(r) is composed of terms with integrals
of the type

∫ ∞
Q

dq sin(qr) cos(q)k−s sin(q)s/qL, where L is a
positive integer. The infinite number of such integrals may
be grouped into three categories, (a) integrals with s = 0, (b)
integrals with s = k, and (c) all the remaining ones (s �= k,
s �= 0). They are analyzed and discussed in Appendix B. The
main result obtained in Appendix B is that the integrals that
cause discontinuities in the DCF derivatives are identified.

It is shown in Appendix B that the discontinuities
come from an integral term of the form, I (r) = (r − a)L−1∫ ∞
Q

dq sin[q(r − a)]/qL, where a and L are positive integers
which emerge in the calculations of the terms with s = 0
or

(
k

0

)
type of integrals. The reason for the presence of

the discontinuities follows from the properties of the sine
integral special function [38], which causes the integral∫ ∞
Q

dq sin[q(r − a)]/q = π
2 | r − a |/(r − a)−Si[Q(r − a))]

where Si(x) = ∫ x

0 dt sin(t)/t , to have a jump of π at r = a

and I (r) to have a discontinuity in its (L − 1)-th derivative.
Our detailed analysis of all types of integrals involved

in Eq. (13) has shown that the leading discontinuities are
generated by the

(
k

0

)
integrals in which L = 2k − 1, i.e., by

terms of the form
∞∑

k=1

(−ρ)k−1Ck
1

∫ ∞

Q

dq
sin(qr) cos(q)k

q2k−1
. (15)

By the leading discontinuity we mean here a jump in the
(2k − 2)-th derivative at r = k, and that some other integrals
generate a discontinuity at r = k but in the higher than
(2k − 2)-th order derivatives of c(r). This result, obtained
with the pole structure approach, is significant because it
demonstrates that discontinuities in the (2k − 2)-th derivative
at r = k found for low densities by the diagrammatic method
[37] are also present at any HS fluid density. Moreover,
using Eq. (15), the magnitude of the jump in the leading

discontinuities can be evaluated from

�k = (3Z)k

2πρk
, (16)

which is an exact result that is not in the literature as far as
we are aware. Thus, the second, fourth, and sixth derivatives
have jumps of magnitude, �2 = 9Z2

4πρ
, �3 = 27Z3

6πρ
, and �4 =

81Z4

8πρ
at r = 2,3,4, respectively. At r = 1 we have the well-

known result �1 = 3Z
2πρ

in the c(r) function, i.e., in its 0-order
derivative. For Z > 1/3 the sequence of �k increases and
for Z � 1/3 decreases towards zero on increasing k. This
indicates that in the HS fluid a particular density exists at
ρc = 0.1327 (corresponding to the condition Z = 1/3 and Z
from [36]) such that for ρ < ρc the c(r) becomes a smoother
function. It would be interesting to relate ρc to a change in
a physical quantity, but this appears not to be a simple task.
In the limit ρ → 0 all discontinuities tend to zero as �k =
(2πρ)k−1/k, apart from �1 → 1, which gives the correct ideal
gas limit.

The analysis thus far shows that information about the
c(r) discontinuities is contained in the ctail(q) and cannot be
convincingly inferred from the numerical part Eq. (14) for
any finite Q value. Also we point out that in our analysis
we were not able to find terms generating discontinuities at
noninteger values of r , in particular at r = √

3, which was
reported by the diagrammatic approach to give a discontinuity
in the low-density expansion [37].

B. Small q-limit

It can be shown that for small q the expression in Eq. (8)
reduces to a polynomial in even powers of q, that is,

lim
q→0

h(q) = h(0) + h(2)q2 + h(4)q4 + · · · , (17)

where

h(0) = −4π

3

+ 4π

∞∑
i=1

Aie
−αi(

α2
i + ω2

i

)2

[
2αiωi cos(δi + ωi)

+α2
i ωi cos(δi + ωi) + ω3

i cos(δi + ωi)

+α2
i sin(δi + ωi) + α3

i sin(δi + ωi) − ω2
i sin(δi + ωi)

+αiω
2
i sin(δi + ωi)

]
. (18)

The higher order coefficients are similar in form but are more
cumbersome expressions. This first coefficient is also involved
in the long-wave limit of the static structure factor, S(0) =
1 + ρh(0), which can be obtained readily from an accurate
HS equation of state, Z = P/ρkBT − 1, exploiting the exact
relation, S(0) = [ρZ′ + Z + 1]−1.

It can be confirmed that for small q, the function, c(q) =
h(q)/[1 + ρh(q)] is even in q, and

lim
q→0

c(q) = c(0) + c(2)q2 + c(4)q4 + · · · , (19)

where the coefficients are functions of {X }. The above
expansion is a known feature of systems with a finite ranged
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interparticle interaction, and the coefficients are given by [27]

c(2n) = 4π (−1)n

(2n + 1)!

∫ ∞

0
drc(r)r2n+2. (20)

Thus, the c(2n) can be evaluated from the c(r) function or from
the corresponding set {X }, which provides a demanding test
of the accuracy and self-consistency of the DCF evaluation
procedure adopted here.

III. DETERMINATION OF THE SCF

Both h(r) and c(r) are discontinuous functions at r = 1 and
their exact representation by a series of continuous functions
requires an infinite number of terms in Eq. (7) or equivalently
the complete pole structure {X } needs to be included. For large
r separations only a few terms (or poles) with the smallest α

in Eq. (7) are required to obtain an accurate representation
of h(r). In general, for any specific separation, R > 1, there
exists a finite number of terms, M , which provides an accurate
result for h(r > R). The value of M depends on R, density,
and the required accuracy. For R close to unity, M becomes
very large, and in the limit R → 1 it tends to ∞.

For the above reasons, to obtain an accurate c(r), the
following analytic representation of h(r) in the form of two
functional parts is considered,

hWM (r)

=

⎧⎪⎨
⎪⎩

−1 for 0 < r < 1,
hW (r) = ∑W

i=1 bir
i for 1 < r < R,

hM (r) = ∑M
i=1

Ai

r
e−αir sin(ωir + δi) for r > R ,

(21)

where now {b1,b2, . . . ,bW } and {A1,α1,ω1,δ1,A2,α2,ω2,δ2,

. . . ,AM,αM,ωM,δM} are parameters we denote by {XWM}.
The form of hW (1 < r < R) is fairly arbitrary, but we seek
a rather simple function, the Fourier transform of which can
be obtained analytically. The polynomial form of hW (r) in
Eq. (21) is convenient in this respect and provides sufficient
flexibility in the next steps of the calculation. It is evident
that the final results should be as insensitive as possible to the
particular choice of W , R, and M values. Our tests suggest that
a good compromise here, for most densities, is when W , M

are in the range of approximately 10–15 and R = rmin, where
rmin is the position of the first minimum in the exact h(r).

Different physical conditions can be imposed on hWM (r)
and the following six have been applied in the scheme. These
are the continuity and minimum conditions,

hW (R) = hmin, hM (R) = hmin, (22)

∂hW (r)

∂r

∣∣∣∣
R

= 0,
∂hM (r)

∂r

∣∣∣∣
R

= 0, (23)

and the two thermodynamic relations,

Z = 2πρ

3
(hWM (1) + 1), S(0) = [ρZ′ + Z + 1]−1

= 1 + 4πρ

∫ ∞

0
r2hWM (r) dr, (24)

where hmin = h(R = rmin) and Z was taken from the very
accurate HS equation of state proposed by Kolafa et al.
[39]. The conditions in Eqs. (22)–(24) were used also by
Trokhymchuk et al. [40] in their studies of the analytic
expression for the RDF.

Equations (21)–(24) along with the scheme discussed in
Sec. II can be used as a practical means of determining the
SCF of the HS fluid. The main calculation stages are given in
Appendix C. The set of parameters in Eq. (21) was determined
based on the minimum condition for |hWM (r) − hMD(r)| <

10−3 for each r ∈ (1,rc), where hMD(r) was obtained from
the MD simulations. In the calculations a nonlinear fitting
procedure was used, taking rc = 10. We consider that the
hWM (r) function obtained is an accurate representation of
the exact h(r) function. It has been shown [35,41] that the
numerical data must be highly accurate to obtain reliable
results for the bridge functions. In particular the data for
hMD(r < rc) must be obtained from long simulations with
a large number of particles (N > 104). Only in this way can
the effects of the finite size and the statistical errors in the
simulations be reduced sufficiently. Because the calculations of
c(r) demand a similar level of accuracy as the bridge function
we performed the simulations with a large system of N =
16 384 HSs. Additionally, in order to test the N dependence or
the finite size effects, some calculations were also carried out
for systems of N = 2916,4000,6912, and 8788 particles, and
it was confirmed that the simulations ought to be performed
with large systems of N > 104. The calculations of hMD(r)
were performed with the standard HS MD method [42] for a
number of different densities representative of the entire fluid
region, up to ρ = 0.94, which is near the freezing density. The
histogram grid size was set to δr = 0.01 which was found
to be optimal here. The MD simulations were carried out
typically for a total number of 8 × 109 collisions, and the
statistical uncertainty of the hMD(r) function was obtained
with the block averaging method [43]. For each density and
in the whole range of r ∈ (1,rc) the accuracy of hMD(r) is
such that the estimated uncertainty was <10−3 and was up to
0.001 near contact for the highest densities and became less
than 0.0001 at larger particle separations. For a large system
the finite size effects for the MD calculations of the RDF
arise mainly from fixing the particle number, i.e., from the
relation between canonical and grand-canonical ensembles.
The corrections required to convert data from the MD to the
canonical ensemble are of O(1/N2), which are negligible here
[44,45]. Thus, the calculated hMD(r) values were corrected
using the leading order correction factor [1 + S(0)/N ]. Also,
it was checked for a few densities that the remaining part
of the correction factor involving density derivatives was
smaller than the obtained data accuracy and therefore could be
neglected.

The resulting values of the parameters {XWM} for hWM (r)
are given in the tables in Supplemental Material [46]. The
obtained parameters needed for Eq. (21) provide a highly
accurate representation of the RDF of the HS fluid throughout
the whole r-range, or h(1 < r < ∞). Consequently, the
hWM (r) function, which obeys several physical conditions
[namely, Eqs. (22)–(24)], is readily accessible and can be made
use of in more accurate statistical mechanical theories of the
liquid state.
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FIG. 2. The DCF for the 0 < r < 1 region of pair
separations, and for different densities. From top to bottom:
ρ = [0.2,0.4,0.5,0.6,0.7,0.8,0.9]. The solid lines represent
the DCF obtained from the WM representation of Eq. (21),
and the dashed lines are from the PY approximation. In
the inset the differences, � = cWM (r) − cPY (r) are shown
(the largest discrepancy corresponds to the largest density).
The density dependence of the limiting values is well
represented by the polynomial function: cWM (r = 0; ρ) = −1 −
4.2026ρ−8.2359ρ2−6.6560ρ3−53.401ρ4+162.42ρ5−361.47ρ6 +
356.46ρ7 − 158.92ρ8, and cWM (r = 1; ρ) = −1 − 1.3392ρ

− 0.2956ρ2 − 8.1336ρ3 + 33.649ρ4 − 83.532ρ5 + 112.82ρ6 −
79.862ρ7 + 22.783ρ8.

Next, with the obtained hWM (r), the cWM (r) were de-
termined according to the scheme presented in Sec. II and
Appendix C. In the applied scheme, all the main sources
of error [35,41] were minimized or eliminated. Specifically,
the finite size and statistical errors were mitigated by using a
large N , with long simulations and the appropriate correction
factors. In the case of the tail errors these were minimized by
the explicit incorporation of the tail terms, and for the grid-type
errors, by reducing the numerical integration procedure to
obtain cN (r) in the OZ equation to only one stage.

The obtained DCF is shown and discussed below, separately
for 0 < r < 1 (the inside-core part) and for r > 1. The DCFs
are given in tables in Appendix D, which extend and improve
on the c(r) data of Groot et al. [21]. The results for c(0 < r < 1)
can conveniently be presented in the polynomial form:

cWM (0 < r < 1; ρ) =
11∑

m=1

λm(ρ)rm−1. (25)

The coefficients λm are given in the first table in Ap-
pendix D, and the resulting DCF is shown for a few selected
densities in Fig. 2 along with the PY result. As may be seen,
the DCF is monotonically increasing in r and monotonically
decreasing in ρ, and in general its character is similar to
that of cPY (r). The inset shows that, apart from at low
densities, the difference between them is substantial, however,
and is most pronounced at separations near to 0.1, which
might be connected with the absence of a quadratic term
in the PY solution. The limiting values cWM (r = 0; ρ) and
cWM (r = 1; ρ) are well represented by a polynomial function,
which is given in the figure caption. They also can be

r
1 1.5 2 2.5 3

c(
r)

-0.005

0

0.005

cKL

cWM

r
1 1.5 2 2.5 3

c(
r)

-0.01

0

0.01

KLM
cWM

r
1 1.5 2 2.5 3

c(
r)

-0.1

0

0.1

KLM
cWM

(a)ρ = 0.15

(b)ρ = 0.50

(c)ρ = 0.90

FIG. 3. The DCF, cWM (r), denoted as a (red) solid line for the
r > 1 region and for (a) low, (b) intermediate, and (c) high density
values, given on the figure. The thin (blue) line on frame (a) represents
the DCF result of the low-density expansion approach (labeled cKL)
from Ref. [37], showing that the line overlies cWM (r). The open circles
on frames (b) and (c) denoted as KLM are results obtained from the
bridge functions calculated by Kolafa et al. [35,36].

expressed in terms of the corresponding PY solution val-
ues, cWM (0; ρ) ≈ −1 + [1 + cPY (0; ρ)]/(1 + 0.085ρ2.78) and
cWM (1; ρ) ≈ −1 + [1 + cPY (1; ρ)]/(1 + 0.153ρ2.25). We em-
phasize that reliable and accurate results for these limiting
functions cannot be obtained without the cA(r) part, as can be
seen in Fig. 1.

The DCF for r > 1 is shown in Fig. 3 for several densities.
As is known and clear in the figure, the DCF function decays
very quickly in an oscillatory manner. It was checked that the
available data for the bridge function [47] after converting to
the DCF, c(r) = b(r) + h(r) − ln[1 + h(r)], are in excellent
agreement with our results, and an example of such good
agreement is shown in Fig. 3 for intermediate and high-density
states (i.e., ρ = 0.5 and 0.9). For ρ = 0.15 [shown in Fig. 3(a)]
a comparison is made with the DCF function cKL(r) obtained
from the low-density expansion functions [37], and within the
accuracy of 2 × 10−4 the results are indistinguishable. From
our calculations for a range of low densities (0.05–0.20) it
may be said that cKL(r) can represent the DCF for any ρ <

0.15. With the determined DCF the expansion coefficients in
Eq. (19) can be calculated from the corresponding integrals
in Eq. (20). The same coefficients can also be evaluated from
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TABLE I. The expansion coefficients c(2n) in Eq. (19).

ρ c(0) c(2) c(4)

0.05 −4.6278 0.4577 −0.0164
0.10 −5.1283 0.5008 −0.0180
0.15 −5.7010 0.5486 −0.0193
0.20 −6.3583 0.6029 −0.0212
0.25 −7.1157 0.6646 −0.0231
0.30 −7.9920 0.7316 −0.0236
0.35 −9.0100 0.8154 −0.0282
0.40 −10.1983 0.9055 −0.0301
0.45 −11.5923 1.0119 −0.0333
0.50 −13.2363 1.1328 −0.0359
0.55 −15.1867 1.2738 −0.0382
0.60 −17.5152 1.4486 −0.0457
0.65 −20.3139 1.6535 −0.0535
0.70 −23.7021 1.8933 −0.0604
0.75 −27.8356 2.2218 −0.1010
0.80 −32.9204 2.5391 −0.0831
0.85 −39.2380 2.9608 −0.0911
0.88 −43.7864 3.3194 −0.1237
0.90 −47.2125 3.5344 −0.1252
0.92 −51.0198 3.8624 −0.1559
0.94 −55.2920 4.2377 −0.1925

their definition in terms of {XWM} [note in this case c(r) is not
needed], and we checked that both approaches give practically
the same values. Discrepancies are of order 10−3 at the highest
densities considered, which demonstrates the accuracy and
self-consistency of the pole structure scheme. The resulting
c(2n) coefficients are given in Table I.

It is noteworthy that the predicted jump [see Eq. (16)]
in the second derivative of the DCF at r = 2 is clearly
visible in the cWM (r) determined, as shown in Fig. 4 for
ρ = 0.75. As discussed in Sec. II (and Appendix B) and
seen in the figure, the discontinuity comes from the cA(r)
part determined from htail(q). If that part is not included,
even very accurate numerical data, such as the KLM data

r
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4πρ

FIG. 4. Second derivative of the DCF near r = 2 for the density
ρ = 0.75 (solid bold line). The second derivatives of the cA(r) and
cN (r) parts are shown separately with thin dashed lines. The jump
in the second derivative of DCF at r = 2 given from Eq. (16) is also
indicated.
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FIG. 5. The hMD(r) function (red dots) and its first derivative
(blue dots) for the density, ρ = 0.75. In the inset the jump in Eq. (16)
in the second derivative of the RDF is compared with the numerical
result.

(the open circles in Fig. 3) in Fig. 4, can display the smooth
second derivative of the DCF, c′′(r). In Fig. 5 the second
derivative of hMD(r) demonstrates the presence of the same
jump in the RDF function, a result which follows also from
its low-density expansion [37]. Direct observation of the next
leading discontinuity, i.e., the fourth derivative at r = 3, is a
more demanding task and could not be obtained satisfactorily
within the accuracy achievable for this work.

With cWM (r), the poles can be determined as a solutions of
the pair of equations in Eqs. (3)–(4). The results for the first
two poles are shown in Fig. 6 and reported in Table II. Because
of the sinh and cosh functions, calculations of the higher order
poles become increasingly more computationally demanding
as the numerical procedure requires accurate c(r) data at large
separations to provide convergence of the integrals [23]. In the
figure the results from the PY and PYWM approximations are
also given. The PYWM approximation is like the PY approx-
imation but in which cPY (0 < r < 1) is replaced by cWM (0 <

r < 1) in Eq. (25), which allows the importance of the
neglected c(r > 1) PY part to be assessed. As may be seen, the
results for the first pole are quite similar to those from the PY
theory. Practically the same trend has been obtained recently at
higher densities by directly fitting | ln[rh(r)]| to the one pole
approximation for r > 1.5 [see Fig. 2(c) in Ref. [48]]. The
inset in Fig. 6(a) shows clearly that the α value of the first pole
decreases more rapidly with density than for the PY approxi-
mation and, as expected, the difference decreases at low den-
sities. In this way some puzzling behavior obtained with less
accurate c(r) data in Ref. [23] may be explained. The PYWM
approximation slightly improves on the PY data at intermedi-
ate densities and indicates, as seen in the inset, that for ρ > 0.6,
the c(r > 1) part has a noticeable effect on the first pole.

The α(ω) dependence of the second pole [seen in Fig. 6(b)]
demonstrates the importance of the c(r > 1) part, which is
neglected in the PY and PYWM approximations. As can
be deduced from the figure, the assumption, c(r > 1) = 0,
causes, particularly for ρ > 0.6, an enlargement of the period
of oscillation in the RDF. This effect can be observed directly
by comparing hMD(r) and hPY (r) functions.
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TABLE II. The Ai , αi , ωi , and δi for the first and second poles of the HS fluid for different densities.

ρ A1 α1 ω1 δ1 A2 α2 ω2 δ2

0.05 53.7414 5.0027 4.5098 1.0605 89.5009 6.2674 11.5108 0.6418
0.10 24.4945 4.0729 4.7607 0.9813 43.3881 5.4565 11.6245 0.5767
0.15 15.4342 3.5098 4.9570 0.9247 28.4642 4.9536 11.7228 0.5501
0.20 11.1080 3.0985 5.1229 0.8757 21.1204 4.5715 11.7983 0.5292
0.25 8.6038 2.7708 5.2704 0.8297 16.6978 4.2657 11.8551 0.5006
0.30 6.9837 2.4964 5.4104 0.7861 13.7281 3.9913 11.9174 0.4724
0.35 5.8557 2.2600 5.5409 0.7468 11.6288 3.7559 11.9910 0.4594
0.40 5.0310 2.0498 5.6659 0.7051 10.1645 3.5201 12.0497 0.4305
0.45 4.4090 1.8616 5.7876 0.6675 9.0699 3.2986 12.1266 0.3961
0.50 3.9102 1.6902 5.9062 0.6296 8.1863 3.1207 12.2074 0.3612
0.55 3.5259 1.5325 6.0234 0.5946 6.9736 2.9693 12.3056 0.3507
0.60 3.2085 1.3870 6.1384 0.5558 6.8673 2.7669 12.3905 0.2999
0.65 2.9413 1.2511 6.2530 0.5165 6.4751 2.6314 12.5060 0.2155
0.70 2.7214 1.1245 6.3672 0.4789 6.2540 2.5100 12.6630 0.1448
0.75 2.5602 1.0061 6.4812 0.4508 6.2074 2.3676 12.8220 −0.3694
0.80 2.3939 0.8943 6.5958 0.4036 4.8704 2.2718 13.0524 −0.3496
0.85 2.2652 0.7894 6.7112 0.3655 3.5655 2.1172 13.3103 −0.4879
0.88 2.1872 0.7291 6.7812 0.3463 2.6961 1.9858 13.4910 −0.4165
0.90 2.1471 0.6903 6.8290 0.3300 2.4462 1.8949 13.6030 −0.3957
0.92 2.1016 0.6524 6.8762 0.3108 2.0802 1.8180 13.6949 −0.3207
0.94 2.0719 0.6171 6.9237 0.2932 1.8606 1.7195 13.7975 −0.2774

Thus, it is the second pole and not the first one that mainly
reflects the role of the c(r > 1) region, and its subtle but
important influence on the HS fluid structure. Consequently
it should be taken into account in any realistic modeling of
the RDF. It was checked that the HS fluid structure can be
well represented to within an accuracy of 0.001 by the first
two poles already at separations, r > 1.7 + 0.8ρ. An example
of this is shown in Fig. 7 for two densities. As may be seen
in the figure, the two-pole approximation reproduces well a
considerable part of the h(r; ρ) range.

IV. CONCLUSIONS

The SCFs of a HS fluid up to the freezing density have
been investigated using a novel scheme combining accurate
MD simulation data from a large system, the pole structure
representation of the total correlation function h(r), and
the OZ equation. The important feature of the scheme is that
some of the calculation stages can be performed analytically
where the long range distance, r , and wave vector q contribu-
tions to the respective functions are taken into account.

It was shown with this approach how the tail of the Fourier
transform of h(r) contains information on the discontinuities in
the derivatives of the DCF at any density. More specifically, it
has been shown that c(r) can be considered to be the sum
of a numerically obtainable part, cN (r), and an analytical
part, cA(r), which consists of a series of relatively elementary
integrals. It was found that some of the integral terms in the
series are related to the sine integral special function which
gives rise to the discontinuities. The order and position of the
discontinuities agree with results obtained using diagrammatic
techniques for the low-density expansion of the SCF. However,
using the performed analysis of the higher order derivatives,
no discontinuities at noninteger separations (e.g., at r = √

3),
were found, a feature which we think is worth studying further.

An exact, simple and closed-form formula for the jump
magnitude of the discontinuities has been derived, and given in
Eq. (16), which requires only the equation of state and indicates
that there is a particular density, ρc

∼= 0.133, below which the
magnitude of the jump decreases with order of the derivative.
It is not clear what aspect of the HS fluid would cause this
characteristic density, ρc. Perhaps, one may speculate, it might
be connected with the density region in which the mean field
approach PY approximation starts to be a good representation
of the HS liquid [as may be seen in Fig. 2 and the inset in
Fig. 6(a)].

The small q-limit of the SCF is not directly accessible using
the MD or MC simulation methods because of the finite-sized
periodic cell used. A step forward in this respect is that h(r)
is expressible in terms of the pole structure, which gives a
Taylor expansion about q = 0 of c(q) that is even in q, where
the expansion coefficients are functions of the pole component
values. In this way the small q-region can be obtained from
the pole structure. Also, the expansion coefficients can be
compared with the moments of the DCF which provides a self-
consistency and accuracy check of the performed calculations.

Using accurate MD simulation data the set of parameters
that represents the radial distribution function in the form given
in Eq. (21) have been determined. This set provides a very
accurate description of the HS fluid structure. It enables us,
following the calculation stages of the pole structure method,
to obtain the DCF function as the sum of the cN (r) and cA(r)
parts.

The DCF determined improves and adds to the existing
literature data. It allows for direct observation of the dis-
continuity in its second derivative at r = 2 and demonstrates
the key role of the cA(r) part in this respect. For the first
time, the evaluation of the second pole of the HS fluid has
become feasible, as well as the accurate calculation of the
density dependence of the first pole. A comparison with the
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several densities (see Table II) obtained from Eqs. (3)–(4) and cWM (r)
(open circles). Dots and crosses denote the corresponding results
from the PY and PYWM approximations, respectively. In the inset
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density dependence of α of the first pole are shown in enlarged form.
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FIG. 7. The structure correlation function h(r) of the HS fluid
at intermediate and high densities in terms of the one and two pole
approximation (the solid and dashed lines, respectively). The open
symbols show the hMD(r) simulation data.

results obtained with the PY and PY-like approximations
has demonstrated conclusively the non-negligible role of the
DCF part for r > 1 at densities ρ > 0.6. With the evaluated
poles the range of pair separations at each density where the
two pole approximation represents well the RDF has been
determined. The results obtained in this work extend our
knowledge and understanding of this important HS reference
fluid, which could be used in improving statistical mechanical
theories of the liquid state. The proposed scheme might be
applied to other model potentials with a hard core, such as
Yukawa-type potentials, which are used to represent charge
stabilized colloidal particles. Similarly it could be extended
to square-well or square-shoulder particles [9], which are
used as mean-field representations of colloidal and polymeric
systems in a solvent. The analytic and numerical results of
this work could be employed to develop the fundamental
measure theory, perturbation, and scaled-particle statistical
mechanical theories of fluids, where the HS fluid is used
as a reference system [24]. Also it would be interesting to
generalize the scheme to some fluid mixtures (e.g., additive
HS binary mixtures). The present theory could form the basis
of further developments of the pole analysis and some aspects
connected with asymptotic decay of structural functions in
different systems as might be seen in Ref. [48].
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APPENDIX A

In this appendix a derivation of the large q expressions in
Eqs. (9)–(11) is presented. If h(q) in Eq. (8) is rewritten in the
form

h(q) = −4π

q2

[
sin(q)

q
− cos(q)

]
+ 2π

q2

∞∑
i=1

Aie
−αi

×
⎡
⎣ αi

q
cos(δi + ωi − q) − (

ωi

q
− 1

)
sin(δi + ωi − q)

α2
i

q2 + ω2
i

q2 − 2ωi

q
+ 1

−
αi

q
cos(δi + ωi + q) − (

ωi

q
+ 1

)
sin(δi + ωi + q)

α2
i

q2 + ω2
i

q2 + 2ωi

q
+ 1

⎤
⎦,

(A1)

we can exploit for large q the expansion (1 + x)−1 = 1 − x +
x2 − x3 + · · · , and get

lim
q→∞ h(q) = C1

cos(q)

q2
+ D1

sin(q)

q3
+ C2

cos(q)

q4

+D2
sin(q)

q5
+ · · · , (A2)
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where

C1 = 4π

[
1 +

∞∑
i=1

Aie
−αi sin(ωi + δi)

]
, (A3)

D1 = −4π

{
1+

∞∑
i=1

Aie
−αi [ωi cos(ωi + δi)−αi sin(ωi+δi)]

}
,

(A4)

C2 = −4π

∞∑
i=1

Aie
−αi

[(
α2

i − ω2
i

)
sin(ωi + δi)

− 2αiωi cos(ωi + δi)
]
, (A5)

D2 = −4π

∞∑
i=1

Aie
−αi

[(
α3

i − 3αiω
2
i

)
sin(ωi + δi)

+ (
ω3

i − 3α2
i ωi

)
cos(ωi + δi)

]
, (A6)

and the trigonometric relations sin(a ± x) = sin(a) cos(x) ±
cos(a) sin(x) and cos(a ± x) = cos(a) cos(x) ∓ sin(a) sin(x)
have been used. It gives the expression in Eq. (9). From
the equation Z = 2πρg(r = 1)/3 and the pole structure
representation of h(r) in Eq. (7) it directly follows that
C1 = 4πg(1) = 6Z/ρ. The first few derivatives are

dg(r)

dr
= 1 − g(r)

r
+

∞∑
i=1

Ai

r
e−αir [ωi cos(ωir + δi)

−αi sin(ωir + δi)], (A7)

d2g(r)

dr2
= −2

r

dg(r)

dr
+

∞∑
i=1

Ai

r
e−αir

[(
α2

i − ω2
i

)
sin(ωir + δi)

− 2αiωi cos(ωir + δi)
]
, (A8)

d3g(r)

dr3
= −3

r

d2g(r)

dr2
−

∞∑
i=1

Ai

r
e−αir

[(
α3

i − 3αiω
2
i

)
× sin(ωir + δi) + (

ω2
i − 3α2

i ωi

)
cos(ωir + δi)],

(A9)

which indicates that the Cn and Dm in the expansion in Eq. (9)
are related to the derivatives of the RDF at contact (r = 1). In
particular the relations in Eqs. (10)–(11) follow directly from
(A3)–(A9).

APPENDIX B

In this appendix the existence and origin of the leading
discontinuities in the derivatives of the DCF is shown, and
their magnitudes in Eq. (16) are derived.

The cA(r) in Eq. (13) can be considered to be composed
of terms with s = 0, terms with s = k and the remaining
terms (s �= 0, s �= k), which we denote by U1, U2, and U3,

respectively. The first category (s = 0),

U1 = 1

2π2r

∞∑
k=1

(−ρ)k−1

(
k

0

)

×
∫ ∞

Q

dqq sin(qr) cos(q)k
[ ∞∑

n=1

Cn

q2n

]k

= 1

2π2r

∞∑
k=1

(−ρ)k−1
∞∑

n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

Cn1Cn2

· · · Cnk

∫ ∞

Q

dq
sin(qr) cos(q)k

q2(n1+n2+···+nk )−1
, (B1)

consists of integrals

IkL =
∫ ∞

Q

dq
sin(qr) cos(q)k

q2L−1
, (B2)

where k = 1,2, . . . , and L = k,k + 1,k + 2, . . . and the low-
est, L = k, is for the case n1 = n2 = · · · = nk = 1. Next, the
trigonometric representation [49] of the sin(qr) cos(q)k can be
used to express IkL in terms of a sum of integrals which involve
only the sine functions,

IG
kL = AG

∫ ∞

Q

dq
sin[q(r − G)]

q2L−1

= AG(r − G)2L−2
∫ ∞

Q(r−G)
dx

sin(x)

x2L−1
, (B3)

where G = 0, ±1, ±2, . . . , ±k and AG is a G-dependent
number. For k = 1, also L = 1 and the above integral is
the sine integral special function [38] −si[Q(r − G)] =∫ ∞
Q(r−G) dx sin(x)/x = π

2 | r − G |/(r − G) − Si[Q(r − G)],

where Si(t) = ∫ t

0 dx sin(x)/x. This means the above integral
and consequently, cA(r), has a discontinuity at r = 1 (because
r > 0, and the function with G = 0, − 1 are continuous).
Note that for L > 1, the integral IG

kL also involves the si(x)
function because [49]

∫
sin(x)

x2L−1
= (−1)L

x(2L − 2)!

⎡
⎣L−2∑

j=0

(−1)j+1 (2j )!

x2j
cos(x)

+
L−2∑
j=0

(−1)j+1 (2j + 1)!

x2j+1
sin(x)

⎤
⎦

+ (−1)L−1

(2L − 2)!
si(x). (B4)

Thus, for any k, the integral IG
kL contains the term

T G
kL = AG(−1)L−1

(2L − 2)!
(r − G)2L−2si[Q(r − G)], (B5)

which is a continuous function but its (2L − 2)-th derivative
has a jump at r = G > 0 due to the behavior of the si(x)
function, which goes to ±π/2 at r = G. The lowest order of
this derivative is for L = k. Also the jump in the (2k − 2)-th
derivative first occurs at r = G = k. For example, for the k = 2
term in (B5), there is a discontinuity in the second, fourth,
sixth, etc., derivatives at r = 1,2, and for k = 3 there is a
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discontinuity in the fourth, sixth, etc., derivatives at r = 1,2
and 3. Thus, at r = 2 the first jump occurs in the second
derivative and at r = 3 in the fourth derivative. This means that
it is the term, T k

kk , in (B5) that causes the leading discontinuity
in the DCF i.e., the discontinuity in the (2k − 2)th derivative
at r = k. In this case AG=k = 1/2k .

Significantly, from (B5) and taking into account all con-
stants in expressions back to (B1), we can now obtain the
jump magnitude in the leading discontinuities of the cA(r)
[note for L = k it is Cn1Cn2 · · · Cnk

= (C1)k],

�k =
∣∣∣∣
[
∂2k−2cA(r)

∂r2k−2

]
r→k+

−
[
∂2k−2cA(r)

∂r2k−2

]
r→k−

∣∣∣∣
= ρk−1

kπ2k+1
Ck

1 , (B6)

which is the result given in Eq. (16) with C1 = 6Z/ρ in
Eq. (10).

The second category (s = k),

U2 = 1

2π2r

∞∑
k=1

(−ρ)k−1

(
k

k

) ∫ ∞

Q

dqq sin(qr)

× sin(q)k
[ ∞∑

m=1

Dm

q2m+1

]k

= 1

2π2r

∞∑
k=1

(−ρ)k−1
∞∑

m1=1

∞∑
m2=1

· · ·
∞∑

mk=1

Dm1Dm2

· · · Dmk

∫ ∞

Q

dq
sin(qr) sin(q)k

q2(m1+m2+···+mk )−1+k
, (B7)

consists of integrals of the form

IIkL =
∫ ∞

Q

dq
sin(qr) sin(q)k

q2L−1+k
. (B8)

For an even index, k = 2j , Eq. (B8) can be transformed
into (B2) using the relation sin(q)2j = [1 − cos(q)2]j . In the
denominator we have 2L + k − 1 instead of 2L − 1 which
means that the first discontinuity of the DCF at r = k occurs
only in its (3k − 2)-th derivative.

For odd k = 2j − 1, similar analysis to that of U1 leads to
the integral

IIG
kL = AG

∫ ∞

Q

dq
cos[q(r − G)]

q2L+k−1

= AG(r − G)2L+k−2
∫ ∞

Q(r−G)
dx

cos(x)

x2L+k−1
, (B9)

which just as for (B3) involves the si(x) function [49] and
contains the term

T T G
kL = AG(−1)L−1

(2L + k − 2)!
(r − G)2L+k−2si[Q(r − G)]. (B10)

This means that the lowest order discontinuity
(G = k, L = k) of the DCF produced by the U2 part takes
place at r = k in its (3k − 2)-th derivative.

The U3 case (s �= 0, s �= k), consists of integrals,

IIIkL =
∫ ∞

Q

dq
sin(qr) cos(q)k−s sin(q)s

q2L+s−1
, (B11)

where now L=n1 + n2 + · · · + nk−s +m1 + m2 + · · · + ms .
If s or k − s is an even number the above integral can
be rearranged to the form of IkL or IIkL with 2L + s − 1
power in the denominator. Consequently, IIIkL yields the
first discontinuity at r = k in the U3 part in its 2k +
s − 2 derivative. It can be shown, using the trigonometric
identity 2 sin(qr) cos(q) = sin[q(r − 1)] + sin[q(r + 1)], that
the integrals (B11) with odd s and odd k − s, involve∫ ∞
Q

dqsin[q(r − G)] sin(q)k−1/q2L+s−1 which yields the first
discontinuity at r = k also in the (2k + s − 2)-th derivative.

Thus, from the above considerations, the leading disconti-
nuities in the derivatives of cA(r) = U1 + U2 + U3 come from
theU1 part or terms with s = 0. The leading discontinuities are
at r = k in the (2k − 2)-th derivative, and their magnitude is
given in (B6). Other discontinuities, generated by the integral
terms in Eq. (13), occur at r = k but in higher than the
(2k − 2)-th order derivatives.

APPENDIX C

In this appendix a brief summary is presented of how the
scheme of Sec. II can be exploited and combined with the MD
data for h(r) to obtain the DCF.

By expressing the h(r) in Eq. (7) by hWM (r) in Eq. (21)
we deal with the finite number of parameters which define
the function. The set of these (W+4M) parameters can be
obtained by fitting the hWM (r) to the simulation hMD(r) data.
In the fitting procedure the conditions in Eqs. (22)–(24) are
included, and the resulting parameter values are given in the
tables in Supplemental Material [46]. In this way the hWM (r)
has been determined. Its Fourier transform can be obtained
analytically,

hWM (q) = 4π

∫ ∞

0
r2h(r)

sin(qr)

qr
dr

= −4π

q2

[
sin(q)

q
− cos(q)

]
+ 2π

q

M∑
i=1

Aie
−αi

[
αi cos(δi + ωi − q) − (ωi − q) sin(δi+ωi − q)

α2
i + (ωi − q)2

− αi cos(δi + ωi + q) − (ωi + q) sin(δi + ωi + q)

α2
i + (ωi + q)2

]
+ 4π

[
8∑

n=1

(−1)n−1 STn

q2n
cos(q)

−
8∑

n=1

(−1)n−1 ST8+n

q2n+1
sin(q) −

8∑
n=1

(−1)n−1 ST16+n

q2n
cos(qR) +

8∑
n=1

(−1)n−1 ST24+n

q2n+1
sin(qR)

]
, (C1)
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where STn = ∑15
j=1 a

(n)
j b

(n)
j , and the coefficients a

(n)
j are taken from tables in Supplemental Material [46] for different densities.

Following Sec. II, the large q-limit (q > Q) of the hWM (q) is calculated:

htail
WM (q) = cos(q)

[∑
n=1

Cn1

q2n

]
+ cos(qR)

[∑
n=1

Cn2

q2n

]
+ sin(q)

[∑
m=1

Dm1

q2m+1

]
+ sin(qR)

[∑
m=1

Dm2

q2m+1

]
. (C2)

It was verified that the series converges quickly and it is sufficient to consider terms up to q−5. The coefficients in the above
expansion are

C11 = 4π [1 + ST1], (C3)

C12 = 4π

[
M∑
i=1

Aie
−αiR sin(ωiR + δi) − ST17

]
, (C4)

D11 = −4π [1 + ST9], (C5)

D12 = −4π

{
M∑
i=1

Aie
−αiR[ωi cos(ωiR + δi) − αi sin(ωiR + δi)] − ST25

}
, (C6)

C21 = −4πST2, (C7)

C22 = −4π

{
M∑
i=1

Aie
−αiR

[(
α2

i − ω2
i

)
sin(ωiR + δi) − 2αiωi cos(ωiR + δi)

] − ST18

}
, (C8)

D21 = 4πST10, (C9)

D22 = −4π

{
M∑
i=1

Aie
−αiR

[(
α3

i − 3αiω
2
i

)
sin(ωiR + δi) + (

ω3
i − 3α2

i ωi

)
cos(ωiR + δi)

] + ST26

}
. (C10)

Thus, Eqs. (C1) and (C2), along with tables in Supplemental Material [46] give hWM (q) and htail
WM (q).

Then, as in Sec. II, the DCF function is considered to be the sum of two parts: cWM (r) = cN
WM (r) + cA

WM (r). The first is
obtained numerically,

cN
WM (r) = 1

2π2

∫ Q

0
q2 hWM (q)

1 + ρhWM (q)

sin(qr)

qr
dq, (C11)

with hWM (q) from Eq. (C1), and the second is analytic,

cA
WM (r) = 1

2π2

∫ ∞

Q

q2 htail
WM (q)

1 + ρhtail
WM (q)

sin(qr)

qr
dq

=
∫ ∞

Q

[C11 cos(q) + C12 cos(qR)] sin(qr)

2π2qr
dq +

∫ ∞

Q

[D11 sin(q) + D12 sin(qR)] sin(qr)

2π2q2r
dq

+
∫ ∞

Q

[C21 cos(q) + C22 cos(qR)] sin(qr)

2π2q3r
dq −

∫ ∞

Q

ρ[C11 cos(q) + C12 cos(qR)]2 sin(qr)

2π2q3r
dq

+
∫ ∞

Q

[D21 sin(q) + D22 sin(qR)] sin(qr)

2π2q4r
dq

−
∫ ∞

Q

2ρ[C11 cos(q) + C12 cos(qR)][D11 sin(q) + D12 sin(qR)] sin(qr)

2π2q4r
dq + · · · , (C12)

where only a few lowest order terms are written out. In calculations, depending on density, the Q value was from 100 to 200.
It was checked that Cn1  Cn2, Dm1  Dm2 and all terms with the (qR) argument are negligible, which means the above
expression is practically the same as cA(r) in Eq. (13). Equations (C11) and (C12) were used, along with the coefficients in tables
in Supplemental Material [46]. The results of these steps are given in tables in Appendix D and in the figures in the main text.

APPENDIX D

In this Appendix tables with the obtained DCF are pre-
sented. The results at the various densities according to the

scheme presented in Sec. II and Appendix C for 0 < r < 1 are
given in Table III and for r > 1 are given in Tables IV and V.
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TABLE III. Coefficients for c(0 < r < 1; ρ) in Eq. (25).

ρ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11

0.05 −0.0064436392 0.033141627 −0.073020345 0.089684305 −0.0669075 0.030980218 −0.008825822 −0.014424959 −0.00044896945 0.1794399 −1.2314384

0.10 −1.1403294 6.1146344 −14.122845 18.381365 −14.808024 7.6358321 −2.5192459 0.47809973 −0.063852407 0.41518482 −1.5133492

0.15 −0.50356898 2.6950268 −6.2196811 8.1008828 −6.5424588 3.3892937 −1.1296743 0.17053684 −0.039698319 0.7128001 −1.8568049

0.20 −1.5972292 8.5625916 −19.778566 25.75009 −20.749498 10.702038 −3.5462652 0.64118595 −0.12225528 1.1025637 −2.2760142

0.25 −0.25013904 1.3013604 −2.9206636 3.6902558 −2.8669445 1.416893 −0.48878196 0.002848882 −0.10020279 1.5961781 −2.7880606

0.30 −0.31800916 1.6642616 −3.7802565 4.8693678 −3.8903496 2.0153492 −0.78476732 0.10139401 −0.21314878 2.2391453 −3.4149933

0.35 0.11502209 −0.63115109 1.4441218 −1.8295411 1.4506754 −0.69288014 −0.040277628 0.060576699 −0.387316 3.0684085 −4.1838655

0.40 0.98243283 −5.2299612 11.892435 −15.173902 12.01117 −5.9659401 1.3570567 0.061529863 −0.70001265 4.1431401 −5.1294155

0.45 −1.7943547 9.805173 −23.284825 31.271958 −25.942754 14.068444 −5.9585997 2.160661 −1.4718303 5.5531542 −6.2957397

0.50 −2.6256831 14.286222 −33.879785 45.524523 −37.89612 20.973193 −9.5950509 4.0961401 −2.5714253 7.3871964 −7.739026

0.55 −3.9679551 21.748135 −52.128782 70.961414 −60.102559 34.412181 −16.771562 7.8022395 −4.4256464 9.7981081 −9.5319257

0.60 −9.1032588 50.058988 −120.24275 164.20408 −140.09145 80.633011 −37.544481 16.16339 −7.6966883 12.998175 −11.76921

0.65 −14.221544 78.431398 −189.6337 261.63403 −226.98451 134.81788 −65.605709 29.162643 −12.870737 17.251037 −14.575458

0.70 6.4268617 −28.754556 46.089964 −24.851989 −18.90467 49.440092 −57.386698 40.302333 −19.947651 22.877442 −18.114034

0.75 −20.130131 121.64271 −328.05635 508.85777 −501.57075 346.14662 −193.66235 90.617488 −34.994893 30.683634 −22.613264

0.80 56.139841 −261.4202 479.15739 −415.06406 108.98833 139.68257 −200.73052 131.31962 −54.142772 41.060545 −28.355862

0.85 137.36003 −640.4304 1188.8622 −1071.6175 361.01321 223.80897 −365.34487 231.0741 −88.146522 55.50192 −35.770092

0.88 190.94356 −858.38161 1494.7479 −1158.1925 116.68779 579.88859 −618.12858 343.16899 −120.26791 66.884539 −41.251793

0.90 175.79911 −719.5333 1011.5289 −276.79011 −843.41445 1255.9387 −947.60094 458.34318 −148.75615 75.880035 −45.45262

0.92 314.52457 −1364.1004 2221.3318 −1415.2089 −359.42592 1310.3087 −1130.0437 562.56337 −180.20162 86.152768 −50.114574

0.94 458.68514 −1991.9413 3270.3201 −2163.2789 −356.55347 1715.3319 −1473.416 714.45833 −220.73566 98.089592 −55.343664

TABLE IV. The DCF at the various densities according to the scheme presented in Sec. II and Appendix C.

DCF at density
r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

1.00 0.0005 0.0021 0.0052 0.0103 0.0180 0.0290 0.0444 0.0648 0.0920 0.1273 0.1730
1.02 0.0004 0.0018 0.0045 0.0089 0.0155 0.0246 0.0373 0.0539 0.0755 0.1029 0.1375
1.04 0.0004 0.0016 0.0039 0.0077 0.0132 0.0208 0.0311 0.0444 0.0612 0.0821 0.1076
1.06 0.0004 0.0014 0.0034 0.0066 0.0112 0.0174 0.0258 0.0362 0.0491 0.0645 0.0828
1.08 0.0003 0.0012 0.0029 0.0056 0.0094 0.0144 0.0211 0.0291 0.0388 0.0497 0.0622
1.10 0.0003 0.0010 0.0025 0.0047 0.0079 0.0118 0.0171 0.0231 0.0301 0.0375 0.0453
1.12 0.0003 0.0009 0.0021 0.0039 0.0065 0.0096 0.0136 0.0180 0.0228 0.0274 0.0317
1.14 0.0002 0.0008 0.0018 0.0033 0.0053 0.0077 0.0107 0.0137 0.0168 0.0192 0.0209
1.16 0.0002 0.0006 0.0015 0.0027 0.0043 0.0060 0.0082 0.0101 0.0118 0.0127 0.0124
1.18 0.0002 0.0005 0.0013 0.0022 0.0034 0.0046 0.0061 0.0072 0.0079 0.0075 0.0059
1.20 0.0001 0.0005 0.0010 0.0018 0.0026 0.0035 0.0044 0.0048 0.0047 0.0035 0.0011
1.22 0.0001 0.0004 0.0009 0.0014 0.0020 0.0025 0.0030 0.0029 0.0023 0.0006 −0.0023
1.24 0.0001 0.0003 0.0007 0.0011 0.0015 0.0017 0.0019 0.0014 0.0005 −0.0015 −0.0045
1.26 0.0001 0.0003 0.0005 0.0008 0.0011 0.0011 0.0010 0.0003 −0.0008 −0.0029 −0.0058
1.28 0.0001 0.0002 0.0004 0.0006 0.0007 0.0006 0.0004 −0.0005 −0.0017 −0.0037 −0.0064
1.30 0.0001 0.0002 0.0003 0.0004 0.0004 0.0002 −0.0001 −0.0010 −0.0023 −0.0041 −0.0064
1.32 0.0001 0.0001 0.0002 0.0005 0.0002 −0.0001 −0.0005 −0.0014 −0.0025 −0.0041 −0.0060
1.34 0.0001 0.0001 0.0001 0.0003 0.0001 −0.0003 −0.0007 −0.0015 −0.0025 −0.0039 −0.0053
1.36 0.0000 0.0001 0.0001 0.0003 0.0000 −0.0004 −0.0008 −0.0016 −0.0024 −0.0034 −0.0044
1.38 - 0.0000 0.0001 0.0002 −0.0001 −0.0005 −0.0008 −0.0015 −0.0021 −0.0029 −0.0033
1.40 - - 0.0000 0.0002 −0.0002 −0.0006 −0.0008 −0.0014 −0.0018 −0.0022 −0.0023
1.42 - - - 0.0001 −0.0002 −0.0005 −0.0007 −0.0012 −0.0014 −0.0016 −0.0013
1.44 - - - 0.0000 −0.0002 −0.0005 −0.0006 −0.0009 −0.0010 −0.0009 −0.0003
1.46 - - - - −0.0002 −0.0005 −0.0005 −0.0007 −0.0006 −0.0003 0.0005
1.48 - - - - −0.0002 −0.0004 −0.0004 −0.0004 −0.0002 0.0002 0.0011
1.50 - - - - −0.0001 −0.0003 −0.0002 −0.0002 0.0001 0.0006 0.0017
1.52 - - - - 0.0000 −0.0002 −0.0001 0.0000 0.0004 0.0010 0.0020
1.54 - - - - - −0.0002 0.0000 0.0002 0.0006 0.0012 0.0022
1.56 - - - - - −0.0001 0.0001 0.0003 0.0007 0.0013 0.0022
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TABLE IV. (Continued.)

DCF at density
r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

1.58 - - - - - −0.0001 0.0002 0.0004 0.0008 0.0014 0.0021
1.60 - - - - - 0.0000 0.0003 0.0004 0.0008 0.0013 0.0019
1.62 - - - - - - 0.0003 0.0005 0.0008 0.0012 0.0015
1.64 - - - - - - 0.0003 0.0004 0.0007 0.0010 0.0011
1.66 - - - - - - 0.0002 0.0004 0.0006 0.0007 0.0007
1.68 - - - - - - 0.0001 0.0003 0.0005 0.0005 0.0002
1.70 - - - - - - 0.0000 0.0003 0.0004 0.0002 −0.0002
1.72 - - - - - - - 0.0002 0.0002 0.0000 −0.0006
1.74 - - - - - - - 0.0001 0.0001 −0.0003 −0.0009
1.76 - - - - - - - 0.0001 0.0000 −0.0004 −0.0011
1.78 - - - - - - - 0.0000 −0.0001 −0.0005 −0.0012
1.80 - - - - - - - 0.0000 −0.0002 −0.0006 −0.0012
1.82 - - - - - - - - −0.0002 −0.0006 −0.0011
1.84 - - - - - - - - −0.0002 −0.0006 −0.0009
1.86 - - - - - - - - −0.0001 −0.0005 −0.0007
1.88 - - - - - - - - 0.0000 −0.0004 −0.0005
1.90 - - - - - - - - - −0.0003 −0.0003
1.92 - - - - - - - - - −0.0001 −0.0001
1.94 - - - - - - - - - 0.0000 0.0001
1.96 - - - - - - - - - 0.0000 0.0002
1.98 - - - - - - - - - 0.0001 0.0003
2.00 - - - - - - - - - 0.0001 0.0002

TABLE V. The DCF at the various densities according to the scheme presented in Sec. II and Appendix C.

DCF at density
r 0.60 0.65 0.70 0.75 0.80 0.85 0.88 0.90 0.92 0.94

1.00 0.232 0.307 0.401 0.521 0.676 0.872 1.018 1.122 1.247 1.381
1.02 0.181 0.235 0.300 0.379 0.478 0.597 0.683 0.740 0.811 0.883
1.04 0.139 0.176 0.219 0.268 0.326 0.391 0.437 0.462 0.498 0.530
1.06 0.104 0.128 0.154 0.181 0.211 0.239 0.258 0.265 0.278 0.285
1.08 0.076 0.090 0.104 0.115 0.125 0.130 0.132 0.128 0.128 0.121
1.10 0.053 0.060 0.065 0.065 0.063 0.054 0.047 0.037 0.030 0.016
1.12 0.035 0.037 0.036 0.030 0.020 0.003 −0.008 −0.020 −0.030 −0.047
1.14 0.021 0.019 0.014 0.004 −0.009 −0.028 −0.040 −0.052 −0.063 −0.078
1.16 0.011 0.007 −0.001 −0.012 −0.026 −0.045 −0.056 −0.067 −0.075 −0.088
1.18 0.003 −0.002 −0.011 −0.022 −0.035 −0.051 −0.060 −0.069 −0.075 −0.084
1.20 −0.003 −0.008 −0.016 −0.027 −0.038 −0.051 −0.056 −0.062 −0.065 −0.071
1.22 −0.006 −0.012 −0.019 −0.028 −0.036 −0.045 −0.047 −0.050 −0.050 −0.053
1.24 −0.008 −0.013 −0.020 −0.026 −0.032 −0.036 −0.035 −0.036 −0.033 −0.033
1.26 −0.009 −0.014 −0.018 −0.023 −0.026 −0.026 −0.022 −0.020 −0.015 −0.013
1.28 −0.009 −0.013 −0.016 −0.018 −0.018 −0.015 −0.009 −0.005 0.002 0.005
1.30 −0.009 −0.011 −0.013 −0.013 −0.011 −0.005 0.003 0.009 0.016 0.021
1.32 −0.008 −0.009 −0.009 −0.008 −0.003 0.005 0.014 0.020 0.027 0.033
1.34 −0.006 −0.006 −0.006 −0.003 0.003 0.013 0.023 0.029 0.036 0.042
1.36 −0.005 −0.004 −0.002 0.002 0.009 0.019 0.029 0.035 0.041 0.047
1.38 −0.003 −0.002 0.001 0.006 0.013 0.023 0.033 0.039 0.044 0.048
1.40 −0.001 0.000 0.004 0.009 0.017 0.026 0.034 0.039 0.044 0.047
1.42 0.000 0.002 0.006 0.012 0.018 0.027 0.034 0.038 0.042 0.043
1.44 0.001 0.004 0.007 0.013 0.019 0.026 0.032 0.035 0.037 0.037
1.46 0.002 0.005 0.009 0.014 0.018 0.024 0.028 0.030 0.031 0.030
1.48 0.003 0.006 0.009 0.014 0.017 0.020 0.022 0.023 0.023 0.020
1.50 0.004 0.006 0.009 0.013 0.014 0.015 0.017 0.016 0.013 0.009
1.52 0.004 0.006 0.008 0.011 0.011 0.011 0.010 0.008 0.003 −0.005
1.54 0.004 0.006 0.007 0.009 0.008 0.004 0.002 −0.002 −0.008 −0.017
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TABLE V. (Continued.)

DCF at density
r 0.60 0.65 0.70 0.75 0.80 0.85 0.88 0.90 0.92 0.94

1.56 0.004 0.005 0.006 0.007 0.004 −0.002 −0.007 −0.011 −0.018 −0.028
1.58 0.003 0.004 0.004 0.005 0.000 −0.008 −0.014 −0.019 −0.028 −0.039
1.60 0.003 0.003 0.002 0.002 −0.005 −0.014 −0.021 −0.026 −0.036 −0.047
1.62 0.002 0.002 0.001 −0.001 −0.008 −0.019 −0.026 −0.032 −0.041 −0.053
1.64 0.001 0.001 −0.001 −0.004 −0.012 −0.023 −0.030 −0.036 −0.045 −0.056
1.66 0.000 −0.001 −0.003 −0.006 −0.014 −0.025 −0.032 −0.037 −0.046 −0.056
1.68 0.000 −0.002 −0.004 −0.008 −0.016 −0.025 −0.032 −0.036 −0.043 −0.051
1.70 −0.001 −0.003 −0.006 −0.009 −0.016 −0.024 −0.029 −0.032 −0.037 −0.043
1.72 −0.002 −0.003 −0.006 −0.009 −0.015 −0.021 −0.023 −0.024 −0.027 −0.030
1.74 −0.002 −0.004 −0.006 −0.008 −0.013 −0.016 −0.015 −0.014 −0.014 −0.014
1.76 −0.002 −0.004 −0.006 −0.006 −0.009 −0.009 −0.006 −0.002 0.000 0.004
1.78 −0.002 −0.003 −0.005 −0.004 −0.005 −0.002 0.004 0.010 0.015 0.021
1.80 −0.002 −0.003 −0.003 −0.002 −0.001 0.005 0.013 0.020 0.027 0.035
1.82 −0.002 −0.002 −0.002 0.001 0.003 0.011 0.020 0.028 0.036 0.044
1.84 −0.001 −0.001 −0.001 0.003 0.007 0.016 0.025 0.033 0.040 0.048
1.86 −0.001 0.000 0.001 0.005 0.009 0.018 0.027 0.034 0.040 0.046
1.88 0.000 0.000 0.002 0.006 0.010 0.019 0.026 0.031 0.035 0.038
1.90 0.000 0.001 0.003 0.007 0.011 0.017 0.022 0.025 0.026 0.025
1.92 0.000 0.001 0.003 0.007 0.010 0.014 0.016 0.017 0.015 0.010
1.94 0.001 0.002 0.003 0.007 0.008 0.009 0.008 0.007 0.002 −0.006
1.96 0.001 0.002 0.003 0.005 0.005 0.003 0.000 −0.004 −0.011 −0.022
1.98 0.001 0.001 0.002 0.004 0.003 −0.002 −0.007 −0.012 −0.021 −0.033
2.00 0.001 0.001 0.002 0.003 0.000 −0.006 −0.012 −0.018 −0.027 −0.039
2.02 0.000 0.001 0.001 0.002 −0.002 −0.009 −0.015 −0.020 −0.029 −0.040
2.04 - 0.001 0.000 0.001 −0.003 −0.010 −0.015 −0.020 −0.028 −0.036
2.06 - 0.000 0.000 0.000 −0.004 −0.010 −0.015 −0.019 −0.025 −0.032
2.08 - 0.000 −0.001 −0.001 −0.005 −0.010 −0.014 −0.017 −0.022 −0.026
2.10 - 0.000 −0.001 −0.001 −0.005 −0.009 −0.012 −0.014 −0.017 −0.020
2.12 - 0.000 −0.001 −0.001 −0.005 −0.008 −0.010 −0.011 −0.013 −0.015
2.14 - 0.000 −0.001 −0.002 −0.004 −0.007 −0.008 −0.008 −0.009 −0.009
2.16 - −0.001 −0.001 −0.001 −0.004 −0.005 −0.005 −0.005 −0.005 −0.004
2.18 - −0.001 −0.001 −0.001 −0.003 −0.003 −0.003 −0.002 −0.001 0.000
2.20 - −0.001 −0.001 −0.001 −0.002 −0.002 −0.001 0.001 0.002 0.004
2.22 - −0.001 −0.001 −0.001 −0.002 0.000 0.001 0.003 0.004 0.006
2.24 - −0.001 −0.001 0.000 −0.001 0.001 0.003 0.005 0.006 0.008
2.26 - −0.001 −0.001 0.000 0.000 0.002 0.004 0.006 0.007 0.009
2.28 - 0.000 −0.001 0.000 0.001 0.003 0.005 0.007 0.008 0.010
2.30 - - 0.000 0.001 0.001 0.004 0.005 0.007 0.008 0.009
2.32 - - - 0.001 0.002 0.004 0.006 0.007 0.008 0.008
2.34 - - - 0.001 0.002 0.004 0.005 0.007 0.006 0.006
2.36 - - - 0.001 0.002 0.004 0.005 0.006 0.005 0.005
2.38 - - - 0.001 0.002 0.004 0.004 0.004 0.003 0.002
2.40 - - - 0.001 0.002 0.003 0.003 0.003 0.002 0.000
2.42 - - - 0.001 0.002 0.002 0.002 0.002 0.000 −0.002
2.44 - - - 0.001 0.002 0.002 0.001 0.000 −0.002 −0.005
2.46 - - - 0.001 0.001 0.001 0.000 −0.001 −0.004 −0.007
2.48 - - - 0.001 0.001 0.000 −0.002 −0.003 −0.005 −0.008
2.50 - - - 0.001 0.000 0.000 −0.003 −0.004 −0.007 −0.009
2.52 - - - 0.000 0.000 −0.001 −0.003 −0.005 −0.007 −0.010
2.54 - - - 0.000 0.000 −0.002 −0.004 −0.005 −0.008 −0.010
2.56 - - - 0.000 −0.001 −0.002 −0.004 −0.005 −0.007 −0.009
2.58 - - - 0.000 −0.001 −0.002 −0.004 −0.005 −0.007 −0.008
2.60 - - - 0.000 −0.001 −0.002 −0.004 −0.005 −0.006 −0.007
2.62 - - - −0.001 −0.001 −0.002 −0.004 −0.004 −0.005 −0.005
2.64 - - - −0.001 −0.001 −0.002 −0.003 −0.003 −0.003 −0.003
2.66 - - - −0.001 −0.001 −0.002 −0.002 −0.002 −0.001 0.000
2.68 - - - −0.001 −0.001 −0.001 −0.001 −0.001 0.000 0.001
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TABLE V. (Continued.)

DCF at density
r 0.60 0.65 0.70 0.75 0.80 0.85 0.88 0.90 0.92 0.94

2.70 - - - −0.001 −0.001 0.000 0.000 0.001 0.002 0.003
2.72 - - - −0.001 −0.001 0.000 0.001 0.002 0.003 0.005
2.74 - - - −0.001 0.000 0.001 0.001 0.003 0.004 0.006
2.76 - - - 0.000 0.000 0.001 0.002 0.003 0.005 0.006
2.78 - - - - 0.000 0.002 0.003 0.004 0.005 0.006
2.80 - - - - 0.001 0.002 0.003 0.004 0.005 0.006
2.82 - - - - 0.001 0.002 0.003 0.004 0.004 0.005
2.84 - - - - 0.001 0.002 0.002 0.003 0.003 0.003
2.86 - - - - 0.001 0.002 0.002 0.002 0.002 0.002
2.88 - - - - 0.001 0.002 0.001 0.002 0.001 0.000
2.90 - - - - 0.001 0.001 0.001 0.001 0.000 −0.001
2.92 - - - - 0.001 0.001 0.000 0.000 −0.001 −0.002
2.94 - - - - 0.001 0.001 −0.001 −0.001 −0.002 −0.003
2.96 - - - - 0.000 0.000 −0.001 −0.002 −0.003 −0.004
2.98 - - - - - - −0.001 −0.002 −0.003 −0.005
3.00 - - - - - - 0.000 −0.001 −0.002 −0.004
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