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With a model for two-dimensional (2D) Brownian rotary ratchets being capable of producing a net torque
under athermal random forces, its optimization for mean angular momentum (L), mean angular velocity (ω), and
efficiency (η) is considered. In the model, supposing that such a small ratchet system is placed in a thermal bath,
the motion of the rotor in the stator is described by the Langevin dynamics of a particle in a 2D ratchet potential,
which consists of a static and a time-dependent interaction between rotor and stator; for the latter, we examine a
force [randomly directed dc field (RDDF)] for which only the direction is instantaneously updated in a sequence
of events in a Poisson process. Because of the chirality of the static part of the potential, it is found that the RDDF
causes net rotation while coupling with the thermal fluctuations. Then, to maximize the efficiency of the power
consumption of the net rotation, we consider optimizing the static part of the ratchet potential. A crucial point is
that the proposed form of ratchet potential enables us to capture the essential feature of 2D ratchet potentials with
two closed curves and allows us to systematically construct an optimization strategy. In this paper, we show a
method for maximizing L, ω, and η, its outcome in 2D two-tooth ratchet systems, and a direction of optimization
for a three-tooth ratchet system.
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I. INTRODUCTION

A ratchet is a mechanical device that combines a pawl and
a wheel such that the former limits the rotation of the latter
to only one direction. Also, a ratchet mechanism can refer to
dynamism among objects that rectifies incoming stimulative
actions into directed movement. The mechanism of a ratchet is
attributed to the nature of a nonequilibrium (or macroscopic)
system. If the size of the ratchet is reduced to nanoscale, the
rectifying action of the ratchet becomes unreliable or proba-
bilistic because the influence of the surrounding molecules is
comparable to the input stimuli to the ratchet; the pawl moves
erroneously and allows the wheel to rotate in the opposite (i.e.,
undesired) direction. Such a very small ratchet system is called
a Brownian ratchet (BR) or Smoluchowski-Feynman ratchet
from Smoluchowski’s (and Feynman’s) thought experiment
[1,2]. To be consistent with the second law of thermodynamics,
if the temperature of the “agents” causing the input stimuli to
the ratchet equals the temperature of the ratchet, there can be no
net rotation of the wheel. This contraposition implies that if net
rotation does appear, the statistical property of the input agents
differs from that in thermal equilibrium, or that the temperature
of the pawl is lower than that of the input agents [2–4]. The
problem of how net rotation or unidirectional motion results
from unbiased stimuli in the thermal environment has been
analyzed by numerous studies with various types of ratchet
models [5,6]. Because of its universal nature in nonequilibrium
phenomena, the concept of a ratchet mechanism has attracted
a great deal of attention from various perspectives, e.g.,
biological [7–9] and artificial molecular motors [6,10–12],
optical thermal ratchets [13], dielectrophoretic ratchets [14],
and granular ratchet systems [15–22].

In this study, we consider the rectification behavior of
two-dimensional (2D) BR models for a rotating thin rod
inside a cylinder, and its optimization for the rotational
performance. First, we outline our dynamical model, in which
we suppose that the thin rod (rotor) contacts diagonally with
the cylinder (stator) at the upper and lower edges, and rotates
inside the cylinder through mutual ratchet interaction under
temporally varying fields [23–25]. Real systems that are
relevant to such Brownian rotary ratchets may be found in
microscopic light-driven rotors [26], the artificial molecular
rotor of caged supramolecules [11], or synthetic molecular
systems, e.g., [27,28].

As in [23–25], we describe the state of rotation as a
trajectory on a 2D plane. Representing the state of the
rotor tip at time t as X ≡ (Xt,Yt )T (hereinafter, T denotes
the transpose of a vector or matrix, and boldface repre-
sents a 2D vector), we assume that X obeys Langevin
dynamics:

γ Ẋ = −∂XV0(X) − ∂XVh(X,t) + f I (x) + Rt . (1.1)

Here, ∂x ≡ ( ∂
∂x

, ∂
∂y

)T, γ (=1) denotes a viscosity coefficient,
and Rt is a random force with properties 〈Rt 〉 = 0 and
〈Rt RT

t ′ 〉 = 2Dδ(t − t ′)1̂, where 1̂ and 〈At 〉 denote a 2 × 2 unit
matrix and the average of At over all possible processes of Rt ,
respectively. Here, Rt corresponds to the thermal fluctuation,
and the noise intensity D is assumed to satisfy D = kBT with
a temperature T and the Boltzmann constant kB. In addition,
V0(x) represents the 2D ratchet potential for the static part
of the rotor-stator interaction (one can imagine the interaction
between the pawl and the wheel for this). The function Vh(x,t)
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is the temporally varying part of the interaction:

Vh(x,t) = −hN t · x, N t = (cos �t, sin �t )
T, (1.2)

where hN t represents a force on the rotor. The angle �t

switches successively to independent values in [0,2π ) in a
sequence of events described as a Poisson process with a mean
interval 	−1. In other words, the mean and autocorrelation
function of N t obey

〈N t 〉� = 0,
〈
N t NT

0

〉
�

= e−	t

2
1̂, (1.3)

where 〈At 〉� denotes the average of At over all possible
processes of �t (see Appendix A). We can regard hN t as
an external field or a force due to a temporal deformation of
the stator, and call this a randomly directed dc field (RDDF).
For simplicity, we consider the load f I (x) for the rotation as

f I (x) = I

2π

(
y

|x|2 , − x

|x|2
)T

≡ − I

2π
∂xθ (x), (1.4)

where θ (x) ≡ tan−1 y

x
and I denotes the load torque.

In the absence of an external field and load (h = I = 0)
in Eq. (1.1), we have an equilibrium state that corresponds to
thermal equilibrium; there is no net circulation of X about the
origin, so there is no net rotation. As mentioned above, net
rotation requires the (agents of) external field to be athermal
[3,5]. Here, as in Eq. (1.3), the RDDF can have a sufficiently
long correlation time and be athermal. In general, there are two
basic types of 2D field: either one in which only the field angle
varies but the magnitude is constant, or a uniaxially polarized
field. The RDDF is classed as the former type because the force
angle varies randomly without bias. An example of the latter
field type is reported in [23]; with dynamics in a two-tooth
ratchet potential under a uniaxially polarized sinusoidal field,
it is shown that a net rotation appears with a rotational direction
that depends on the polarization angle. The ranges of angle for
the clockwise and counterclockwise rotations are asymmetric,
reflecting the chirality of the ratchet potential (cf. [29], which
reports on the occurrence of unidirectional rotation with a
symmetric (achiral) two-well hindered-rotation potential).

An aim of the present study is to show that a combination
of the two-tooth ratchet potential and the RDDF (as a basic
example of an athermal unbiased field) can support net rotation
in a constant direction that is determined by only the chirality of
the ratchet potential. Such a net rotational state is also capable
of producing a positive power against the load in Eq. (1.4) for
a sufficiently small I . Another aim is to formulate a method of
optimizing the 2D ratchet potential to maximize the efficiency
of rotational output. In previous papers by some or all of the
authors [23–25], analyses of the two- and three-tooth models
with the four- and six-state approaches have been shown
[23,24], and the analytical framework for estimating energetic
efficiency [25] has been developed, in which any optimization
has been disregarded.

Here, we define the efficiency of the rotational output. The
balance between the input power of the external field ( f h ≡
hN t ) and the combined power consumed by the load [ f I ≡
f I (X)] and the other resistive forces is

Ẋ · f h = (−Ẋ · f I ) + γ (|〈Ẋ〉|2 + L′
t ω

′
t ) + QT , (1.5)

where

L′
t ≡ Xt (Ẏt − 〈Ẏt 〉) − Yt (Ẋt − 〈Ẋt 〉), (1.6)

ω′
t ≡ Xt (Ẏt − 〈Ẏt 〉) − Yt (Ẋt − 〈Ẋt 〉)

X2
t + Y 2

t

, (1.7)

QT ≡ kBT

γ
(∂xFx + ∂yFy) + γ (L′

t − L′
t )(ω

′
t − ω′

t )

+ 1

γ

(
XtF̃x + Yt F̃y√

X2
t + Y 2

t

)2

, (1.8)

with F ≡ (Fx,Fy)� ≡ f h + f I and F̃ ≡ F − γ 〈Ẋ〉. The
equality (1.5) is derived in [25] based on [30–33]. Here,
we define the long time average of A as A ≡ A(X,�t ) ≡∫ Ttot

0 dt A(X,�t )/Ttot for Ttot � 	−1, and assume A =
〈〈A(X,�t )〉〉� (ergodic hypothesis), where 〈〈A〉〉� means dou-
bly averaging over all possible realizations of the stochastic
processes {Rt }Ttot

t=0 and {�t }Ttot
t=0. The products of the dynamical

variables are considered in the Stratonovich sense [34].
The left-hand side (LHS) in Eq. (1.5) is the input power.

The first term on the right-hand side (RHS) is the power
consumed by the load. The second and third terms are the
dissipation rates associated with the mean translational and
rotational motions, respectively (these can be interpreted
as the power consumed while drawing in the surrounding
molecules). Here, L′

t and ω′
t denote the angular momentum

and angular velocity, respectively, defined in coordinates fixed
to the mean translational motion. The final term QT in
Eq. (1.5) can be regarded as an excess dissipation rate resulting
from the difference between the dissipation due to velocity
fluctuations—consisting of the second (rotational component)
and third (radial component) terms in Eq. (1.8)—and the input
power from the thermal bath (the first term multiplied by minus
one). Using the input power and the output powers associated
with the rotation in the RHS of Eq. (1.5), the rectification
efficiency (or generalized efficiency) [30–33] is defined as

η = γL′
t ω

′
t − Ẋ · f I

Ẋ · f h

. (1.9)

This definition is usable even in the absence of a load (I = 0).
There have been many studies of the rotation or transport

efficiency of ratchet systems. In one-dimensional ratchet
systems in particular, proposals have been made for exact
expressions for the efficiency or for models that realize highly
efficient performance, e.g., [30,35–38]. In the context of
maximization of efficiency, although there are various aspects
to optimization [39,40], basic approaches may be classified
into two types: those that optimize the temporally varying part
of the ratchet potential [41–43], and those that optimize the
static part [30,37]. Experiments relevant to these optimization
approaches can be found in [13,14]. However, in the present
context and to the best of our knowledge, there have been few
theoretical studies on 2D ratchet models [44].

In considering the optimization of the static part of the
ratchet potential, a basic idea is to design the ratchet potential
in the following form:

V0(x) = 1
4 [1 − {v0(x)}m]2 − Kv1(x), (1.10)
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FIG. 1. Contour plot of V0(x) with a skeleton of curves
C∞ : {x|v0(x) = 1}, E+ : {x|v1(x) = E+} and E+ : {x|v1(x) =
E+}. The parameters of V0(x) are (m,a,b,K,d,e,f,λ,α,β) =
(2, 1.8, 1, 0.02396, 3, 8, 1, 0.27, 0.34π, 0.05π ) (the “d = 3” row
of B1 in Table II), for which E+ = 13.7888 and E+ = 1.784 93. The
tangent points between C∞ and E+ (E+) almost agree with the local
minima (saddles) of V0(x), i.e., x+ and −x+ (x+ and −x+), and so
do the valleys C and C∞. {n+,τ+} ({n+,τ+}) denote the eigenvectors
of Ĝ0(x) at the minima (saddles), which also almost agree with the
common tangent and normal vectors, i.e., {nv,τ v}, between C∞ and
E+ (C∞ and E+).

where m � 1. For m � 1, the curve of v0(x) = 1 approx-
imates a potential valley that mimics a constraint on the
rotor–stator contact and along which the orbit of the rotational-
motion concentrates. The purpose of v1(x) is to create the local
minima and saddles in the valley. The functions v0(x) and v1(x)
are non-decreasing functions of |x|, and the region specified
by v0(x) � 1 is a simply connected space. These details are
shown in Sec. II. Here, an important point is that for m � 1 we
can characterize a ratchet potential with two curves specified
by v0(x) = 1 and v1(x) = E with a constant E as shown later.
This allows us to easily design an optimized ratchet potential
that maximizes the rotational output.

In this study, we develop an optimization method by using
a 2D two-tooth ratchet potential. Of course, our approach is
applicable to more general 2D ratchet potentials in the form
of Eq. (1.10). In Sec. II, for the two-tooth ratchet model, we
provide v0(x) and v1(x) and describe their details. In Sec. III,
we define indexes with which to characterize the performance
of the ratchet model; we show analytical expressions for these,
which are obtained using the same approach as in [25]. In
Sec. IV, we formulate the optimization problem. In Sec. V,
we test the results of the optimization. In Sec. VI, we suggest
a way to optimize three-tooth ratchet models. In. Sec. VII, we
summarize the whole study.

II. TWO-TOOTH RATCHET MODEL

For V0(x) in Eq. (1.10), let us consider a ratchet potential
with a two-fold symmetry as shown in Fig. 1, and call it the
two-tooth ratchet model. In such a case, v0(x) and v1(x) also

have two-fold symmetry. Here, we define them as

v0(x) = |a · x|2 + λ
|e · x|2|e⊥ · x|2

|x|2 , (2.1)

v1(x) = 1

2
|d · x|2, (2.2)

where a, d, e, and e⊥ are complex vector-valued parameters:

a =
(

1
a

i
b

)
, e =

(
cos β − sin β

sin β cos β

)(
1
e

i
f

)
,

e⊥ =
(

0 −1
1 0

)
e, d ≡

(
cos α − sin α

sin α cos α

)(
d

i

)
,

with i2 = −1, a > 0, b > 0, e � 0, f � 0, and 0 � β < π
4 .

We assume m � 1 and 0 < K 
 1 in Eq. (1.10), un-
less stated otherwise. Then, the curve C∞ : {x|v0(x) = 1}
approximately indicates the potential valley. If λ = 0, C∞
is an ellipse, i.e., |a · x|2 = (a · x)(a∗ · x) = ( x

a
)2 + ( y

b
)2 = 1,

otherwise, for λ �= 0, it adds a fourth harmonic deformation,
with reference axes (cos β, sin β)T and (− sin β, cos β)T. The
sharpness of the potential profile normal to C∞ is tuned by
m (as shown in Sec. II B, the curvature is proportional to m2

for m � 1). Function v1(x) is a potential function with an
anisotropic axis (cos α, sin α)T. The curve of |d · x|2 = const
is an ellipse whose short axis is along (cos α, sin α)T and whose
eccentricity is

√
1 − d−2 (d > 1). If C∞ does not have line

symmetry with respect to the anisotropic axis, the pathway
along the valley has a ratchet property.

A. Features of the potential function

Let O, C, xσ (σ ∈ {−,+}), and xμ (μ ∈ {−,+}) be the
origin, the potential valley of V0(x), the local minimum, and
the saddle, respectively (Fig. 1) [x+ and x+ are placed in x > 0
and y > 0, and x− = −x+ and x− = −x+].

The minima and saddles satisfy ∂xV0(x) = 0, and Eq. (1.10)
leads to

m

2
[1 − {v0(x)}m]{v0(x)}m−1∂xv0(x) + K∂xv1(x) = 0.

(2.3)

Using the orthogonal vectors

τ v ≡ ∂xv0(x)

|∂xv0(x)| , nv ≡
(

0 −1
1 0

)
τ v, (2.4)

we decompose Eq. (2.3) in two directions as

m

2
[1 − {v0(x)}m]{v0(x)}m−1 = −K

τ v · ∂xv1(x)

|∂xv0(x)| , (2.5)

nv · ∂xv1(x) = 0. (2.6)

When taking the limit m → ∞ in Eqs. (2.5) and (2.6), the
minima and the saddles, {xσ ,xμ}, satisfy

nv · ∂xv1(x) = 0, x ∈ C∞. (2.7)

For a geometrical interpretation of Eq. (2.7), let us define
E : {x|v1(x) = E} as a family of curves specified by the
parameter E. Then, Eq. (2.7) means that with certain values of
E, the curves E and C∞ have tangent points at x ∈ {xσ ,xμ}

062103-3



HIROKI TUTU, KATSUYA OUCHI, AND TAKEHIKO HORITA PHYSICAL REVIEW E 95, 062103 (2017)

at which nv is tangent to both curves. As shown in Fig. 1,
there are two cases of tangency depending on E; let E+ :
{x|v1(x) = E+} [E+ : {x|v1(x) = E+}] be a curve that is
tangent to C∞ at x = xσ [x = xμ] as E reaches E+ [E+].
Since we choose K > 0, we have E+ � E+. Therefore, E+
is externally tangent to C∞, and E+ is internally tangent
to C∞. However, these describe only the local relationships
between v0(x) and v1(x) at x = xσ (E = E+) and xμ (E+)
as they contact; the global relationships between them remain
undefined. As global conditions in which E+ (E+) contacts
with C∞ only at two points x = x+ and x− (x = x+ and x−),
we insist that all points on C∞ satisfy

E+ � v1(x) � E+, (2.8)

where equal cases of the left and right sides hold at x = xμ and
xσ , respectively. In this case, letting �V be the difference of
V0(x) [Eq. (1.10)] between the saddle and the local minimum,
we have

�V = K(E+ − E+). (2.9)

B. Hessian matrix

The Hessian matrix Ĝ0(x) ≡ ∂x∂
T
x V0(x) is diagonalized

approximately for m � 1. We denote its eigenvectors by n(x)
and τ (x), i.e.,

Ĝ0(x)τ (x) = �τ (x)τ (x), (2.10)

Ĝ0(x)n(x) = �n(x)n(x), (2.11)

where �n(x) and �τ (x) are the corresponding eigenvalues,
respectively; n(x) and τ (x) are tangent and normal to C

at x ∈ {xσ ,xμ}; �n(x) and �τ (x) are equivalent to the
curvatures of V0(x) along the n(x) and τ (x) axes, respectively.
Hereinafter, we denote these eigenvectors by n(xσ ) ≡ nσ ,
τ (xσ ) ≡ τ σ , n(xμ) ≡ nμ, and τ (xμ) ≡ τμ. In addition, we
define the reference direction of nσ (nμ) as directed in the
counterclockwise (clockwise) pathway of C, and τ σ (τμ) as
directed in the right-hand side of nσ (nμ) (see Fig. 1).

From Eq. (1.10), we have

Ĝ0(x) = − m

2
[m − 1 − (2m − 1)v0(x)m]v0(x)m−2∂xv0(x)

× ∂T
x v0(x) − m

2
[1 − v0(x)m]

× v0(x)m−1∂x∂
T
x v0(x) − K∂x∂

T
x v1(x). (2.12)

Substituting v0(x) = 1 into the first two factors in the first term
in Eq. (2.12), and v0(x) = 1 + δv0 into the second term, we
approximate Ĝ0(x) as

Ĝ0(x) ≈ m2

2
|∂xv0(x)|2τ vτ

T
v + m2

2
δv0∂x∂

T
x v0(x)

− K∂x∂
T
x v1(x), (2.13)

where τ v is defined in Eq. (2.4), and, from Eq. (2.5), δv0 is
estimated as

δv0 ≈ 2Kτ v · ∂xv1(x)

m2|∂xv0(x)| . (2.14)

From Eqs. (2.13) and (2.14), neglecting the nondiagonal
components (which are not essential), we obtain

Ĝ0(x) ≈ m2

2
|∂xv0(x)|2τ vτ

T
v + Kg(x)nvnT

v , (2.15)

g(x) ≡ nT
v

[
{τ v · ∂xv1(x)}∂x∂

T
x v0(x)

|∂xv0(x)| − ∂x∂
T
x v1(x)

]
nv

(2.16)

for x ∈ {xσ ,xμ}. This is valid for m � 1, in which the
eigenvectors of the Hessian matrix at x ∈ {xσ ,xμ}, i.e., τ σ ,
nσ , τμ, and nμ, are well approximated with τ v and nv in
Eq. (2.4). We thus have

�τ (x) ≈ m2

2
|∂xv0(x)|2, �n(x) ≈ Kg(x) (2.17)

at x ∈ {xσ ,xμ} for m � 1.

III. PERFORMANCE INDEXES

We characterize the rotational-motion performance of the
2D ratchet using the mean angular momentum (MAM)

L ≡ XtẎt − YtẊt , (3.1)

the mean angular velocity (MAV) ω ≡ �̇t , and the efficiency

η = γLω + PI

Ph

, (3.2)

where

�t ≡
∫ t

0
ds

(
XsẎs − YsẊs

|X|2
)

≡ θ (X) − θ (X0), (3.3)

PI ≡ −Ẋ · f I (X) = I

2π
θ̇ (X) = Iω

2π
, (3.4)

Ph ≡ hN t · Ẋ(t), (3.5)

i.e., the counterclockwise displacement angle about the origin,
the power consumed by the load, and the input power of
the external field (which is equivalent to the total power
consumption), respectively. We have replaced Eq. (1.9) with
Eq. (3.2) because the long-time averages of the relative angular
momentum L′

t [Eq. (1.6)] and the relative angular velocity ω′
t

[Eq. (1.7)] agree with L and ω, respectively, to o(h2) (see
Appendix C 3). Hereinafter, O(·) and o(·) denote the Landau
symbols (big and little O).

In Eq. (3.1), the direction L > 0 corresponds to counter-
clockwise rotation. The direction of the ratchet (chirality) is
defined as the direction in which one goes around a circular
pathway along C through each of the minima from the side of
steeper gradient to the more gentle one. Hence, the ratchet
in Fig. 1 has counterclockwise chirality. In the following
analytical and numerical simulation results, under the RDDF,
the net rotation of the ratchet tends to be the same as the
chirality. In the numerical simulations, we examine only the
case of I = 0 and we treat the efficiency as

η = γLω

Ph

. (3.6)

In this paper, we consider a ratchet system in a thermal
bath under a weak and slow external field, and we impose the
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FIG. 2. Notation for moving domain boundaries on V (x,t). With
σ ∈ {−,+} and μ ∈ {−,+}, Õ, x̃σ , and x̃μ represent the local
maximum, the local minimum, and the saddle points, respectively,
of V (x,t). The 2D space is divided into four domains D̃μ

σ by the ridge
curves B̃σ and B̃μ of V (x,t). τ̃μ

σ (x̃σ ) and τ̃μ
σ (x̃μ)[ñμ

σ (x̃σ ) and ñμ
σ (x̃μ)]

are the tangent (normal) vectors to B̃σ and B̃μ at the minimum and
the saddle points. C0 (dashed-dotted curve) denotes a closed curve
surrounding a central region of the potential that at least includes O,
Õ ′, and either a cross point between Bσ and B̃σ , or another between
Bμ and B̃μ. �Dμ

σ∗ [�Dμ∗
σ ] (hatched regions) denotes the region

surrounded by B̃σ and Bμ [B̃μ and Bμ] but excluding the interior of
C0.

following requirements: (1) the typical magnitudes of Vh(x,t)
and I [which are denoted by O(h) and O(I ), respectively, in
an energetic dimension] are smaller than the energy barrier
�V [see Eq. (2.9)] to a sufficient extent, it being assumed
hereinafter that O(I ) ∼ O(h); (2) the mean switching time of
the RDDF (Tp ≡ 2π

	
) is longer than the typical relaxation time

Tr of a trajectory to a sufficient extent, i.e., 	Tr 
 1, where
T −1

r is related to the curvature of V0(x) at the minima [or more
likely is governed by the smallest eigenvalue of Ĝ0(xσ )].

In a previous paper [25], we proposed a framework for ob-
taining approximate expressions for the performance indexes
(L, ω, and Ph) using a master equation for coarse-grained states
under the assumptions mentioned above. For a self-contained
description, we briefly introduce the basic construction of the
master equation and its applications to the computation of L,
ω, and Ph in Secs. III A and III B. In Sec. III C, we show the
final expressions for L, ω, and Ph that we use in later sections.

A. Coarse-grained states and related definitions

As shown in Fig. 2, we denote O, xσ , and xμ (σ ∈ {+,−}
and μ ∈ {+,−}) as the origin, the local minimum, and the
saddle, respectively, determined by ∂xV0(x) = 0. Hereinafter,
the signs “+” and “−” are identical with +1 and −1, thereby
xσ = σ x+ and xμ = μx+, where x+ and x+ lie in x > 0 and
y > 0, respectively. Furthermore, Bσ (Bμ) denotes the ridge
curve running from O through xσ (xμ) outward; Dμ

σ denotes
the domain surrounded by Bσ and Bμ; C denotes the potential
valley of V0(x).

We extend these static ridge curves to temporally varying
ridge curves on the basis of the function

V (x,t) ≡ V0(x) + Vh(x,t) + I

2π
θ (x) (3.7)

with the second and third terms in Eqs. (1.2) and (1.4); Õ, x̃σ ,
and x̃μ denote the local maximum, the local minimum, and
the saddle (see Fig. 2) given by ∂xV (x,t) = 0, respectively,
which move temporally with the external field. Similarly, B̃σ

(B̃μ) denotes the ridge curves running from Õ through x̃σ (x̃μ)
outward; D̃μ

σ denotes the domain surrounded by B̃σ and B̃μ;
C̃ denotes the potential valley of V (x,t).

Corresponding to τ (x) and n(x) in Eqs. (2.10) and (2.11),
we denote by τ̃μ

σ (x) and ñμ
σ (x) the tangent and normal vectors

at the point x on the boundary of D̃μ
σ (x ∈ B̃σ or x ∈ B̃μ),

where the reference direction of ñμ
σ (x) lies in D̃μ

σ , and τ̃μ
σ (x)

is oriented in the right-hand direction of ñμ
σ (x) (Fig. 2). The

vectors τ̃μ
σ (x) and ñμ

σ (x) are the eigenvectors of the Hessian
matrix Ĝ(x) ≡ ∂x∂

T
x V (x,t), i.e.,

Ĝ(x)τ̃μ
σ (x) = �τ (x)τ̃μ

σ (x), (3.8)

Ĝ(x)ñμ
σ (x) = �n(x)ñμ

σ (x), (3.9)

where �τ (x) and �n(x) are the corresponding eigenvalues. In
particular, at x ∈ {x̃σ ,x̃μ}, �τ (x) and �n(x) are the curvatures
of V (x,t) along the ridge curve and the valley, respectively;
therefore, we have �τ (x̃σ ) > 0, �n(x̃σ ) > 0, �τ (x̃μ) > 0, and
�n(x̃μ) < 0.

B. Master equation for coarse-grained states

The time evolution of probability density function (PDF)
p(x,t) for X = x obeys the Fokker-Planck equation as

∂tp(x,t) = −∂x · J(x,t), (3.10)

J(x,t) ≡ [−∂xV (x,t)]p(x,t) − D∂xp(x,t), (3.11)

where ∂t ≡ ∂
∂t

and ∂x · J(x,t) means the 2D divergence of the
probability current density.

In terms of p(x,t), a probability for an event X ∈ Dμ
σ is

given by

P (σ,μ,t) ≡
∫

x∈D
μ
σ

dxp(x,t). (3.12)

Using this, probabilities for events X ∈ D+
σ ∪ D−

σ and X ∈
D

μ
+ ∪ D

μ
− are represented as P (σ,t) = ∑

μ P (σ,μ,t) and
Q(μ,t) = ∑

σ P (σ,μ,t), respectively. Furthermore, the condi-
tional probabilities, the relative probabilities of the event X ∈
Dμ

σ under the conditions X ∈ D+
σ ∪ D−

σ and X ∈ D
μ
+ ∪ D

μ
−,

are defined respectively as

P (σ |μ,t) ≡ P (σ,μ,t)

Q(μ,t)
, Q(μ|σ,t) ≡ P (σ,μ,t)

P (σ,t)
. (3.13)

In addition to the assumptions (1) Vh 
 �V and
(2) 	Tr 
 1, we assume that D is so small that D 
 �V

hereinafter. Then, the PDF peaks sharply at x̃σ [=xσ + O(h)],
otherwise almost vanishes in the other region, and the
trajectories in the transition between two states X ∈ D̃

μ
+ and

X ∈ D̃
μ
− concentrate to C̃.

From Eqs. (3.10) and (3.12), the time derivative of P (σ,μ,t)
leads to

∂tP (σ,μ,t) =
∫

x∈D
μ
σ

dx[−∂x · J(x,t)]. (3.14)
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We divide the domain of integration Dμ
σ into D̃μ

σ and �Dμ
σ ≡

Dμ
σ − D̃μ

σ ; �Dμ
σ consists of two domains {x|x ∈ Dμ

σ ,x /∈ D̃μ
σ }

and {x|x ∈ D̃μ
σ ,x /∈ Dμ

σ }. Therefore, �Dμ
σ partly possesses a

“negative domain” for which the sign of the integral is inverted.
From the assumptions h 
 �V and D 
 �V , we can regard
the PDF as actually vanishing around Õ and O, or the interior
of C0 in Fig. 2. We can thus consider the region �Dμ

σ as a sum
of the part surrounded by Bσ and B̃σ excluding the interior
of C0, and the other surrounded by Bμ and B̃μ excluding
the interior of C0, as indicated by hatched regions in Fig. 2.
Hereinafter, we denote by �D

μ
σ∗ the former region, and by

�Dμ∗
σ the latter one. Dividing the domain of integration Dμ

σ

into D̃μ
σ , �D

μ
σ∗, and �Dμ∗

σ , we have

∂tP (σ,μ,t) ≈
∫

x∈D̃
μ
σ

dx[−∂x · J(x,t)]

− ∂tP (σ,μ,t)|Q + ∂tP (σ,μ,t)|P , (3.15)

where ∂tP (σ,μ,t)|Q ≡ − ∫
�D

μ∗
σ

dx[−∂x · J(x,t)] and
∂tP (σ,μ,t)|P ≡ ∫

�D
μ
σ∗

dx[−∂x · J(x,t)].
From the assumptions, we can approximate p(x,t) with the

thermal equilibrium PDF [∝e−V (x,t)/D] around the minima of
V (x,t), and we assume J(x,t) = 0 on B̃σ . Applying this to
the first term in Eq. (3.15), we obtain∫

x∈D̃
μ
σ

dx[−∂x · J(x,t)] ≈
∫

x∈B̃μ

dx ñμ
σ (x) · J(x,t)

≡ (δσ,−μ − δσ,μ)Jμ(t), (3.16)

where Jμ(t) represents the probability current from D̃μ
μ to

D̃
μ
−μ. Terms ∂tP (σ,μ,t)|Q and ∂tP (σ,μ,t)|P are considered

as follows. For simplicity, we show them for the case σ = μ

as

∂tP (μ,μ,t)|Q
=

∫
x∈B̃μ

dx ñμ
μ(x) · J(x,t) −

∫
x∈Bμ

dx nμ(x) · J(x,t)

≈ Q(μ,t)
∫

x∈Bμ

dx
nμ(x) · [ J(x̃(x),t) − J(x,t)]

Q(μ,t)
(3.17)

≈ Q(μ,t)∂tP (μ|μ,t), (3.18)

∂tP (μ,μ,t)|P
≈ P (μ,t)

∫
x∈Bμ

dx
nμ(x) · J(x,t)

P (μ,t)
(3.19)

≈ P (μ,t)∂tQ(μ|μ,t), (3.20)

where x̃(x) in Eq. (3.17) represents a map from a point x on
Bμ to the corresponding nearest point on B̃μ. An action of
relative current density J(x̃(x),t) − J(x,t) in the integrand in
Eq. (3.17) (Eq. (3.19), in which J(x̃(x),t) = 0 [x̃(x) ∈ B̃μ])
is regarded as increasing P (μ|μ,t) [decreasing Q(μ|μ,t)]
without varying Q(μ,t) [P (μ,t)].

In consequence, Eq. (3.15) becomes

∂tP (σ,μ,t) ≈ (δσ,−μ − δσ,μ)Jμ(t) + Jμ
σ (t), (3.21)

Jμ
σ (t) ≡ P (σ,t)∂tQ(μ|σ,t) − Q(μ,t)∂tP (σ |μ,t). (3.22)

Based on reaction rate theory [45] or Langer’s method [46],
we obtain Jμ(t) in Eq. (3.16) as

Jμ(t) ≈ W (−μ,μ,t)P (μ,t) − W (μ,μ,t)P (−μ,t), (3.23)

W (σ,μ,t) ≡ 1

2π
e−[V (xμ,t)−V (x−σ ,t)]/D

×
√

�τ (x−σ )�n(x−σ )|�n(x̃μ)|
�τ (x̃μ)

, (3.24)

where W (−μ,μ,t) [W (μ,μ,t)] is the transition probability
from a state X ∈ D−μ to a state X ∈ Dμ

μ[X ∈ Dμ to X ∈
D

μ
−μ]; �τ (x) and �n(x) are the eigenvalues of the Hessian

matrix Ĝ(x). For details, see Appendix B.
From Eq. (3.21), the expectation value for the time

derivative of a quantity A(X) ≡ A can be approximated with
the corresponding coarse-grained variable A(xσ ) ≡ Aσ as

〈Ȧ〉 ≈
∑

μ

(A−μ − Aμ)Jμ(t) +
∑
σ,μ

AσJμ
σ (t), (3.25)

where 〈A〉 = ∑
σ,μ A(xσ )P (σ,μ,t), and A is assumed to be

a single-valued function of the position. However, the MAM
(L) and MAV (ω) cannot be expressed straightforwardly as
in Eq. (3.25), e.g., it seems that the idea regarding ω as
being

∑
σ,μ θ (xσ )∂tP (σ,μ,t) fails. This may be because the

angular momentum and angular velocity are classified as axial
vectors that possess information about the rotational direction
as well as their magnitudes. Here, apart from Eq. (3.25), we
directly relate L and ω with the currents Jμ(t) and Jμ

σ (t) on
the basis of physical consideration. For an example with ω,
recalling that Jμ(t), Jμ

μ (t), and −J
μ
−μ(t) express the coun-

terclockwise currents through Bμ, {θ (x−μ) − θ (xμ)}Jμ(t),
{θ (x−μ) − θ (xμ)}Jμ

μ (t), and {θ (xμ) − θ (x−μ)}Jμ
−μ(t) approx-

imate the phase velocities measured on the pathway from
θ (xμ) to θ (x−μ) through Bμ.

We represent L and ω as a superposition of two parts as
L = L(I ) + L(h) and ω = ω(I ) + ω(h), and express each term as

L(I ) ≈ gL

2

∑
μ

[xμ × (x−μ − xμ)]zJ μ(t), (3.26)

L(h) ≈ g′
L

∑
σ,μ

(xσ × xμ)z

× [P (σ,t)∂tQ(μ|σ,t) − Q(μ,t)∂tP (σ |μ,t)], (3.27)

ω(I ) ≈ gO

∑
μ

[θ (x−μ) − θ (xμ)]Jμ(t), (3.28)

ω(h) ≈ g′
O

∑
σ,μ

[θ (x−μ) − θ (xμ)](δσ,μ − δσ,−μ)

× [P (σ,t)∂tQ(μ|σ,t) − Q(μ,t)∂tP (σ |μ,t)], (3.29)

where L(I ) and L(h), also ω(I ) and ω(h), come from the two types
of current, Jμ(t) and Jμ

σ (t). Since the coarse-grained variables
for the position and velocity vectors are not exact, we employ
dimensionless parameters gL, g′

L, gO , and g′
O to adjust the

approximations to the numerical results; as shown in Sec. V,
their actual values are O(1). Each summand in Eq. (3.26) repre-
sents the z component of the angular momentum at xμ with the
position xμ and the momentum 1

2 (x−μ − xμ)Jμ(t), where the
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latter is the mean of (x−μ − xμ)Jμ(t) and (xμ − xμ)Jμ(t). In
Eq. (3.27), we regard the terms xμ × [(xμ − xμ)Jμ

μ (t)] (σ =
μ) and xμ × [−(x−μ − xμ)Jμ

−μ(t)] (σ = −μ) as the coun-
terclockwise angular momentum. The interpretation of each
summand in Eqs. (3.28) and (3.29) has already been mentioned
in the previous paragraph. Note that θ (x−μ) − θ (xμ) = π .

The long time average in Eqs. (3.27) and (3.29) reads as

P (σ,t)∂tQ(μ,t |σ,t) − Q(μ,t)∂tP (σ,t |μ,t)

= −P (σ,μ,t)∂t ln P (σ,t) + P (σ,μ,t)∂t ln Q(μ,t)

= ln
P (σ,t)

Q(μ,t)
∂tP (σ,μ,t)

from Eq. (3.13) and the partial integration. Substituting this
into Eqs. (3.27) and (3.29), we obtain

L(h) = g′
L

∑
σ,μ

(xσ × xμ)z(δσ,−μ − δσ,μ)Jμ(t) ln
P (σ,t)

Q(μ,t)

≈ −g′
L

∑
μ

(xμ × xμ)z

[
ln

P (μ,t)

Q(μ,t)
+ ln

P (−μ,t)

Q(μ,t)

]
Jμ(t),

(3.30)

ω(h) ≈ −πg′
O

∑
μ

[
ln

P (μ,t)

Q(μ,t)
+ ln

P (−μ,t)

Q(μ,t)

]
Jμ(t), (3.31)

where we assume that Jμ
σ (t) is of higher order in h than Jμ(t)

[∼O(h)] in Eqs. (3.21) and (3.22).
The mean power consumption Ph in Eq. (3.5) can be written

as hN t · 〈Ẋ〉. Then, 〈Ẋ〉 is estimated by applying the first term
in Eq. (3.25) as

〈Ẋ〉 ≈ gV

∑
μ

(x−μ − xμ)Jμ(t) (3.32)

with an adjustable parameter gV neglecting the higher-order
terms other than O(h), and we obtain

Ph = −2gV h
∑

μ

Jμ(t)N t · xμ. (3.33)

Calculations for L(I ), L(h), ω(I ), ω(h), and Ph are shown in
Appendix C.

C. Expressions for L, ω, and Ph

From the details given in Appendix C 1 [Eqs. (C11)–(C18)],
we obtain

L ≈ gLW0

2D
(x+ × x+)z {I0(D) − I }, (3.34)

ω ≈ πgOW0

2D
{I0(D) − I }, (3.35)

where

W0 ≡ 1

2π
e−[V0(x+)−V0(x+)]/D

√
HτHn|Gn|

Gτ

, (3.36)

≈ K

2π

|∂xv0(x+)|
|∂xv0(x+)|

√
g(x+)|g(x+)|e−�V/D (m � 1),

(3.37)

I0(D) ≡ − 8g′
Lh2	

gL

√
2πDHn

x+ · n+
	 + 4W0

, (3.38)

≈ − 8g′
Lh2	

gL

√
2πKDg(x+)

x+ · nv(x+)

	 + 4W0
(m � 1).

(3.39)

Here, Hτ ≡ �τ (xσ ), Hn ≡ �n(xσ ), Gn ≡ �n(xμ), and Gτ ≡
�τ (xμ) from Eqs. (2.10) and (2.11); gL, g′

L, and gO are
adjustable parameters of O(1). Equations (3.37) and (3.39)
are obtained from Eqs. (2.9) and (2.17).

Equations (3.34) and (3.35) suggest that the stimuli of
the RDDF can support positive work and torque for the
load as long as I < I0(D) (γL is regarded as a viscous
torque). Thus, the quantity max

D
I0(D) indicates the maximal

load for such productive work; it quantifies the maximal
performance of the ratchet. From Eq. (3.38), it is found
that a higher value of max

D
I0(D) is gained if the value of

−x+ · n+ is increased. As shown in Fig. 1, the factor −x+ · n+
characterizes the asymmetry in the ratchet shape. Additionally,
one may anticipate another way of increasing max

D
I0(D),

namely by decreasing Hn. However, we note that Eq. (3.38) is
not always valid for small Hn either because it eventually
conflicts with the prerequisite 	Tr 
 1 for small Hn or,
because of the time-dependent fields, the potential with small
Hn possibly yields temporal minima other than {xσ }. Namely,
as Hn becomes vanishingly small, the influence of the time-
dependent fields becomes relatively strong, possibly breaking
the local equilibrium condition on which our theory crucially
depends (see Appendix B). So, the effect of decreasing Hn

may be limited.
From the results in Appendix C 2, we also obtain Ph as

Ph ≈ 2gV h2|x+|2
D

	W0

	 + 4W0
, (3.40)

where gV is an adjustable parameter.

IV. OPTIMIZATION OF RATCHET POTENTIAL

A. Optimization problem

We now consider the problem of maximizing ω and L

through I0(D) by optimizing V0(x) [see Eqs. (3.34)–(3.38)].
This also has the appreciable effect of increasing η through
the numerator Lω in Eq. (3.2), whereas the optimization of
V0(x) does not crucially affect the denominator Ph according
to Eq. (3.40).

As mentioned in Sec. III, from Eq. (3.38), we can
carry out the maximization of I0(D) by designing V0(x)
so as to maximize the factor −x+ · n+(x+), which can be
replaced with the approximation −x+ · nv(x+) for m � 1
from Eq. (3.39). In addition to this, we may minimize Hn

[which corresponds to g(x+) in Eq. (3.39)] within a valid
range for the local equilibrium condition around the potential
minima. Hereinafter, we assume m � 1 even in cases in which
the essential 2D ratchet characteristics are retained. We then
treat −x+ · nv(x+) as the main objective function to maximize
and, if necessary, treat g(x+) as an optional objective function
to minimize within some limited range.
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Thus, a goal of the optimization is to optimize v0(x) or v1(x)
to maximize −x+ · nv(x+). As shown in Sec. II, functions
v0(x) and v1(x) set up the shape of the potential valley and
the local minima and saddles in it. Taking these into account,
we first optimize v1(x) because it immediately affects −x+ ·
nv(x+) through x+. Here, let p be a parameter in v1(x), and
rewrite it as v1(x) ≡ v1(x; p) to express its dependence on p;
x+ also depends on p. In Eq. (2.2), p corresponds to α or d.
Then, our problem is to find an optimized value of p (≡p∗),
i.e.,

p∗ ≡ arg max
p

{−x+ · nv(x+)}, (4.1)

where x+ (∈ C∞) is subject to E+ = v1(x+; p) and

E+ � v1(x; p) � E+, ∀x ∈ C∞, (4.2)

with E+ = v1(x+; p) (x+ ∈ C∞).
Because this expression is rather complicated for compact

wording, an alternative for practical computation is as follows.
Here, let us consider v1(x) with the specific form v1(x) ≡
xTÔαÊdÔ

T
α x, where

Ôα ≡
(

cos α − sin α

sin α cos α

)
, Êd ≡

(
d2 0
0 1

)
. (4.3)

In the actual procedure, with x+ determined in

G1 : x+ = arg max
x∈C∞

{−x · nv(x)}, (4.4)

we fix (α,d) through Eq. (2.7) or

G2 : nT
v (x+)ÔαÊdÔ

T
α x+ = 0. (4.5)

Hereinafter, α and d range as 0 � α < π
2 and d > 1, which

makes the ratchet direction counterclockwise (see Fig. 1). Note
that Eq. (4.2) is unchanged under d → 1

d
, α → π

2 + α, E+ →
E+
d2 , and E− → E−

d2 . So far, either α or d is a free parameter,
but not both. For example, using the replacement d ≡ tan δ

and the matrix Âα defined as

ÔαÊdÔ
T
α = 1 + d2

2
1̂ − 1 − d2

2
Âα,

Âα ≡
(

cos 2α sin 2α

sin 2α − cos 2α

)
, (4.6)

Eq. (4.5) is read as

G′
2 : cos 2δ = −nv(x+) · x+

−nv(x+)TÂα x+

(π

4
< δ <

π

2

)
. (4.7)

This is useful when one chooses α as the free parameter,
and determines δ (also d) with α. If d is given instead, α

is determined by solving Eq. (4.5).
After determining x+ and (α,d), if the right inequality

in Eq. (4.2) is satisfied for E+ = xT
+ÔαÊdÔ

T
α x+, we settle

the (elliptic) curve E+ with these values. Otherwise, if the
inequality is unsatisfied, we may search for other values of
x+ and (α,d), which may be found at the second extreme
point x ∈ C∞ of −x · nv(x), or may refine v0(x). This
procedure is finalized by finding x+ (∈ C∞), which satisfies
nT

v (x+)ÔαÊdÔ
T
α x+ = 0 and the left inequality in Eq. (4.2) for

E+ = x+TÔαÊdÔ
T
α x+. The curve E+ is also settled with x+

and E+.

Elliptic case (λ = 0)

We show analytical results for L, Ph, and η maximized by
optimizing v1(x), through the parameters α and d, with G1

[Eq. (4.4)] and G2 [Eq. (4.5)] for the elliptic C∞ (λ = 0) and
m � 1. The maximized expressions for those in Eqs. (3.34),
(3.37), (3.39), (3.40), and (3.6) are obtained as

L ≈ gLabW0

2D
{I0(D) − I }, (4.8)

Ph ≈ 2gV h2(a2 + b2 − ab)

D

	W0

	 + 4W0
, (4.9)

η ≈ 2γgOg
′2
Lh2{ab(a − b)}2

gLgV (a2 + b2 − ab)�V D2

	W0

	 + 4W0
, (4.10)

where, for a > b > 0,

W0 ≈ �V

π (a2 + b2 − ab)
e−�V/D, (4.11)

I0(D) ≈ 4g′
Lh2	

gL

√
π�V D

√
ab(a − b)

	 + 4W0
, (4.12)

�V = K

2

√
ab(a + b)(d2 − 1) sin(2α). (4.13)

The details of the above process are given in Appendix D.
From Eq. (3.35), ω is proportional to L. Corresponding to
Eqs. (4.5) or (4.7), α and d (>1) are related as

d2 + 1

d2 − 1
=

√
ab

a + b
sin 2α − a2 + b2

a2 − b2
cos 2α. (4.14)

In the elliptic case, according to Eq. (4.14), we can choose
any value for α unless the prerequisite �V � D in the
approximation (see Appendix A) is violated. Furthermore, we
do not need to minimize g(x+) [or to optimize v1(x) through
α]. Note that, in the particular case of α → π

2 (or 0), Eq. (4.13)
leads to �V → 0, and �V � D is violated, where E+ and
E+ coincide with C∞ [d → a

b
(or b

a
)].

B. Nonelliptic case (λ �= 0)

Here, as a second optimization, we consider a strategy for
minimizing E+. In the case of λ �= 0, the curve E+ never
coincides with C∞ for any (α,d). When minimizing E+ with
respect to (α,d), E+ > E+ is retained, and both α and d

acquire definitive values. At the minimized E+, the two curves
E+ and E+ tightly enclose C∞. This suggests that minimizing
E+ causes g(x+) (corresponding to Hn) to decrease.

In the case of λ �= 0, in addition to the procedure G1 in
Eq. (4.4), first, we impose

G3 : (α∗,d∗) = arg min
0�α< π

2 ,d(α)>1
E+, (4.15)

where d(α) denotes d as a function of α defined in Eq. (4.7)
[or Eq. (4.5)]; thus, the essential number of optimization
parameters is 1. Specifically, after determining x+ via G1,
from the set of the pairs (α,d) satisfied in G2, G3 selects
α∗ and d∗ such that they minimize E+ (this automates the
tuning of parameters). As mentioned above, the procedure G3

flattens the potential profile along the valley, and narrows the
intersection of the valley. It is then expected that the fluctuation
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of the rotor trajectory may be suppressed within the valley. This
accords with our intention to improve the rotational efficiency.

Here, we should note that x+ in Eq. (4.7) has been obtained
in the limit m → ∞ and in the absence of the external
fields (h = 0 and I = 0). However, the actual minimum
point deviates from x+; if determining x+ with ∂xV0(x) =
hN t + f I (x), Eqs. (2.5) and (2.6) are modified. In particular,
in the case of h �= 0, I = 0, and m → ∞, Eq. (2.7) is modified
as nv · ∂xv

′
1(x,�t ) = 0 (x ∈ C∞) with

v′
1(x,�t ) ≡ v1(x) − h

K
x · N t (4.16)

for minima and saddles. In this case, a curve E(�t ) :
{x|v′

1(x,�t ) = E} is the same ellipse as E except that the
center of E(�t ) moves around the origin. Because of this
movement, the minimum point, at which E(�t ) is circum-
scribed to C∞, also moves along C∞. There is a single
circumscribed point corresponding to the global minimum and
a single inscribed point corresponding to a saddle, which we
denote by x∗t and x∗

t , respectively. Similarly, corresponding
to Eq. (4.2), such a minimum and a saddle satisfy E∗(�t ) �
v′

1(x,�t ) � E∗(�t ) for ∀x ∈ C∞ with E∗(�t ) ≡ v′
1(x∗

t ,�t )
and E∗(�t ) ≡ v′

1(x∗t ,�t ).
As the circumscribed ellipse E∗(�t ) : {x|v′

1(x,�t ) =
E∗(�t )} varies with the external field, x∗t (x∗

t ) is not always
close to either x+ or x− (x+ or x−). Rather, it may sometimes
jump to another point on C∞ away from them, which creates a
temporal minimum. The occurrence of such events depends on
the parameters (α,d) or the shape of C∞. In the experimental
observation shown in Sec. V B, the temporal minimum is likely
to arise when C∞ (of larger λ) is tightly enclosed by E+ and
E+, as a result of optimizing (α,d) in G3. It is also expected
that the temporal minimum may become an obstacle in the
conversion of power to net rotational output, and may have a
negative influence on the efficiency. Therefore, we moderate
G3 by adding a relaxation such that the gap between E+ and
E+ becomes wider to a sufficient extent. Since d is minimized
to d∗ in G3, then, to relax it, we replace d with

d = d∗ + ε (ε > 0), (4.17)

where ε is a relaxation parameter. Again applying this d to
G2 [Eq. (4.5)], we obtain a revised α. Now, with the ratchet
potential of this (α,d), we can expect that the contact point
between the ellipse E+(�t ) and C∞ is always close to either
x+ or x−, and that the local equilibrium can be retained.

V. NUMERICAL RESULTS

We show the numerical results of L (MAM) in Eq. (3.1),
ω = 〈�Ttot

Ttot
〉
�

(MAV) with �t in Eq. (3.3), Ph in Eq. (3.5), and
η in Eq. (3.6) for several parameter families of V0(x). We also
discuss the utility of the optimization strategy described in
Secs. IV A and IV B. The numerical simulation of Eq. (1.1)
was carried out using the second-order stochastic Runge-Kutta
method with a time increment of 0.005 (m = 1,2) or 0.002
(m = 3). The long time average, A(X,�t ), was obtained
by averaging 128 independent trials of the time series of
Ttot	 = 217. Throughout this paper, the parameters of Vh(x,t)
in Eq. (1.2) are set to h = 0.01 and 	 = 0.001; no load is
applied (I = 0); the fitting parameters in Eqs. (3.34), (3.35),

TABLE I. List of parameter families in the elliptic case (λ =
0). The families are labeled as in the first column, and their
key parameters are listed in the second and third columns. The
common parameters in each family are as follows: A1: (m,a,b) =
(2,1.8,1), A2: (m,d,α) = (2,d0.4π ,0.4π ), A3: (a,b,K,d,α) =
(1.8,1.0,0.102,d0.4π ,0.4π ), A4: (m,b,α) = (2,1,0.4π ). In A4, d is
determined by Eq. (4.14) for each (a,b,α). �V ≈ 0.15 is maintained
by modifying K (fifth and sixth columns) except for A3. d0.4π ≈
1.860 118.

Label Key param. Fig. 3 �V , K , and/or d

vals.

A1 α 0.03π (a) (K,�V,d) (0.0284,0.1500,d0.4π )
0.4π (b) (0.102,0.1498,d0.4π )
0.48π (c) (0.193,0.1501,2.1)

A2 (a,b) (1.8,1) (b) (K,�V ) (0.102,0.1498)
(2.7,1.5) (d) (0.0454,0.1500)
(3.6,2) (e) (0.0255,0.1500)

A3 m 1 (f) �V 0.1896
2 (b) 0.1498
3 (g) 0.1436

A4 a 1.2 (h) (K,�V ) (0.672,0.1501)
1.8 (b) (0.102,0.1498)
2.4 (i) (0.038,0.1495)

(3.38), and (3.40) are set to gL = 2.2, g′
L = 1.0, gO = 0.82gL,

and gV = 0.75.

A. Elliptic case (λ = 0)

We show the outcome of the optimization for the perfor-
mance indexes according to the parameter families A1–A4 in
Table I, and test the results in Eqs. (4.8) and (4.9). The contour
graphs of V0(x) for the parameter sets in Table I are displayed
in Fig. 3.

In parameter family A1, it is mainly α that is varied so that
the local minima are positioned near the x axis (α = 0.03π )
as in Fig. 3(a), the optimized position (α = 0.4π ) as in (b),
and near the y axis (α = 0.48π ) as in (c). In the second case,
the factor −x+ · n+ in I0(D) [Eq. (3.38)] is maximized with
the optimized position x+ in Eq. (4.4), and the parameter d

satisfies Eq. (4.14) [corresponding to Eq. (2.6) or Eq. (4.5)].
In contrast, in the first and third cases, α and d do not satisfy
Eq. (4.14). As in Figs. 3(a) and 3(c), neither E+ nor E+ are
tangent to C∞.

Figure 4 shows the plots of L, ω, Ph, and η for D in
parameter family A1. The sets of connected symbols and the
(dashed, solid, and dashed-dotted) curves represent the results
of the numerical simulations (Sim.) and the approximations
(Appr.), i.e., Eqs. (3.34), (3.35), (3.40), and (3.6), respectively
(see the legend box for the correspondences between the
parameters and the types of symbol or curve). Each of these
curves has a peak with respect to D that can be estimated
from the relation 	 ∼ W0 as the steepest point of the factor
W0/(	 + 4W0) in Eqs. (4.8)–(4.10). Comparing the peaks of
L (also ω and η) in the series of α, the highest one is found at
α = 0.4π , where d = d0.4π [for such comparisons, we attempt
to impose consistency on �V by modifying K (�V ≈ 0.15 in
Sec. V A)]. This confirms that the optimization for v1(x) (or
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FIG. 3. Contour graphs of V0(x) on {x||x| � 3.75,|y| � 2.5} in
the parameter families A1, A2, A3, and A4 in Table I. In (a)–(c), the
locations of the local minima differ (A1); in (b), (d), and (e), the shapes
of the elliptic valley have a similarity with the ratio of diameters as
1 : 2 : 3 (A2); in (f), (b), and (g), m = 1, 2, and 3 (A3); in (h), (b),
and (i), the eccentricities differ (A4). See the fourth column in Table I
for the correspondences. The solid and dashed closed curves indicate
C∞, E+ (ellipse circumscribed to C∞), and E+ (ellipse inscribed to
C∞), respectively. The arrows starting at the origin and ending at the
minimum and saddle (near the circumscribed and inscribed points)
indicate x+ (minimum) and x+ (saddle), respectively. The arrows
tangent to C∞ at x+ and x+ indicate n+ and n+, respectively.

α and d in it) via G1 [Eq. (4.4)] and G2 [Eq. (4.5) or G′
2 in

Eq. (4.7)] works well.
In parameter family A2, the major and minor radii of the

elliptic pathway of the valley are varied as (a,b) = (1.8,1),
(2.7,1.5), and (3.6,2) while retaining the similarity. Their cor-
responding potential landscapes are shown in Figs. 3(b), 3(d),
and 3(e). With the common parameters (m,α,λ) = (2,0.4π,0),
we set d as in Eq. (4.14). Thus, v1(x) is optimized so that
the factor −x+ · n+ is maximized. Figure 5 shows that the
peaks of L, ω, Ph, and η increase with the diameter of the
elliptic pathway. These are consistent with Eqs. (4.8)–(4.13).
Here, it should be noted that as the diameter of the pathway
increases, the typical magnitude of Vh(x,t) for �V increases.
Then, in order to maintain the local equilibrium condition, it
is necessary to decrease h and 	 with the diameter.

In parameter family A3, only m is increased as m ∈
{1,2,3}. The corresponding potential landscapes are shown
in Figs. 3(f), 3(b), and 3(g), respectively. In this family, the
intersection of the valley narrows for large m, whereas the
diameters of the pathway are nearly equal. In Fig. 6, we can

see that for both numerical and approximation results, each
curve of L, ω, Ph, and η is likely to approach a certain curve
as m increases. The approximation result of m = 1 deviates
exceptionally from such an asymptotic approach. For this
reason, we consider that the influence of the external field on
the thermal equilibrium condition is relatively large at m = 1
because of the smaller curvature in the intersection of the
valley.

In parameter family A4, the eccentricity of the elliptic
pathway is increased as a

b
= 1.2 [Fig. 3(h)], 1.8 [(b)], and

2.4 [(i)]. Each value of d obeys Eq. (4.14), in which case
−x+ · n+ is maximized. In Fig. 7, we can see that the peaks
of L, ω, Ph, and η increase with a

b
. These are consistent with

Eqs. (4.8)–(4.13). As mentioned previously, for consistency
with the local equilibrium condition at larger a

b
, it is necessary

to keep 	 and h sufficiently small.
We make two remarks about the comparison of the

approximation and simulation results. First, our approximation
has the adjustable parameters gL, g′

L, gO , and gV for absorbing
complexities in the coarse-grained approach, which we have
determined by eye so that the approximations agree as much as
possible with all the simulation results. Therefore, rather than
focusing on the difference in height between the two results
for each individual parameter, it is reasonable to compare them
in relation to the similarities among the plotted curves in a
parameter family. From this respect, regarding the relationship
between the peak heights in Figs. 4–7, the approximation is
consistent with the simulation results except for the case of
m = 1 in Fig. 6. As mentioned above, if the local equilibrium
condition holds well, our approximation can have such a
consistency. Second, it can be observed that the agreement
between the two results seems better for the lowest curves
in Figs. 4 and 7. We consider this to be a visual effect
whereby, when observing the upper and lower curves for
a couple of parameter sets in a panel in these figures, the
difference between the two results for the lower curve is more
inconspicuous than that for the upper one.

B. Weakly distorted elliptic case (λ �= 0)

Outcomes of the optimization described in Sec. IV B for
V0(x) of nonelliptic pathway (C∞) are shown with the results
of the performance indexes according to the parameter families
B1–B4 in Table II. First, let us observe the effect of the
relaxation for d in Eq. (4.17). In parameter family B1, d is
varied as d∗, 2, and 3, i.e., the first one is determined by
G3 [Eq. (4.15)] together with α∗, and the second and third
ones are increased from d∗ in accordance with the moderation
procedure [Eq. (4.17)] followed by readjustment of α through
G2. To see the curves C∞, E+, and E+ in Figs. 8(a), 8(b),
and 1, E+ and E+ closely contact to C∞ for d = d∗ [Fig. 8(a)]
and, as d is increased, the space between E+ and E+ becomes
wider [Figs. 8(b) and 1].

The simulation results of L, ω, and η in Fig. 9 demonstrate
that the curves of d = 2 are higher than those of d = d∗ ≈
1.900 around the peak region. Turning to the plot of Ph, the
curve of d = d∗ has another peak around D ≈ 0.006, while the
others have only a single peak. A reason for this new peak in
Ph is, as mentioned in Sec. IV B, as follows. In the presence of
time-dependent fields, instead of the curves E+ and E+, which
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FIG. 4. (a) Scaled mean angular momentum L/h2, (b) scaled mean angular velocity ω/	, (c) scaled input power Ph/(h2	), and
(d) efficiency η vs noise intensity D. As shown in the legend box in the lower-right panel, connected symbols (�, •, and �) and (dashed, solid,
and dotted) curves represent the numerical (Sim.) and approximation (Appr.) results under the potentials of parameter family A1, which are
shown in Figs. 3(a)–3(c).

are defined for m → ∞ and h = I = 0, we should consider the
temporally moving curves E∗(�t ) and E∗(�t ) with v′

1(x,�t )
in Eq. (4.16). The motion of the circumscribed point of E∗(�t )

may temporally create another minimum at a point distant from
both x+ and x−, and then may induce a jump of state. Such
a jump motion may expend power associated with a small
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FIG. 5. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family A2 [Fig. 3(b), 3(d), and 3(e)].
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FIG. 6. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family A3 [Figs. 3(b), 3(f), and 3(g)].

amount of thermal activation. We can thus relate such a power
consumption to the new peak in Ph. This also suggests that
the input power is not applied efficiently to the rotation while
employing v1(x) such that E+ and E+ enclose C∞ without
sufficient room. In contrast, when making a suitably loose gap
between E+ and E+ with ε in Eq. (4.17), the movement of

the minimum can be restricted near either x+ or x−, in which
case the local equilibrium is maintained. We then expect that
incorporating the moderation brings a better efficiency. This is
consistent with the numerical results for η in Fig. 9.

We should also note that the presented approximation
cannot predict the extra peak of Ph. This is because we have
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FIG. 7. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family A4 [Figs. 3(b), 3(h), and 3(i)].
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TABLE II. List of parameter families in weakly distorted
elliptic case. The first and second columns consist of labels
and key parameters, respectively. For values of α and d in
the sixth column, those with an asterisk “∗” were determined
through G3 [Eq. (4.15)]; without an asterisk, d is modified as
d = d∗ + ε with ε > 0, and then α is determined through G2.
The common parameters for each family are as follows: B1:
(m,a,b,e,f,λ,β) = (2,1.8,1,8,1,0.27,0.05π ); B2: (m,a,b,f,λ,β) =
(2,1.8,1,1,0.27,0.05π ); B3: (m,a,b,e,f,β) = (2,1.8,1,8,1,0.05π );
B4: (m,a,b,e,f,λ) = (2,1.8,1,8,1,0.27). �V = 0.15 is maintained
by modifying K , which is more precise than the elliptic case.

Label Key param. vals. Figs. α and/or d

B1 d 1.9000∗ Fig. 8(a) α 0.4766π∗
2 Fig. 8(b) 0.4095π

3 Fig. 1 0.3392π

B2 e 2 Fig. 8(c) (α,d) (0.4824π∗,1.7384∗)
3 Fig. 8(d) (0.4785π∗,1.8270∗)
8 Fig. 8(a) (0.4766π∗,1.9000∗)

B3 λ 0.1 Fig. 8(e) (α,d) (0.4902π∗,1.8335∗)
0.1 (0.4249π,1.85)
0.27 Fig. 8(a) (0.4766π∗,1.9000∗)
1.2 Fig. 8(f) (0.4297π∗,2.4091∗)

B4 β 0 Fig. 8(g) (α,d) (0.4639π∗,1.8784∗)
0 (0.4150π,1.9)

0.05π Fig. 8(a) (0.4766π∗,1.9000∗)
0.05π (0.4238π,1.95)
0.15π Fig. 8(h) (0.4980π∗,1.8133∗)

assumed that the local equilibrium always holds around the
minima of V0(x), and have ignored any temporally induced
current due to the creation of a temporal minimum. Thus,
for the case of V0(x) optimized with the moderation, we
can assume a local equilibrium, and basically regard the
approximation to be consistent with the results of numerical
simulation.

We give a more detailed view on the marginal behaviors
of η in the optimization for v1(x) under the procedure G3

followed by the moderation Eq. (4.17). Figure 10(a) shows
the graphs of η versus D for a series of d from 1.90
(the case of d = 1.90∗ ≡ d∗ and α = 0.48π∗ ≡ α∗ in the
parameter family B1 in Table II) to 1.97, where, for each
d, α is simultaneously readjusted in accordance with G2,
i.e., α = arg max

0�α<π/2
(−x+ · nv), and �V = 0.15 is retained by

modulating K . These curves indicate that the peak is higher
as d is closer to d∗, but drops at d = d∗. Figure 10(b) shows
the dependence of the peak height on d in the aforementioned
settings of parameters. The solid curve thus may approximate
max
D,α

η for d > d∗, whereas it is not defined for 1 � d < d∗,

in which no optimized value of α satisfying G2 exists.
One can see that the numerical results (symbols) follow
the solid curve, except for the difference in their heights.
Figure 11 shows (a) the graphs of η versus D as only α

varies around α ≈ 0.42π with d = 1.95, �V = 0.15 and
(m,a,b,e,f,λ,β) = (2,1.8,1,8,1,0.27,0.05π ), and (b) max

D
η

over the range of α treated in the panel (a). Recalling that the
referenced parameters α ≈ 0.42π and d = 1.95 (filled circles
or solid curve) are obtained in the moderation procedure for
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FIG. 8. Contour graphs of V0(x) on {x||x| � 2.6,|y| � 1.664} in
the parameter families B1, B2, B3, and B4 in Table II, and the curves
C∞, E+, and E+. In (a) and (b), d = d∗ and d∗ + ε (B1); in (c) and
(d), modulation of the fourfold symmetry ( e

f
) differs (B2); in (e) and

(f), λ differs (B3); in (g) and (h), β differs (B4). See the fourth column
in Table II for the correspondencies.

the case of α∗ > 0.42π and d∗, there is a possibility of raising
the peak of η, i.e., max

D
η, by increasing α from α ≈ 0.42π .

However, in the numerical results (symbols), as α is increased,
max

D
η soon plateaus and goes down for α � 0.45π . For α <

0.42π , the peak diminishes monotonically; this implies that α

moves away from the optimized point on d = 1.95. The solid
curve for max

D
η in Fig. 11(b) has a discontinuity at α ≈ 0.49π ,

where the original two minima of V0(x) switch to another two
minima [the number of minima of V0(x) changes as 2, 4,
and 2 for α < 0.47π , 0.47π � α � 0.49π , and 0.49π < α,
respectively], therefore, the curve is drawn only for the
domain lower than the singular point (α ≈ 0.49π ). Around
that point, it is expected that the local equilibrium assumption
breaks, the rotational performance drops as mentioned above,
and also our approximation becomes inconsistent with the
original assumptions such that the potential always has two
minima. Consequently, these results reveal that the moderation
procedure works well with a small relaxation parameter.

In parameter family B2, e is increased; with e
f

[see
Eq. (2.1)], we can enhance the fourth-order circular harmonic
distortion of the shape of the pathway along the potential
valley. It is deformed gradually from an ellipse as e

f
differs

from one. In Fig. 8, we see the shapes of the pathway for
e = 2 (c), 3 (d), and 8 (a). In Fig. 12, the approximation curves
indicate that the indexes rise as e increases, and the numerical
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FIG. 9. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family B1 [Figs. 8(a), 8(b), and 1].

results seem to follow such a tendency, although it is not as
clear. The emergence of the peak at D ≈ 0.006 in Ph is, as
mentioned above, because of the fact that (α,d) is determined
by G3 without the moderation. As in the figure legends, we
add an asterisk “∗” to the parameter value(s) for which (α,d)
is determined in G3 (see Table II).

In parameter family B3, λ in Eq. (2.1) is increased as
0.1, 0.27, and 1.2. As shown in Figs. 8(e), 8(a), and 8(f) for
λ = 0.1, 0.27, and 1.2, the fourfold symmetric modulation on

the pathway is conspicuous with λ. In Fig. 13, we see that
the peaks of L, ω, Ph, and η decrease with λ, except for the
case λ = 0.1 (filled circles) in which (α,d) is optimized with
the modulation. A characteristic of this decrease is that as
λ is increased, the factor −x+ · n+ increases; however, the
other factor Hn increases simultaneously, in which case all the
performance indexes decrease.

In parameter family B4, β is varied as β = 0, 0.05π , and
0.15π ; with β, the axis of the fourth-order harmonic distortion
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FIG. 10. (a) η vs D for a series of d . For each of d ∈ {1.90∗,1.91,1.93,1.95,1.97}, retaining �V = 0.15 and (m,a,b,e,f,λ,β) =
(2,1.8,1,8,1,0.27,0.05π ), α is optimized via G2; particularly, in the case of d = 1.90∗, which being in the parameter family B1 (the first
line in Table II), (α,d) is optimized via G3. (b) max

D
η as a function of d for d � 1.90. As d varies, α is optimized simultaneously via G2

with the other parameters being the same as those in (a). For 1 � d < 1.90, there is no optimized value of α, and the curve is not drawn. The
correspondences between the parameters and the types of symbol (numerical simulation results) and curve (approximation results) are shown
in the legend boxes.
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FIG. 11. (a) η vs D for a series of α from 0.35π to 0.51π . (b) max
D

η as a function of α over the range treated in (a). While α varies, d is

fixed at 1.95 [i.e., v1(x) is not optimized], �V = 0.15 is retained, and (m,a,b,e,f,λ,β) = (2,1.8,1,8,1,0.27,0.05π ).

rotates. In Figs. 8(g), 8(a), and 8(h) for β = 0, 0.05π , and
0.15π , respectively, we can see such a rotation. Figure 14
shows that L, ω, and η have higher peaks for β = 0.05π as
v1(x) is optimized with the moderation. Finally, let us compare
the best result in the elliptic case (λ = 0) in Sec. V A with that
in the parameter families B1–B4 under the same conditions
of (m,a,b) with respect to the peak of η. For the former, see
the case of (m,a,b) = (2,1.8,1), i.e., the curve of a = 1.8 in
Fig. 7 (or that of m = 2 in Fig. 6 or that of a = 1.8 in Fig. 5).
We can see that η for β = 0.05π in Fig. 14 has a higher peak,
η ≈ 0.038 × 10−2, than the best one, η ≈ 0.023 × 10−2, in the
elliptic case. This result suggests that the term λ can contribute

to a better efficiency. It also implies that the efficiency could
be improved by designing v0(x) and v1(x) more carefully.

So far, maximizing the performance indexes under the
RDDF [Eq. (1.2)] has been considered by optimizing V0(x);
however, the value of η is very small. Finally, let us discuss
the reason for such small efficiency, and a possible way of
remodeling to improve it. In the present model, for a small h,
the field hN t has a role in modulating the ratchet (sawtooth)
profile along the valley by varying the positions of the minima
and saddle (or ridge curves) of V (x,t) and the slopes around
the minima. This eventually causes net rotational motion
because of the circular ratchet structure of V0(x). However,
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FIG. 12. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family B2 [Figs. 8(c), 8(d), and 8(a)].
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FIG. 13. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family B3 [Figs. 8(e), 8(a), and 8(f)].

because the primary action of the field is to cause a linear
displacement of the minima and saddles, not all the power
of the field is applied to the unidirectional rotational motion;
instead, a great deal of the power is scattered to other motions
(i.e., rocking motions without bias in the rotational and radial
directions) [25]. Thus, we can conclude that the main reason

for the small efficiency lies in the form of the field. The
problem of improving the efficiency within the nonbiased
fields can therefore be recast into a problem of designing the
time-dependent part of the potential, Vh(x,t), or external fields
to maximize its power conversion efficiency. Exploiting an
idea from one-dimensional ratchet models that incorporate a
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FIG. 14. (a) L/h2, (b) ω/	, (c) Ph/(h2	), and (d) η vs D under the potentials of parameter family B4 [Figs. 8(g), 8(a), and 8(h)].
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mechanism for avoiding such a rocking motion with sawtooth
type potentials that are shifted randomly back or forth by an
appropriate distance [35–37], we may consider a form of the
field as f h(x,t) = hq(x,t)∂xθ (x). This represents a circular
field around the origin, the direction of which varies randomly
with the spatial dependency of q(x,t). We expect that this can
reduce the rocking motion in the radial direction, and may
also suppress such diffusive motion in the rotational direction
if we appropriately design the spatial and temporal variations
of q(x,t) in accordance with V0(x) imposing a constraint that
the spatial average of f h(x,t) has no bias.

VI. DIRECTION FOR THREE-TOOTH RATCHET MODEL

So far, we have dealt with optimizing the two-tooth ratchet
potential in Eqs. (1.10)–(2.2). However, our approach could be
applied to more general ratchet potentials. Here, we show how
a similar approach holds for a three-tooth ratchet potential of
the same form as V0(x) in Eq. (1.10).

It is necessary that v0(x) and v1(x) have threefold symme-
try. For m � 1, the curve C∞ : {x|v0(x) = 1} corresponds to a
potential valley, and the region of v0(x) < 1 must be a simply
connected space. Therefore, a simple expression is proposed
as

v0(x) ≡ |x|2 + a|x|4 + b(e0 · x)(ĝ1e0 · x)(ĝ2e0 · x), (6.1)

where a is positive, so that we have v0(x) → ∞ for |x| → ∞,
and |b| is sufficiently small for such C∞ of a simply connected
curve. Term ĝ1 (ĝ2) represents a matrix for a rotation of angle
+ 2π

3 (− 2π
3 ):

ĝ1 ≡ 1

2

(−1 −√
3√

3 −1

)
, ĝ2 ≡ 1

2

( −1
√

3
−√

3 −1

)
. (6.2)

The third term adds a third circular harmonic in C∞; e0 is a
reference axis on the azimuthal angle about the origin. Note
that as e0 rotates, C∞ rotates by the same angle about the origin.
Without loss of generality, we have b > 0 and e0 = (1,0)T.
Similarly, v1(x) is given as

v1(x) ≡ |x|2 + c|x|4 + d(e1 · x)(ĝ1e1 · x)(ĝ2e1 · x) (6.3)

with a reference axis e1 ≡ (cos α, sin α)T and positive values
c and d.

Figure 15 shows a contour graph of the three-tooth ratchet
potential of Eqs. (1.10) and (6.1)–(6.3). The curves E+ and
E+ on the graph represent the circumscribed and inscribed
curves of E : {x|v1(x) = E} to C∞ with E = 1.62 and 0.67,
respectively. The externally (internally) tangent points corre-
spond to the local minima (saddles) of V0(x). For m → ∞,
these minima and saddles satisfy Eq. (2.7).

The optimization of L, ω, and η can be carried out through
the maximization of a factor such as I0(D) [Eq. (3.38)], which
can be obtained by following the procedure in Appendix D.
Similarly, let us assume that the factor −x∗ · n(x∗) at a local
minimum point x∗ affects the maximization of I0(D) more
than it does Hn. We then employ the strategy to maximize
−x · nv(x) using v0(x) and v1(x) with the assumption that
m � 1. In particular, letting p be a target parameter in v1(x)
for the optimization, the problem is to solve Eqs. (4.1) and

x

y

O

C∞

E+

E+

FIG. 15. Contour plot of a three-tooth ratchet potential with
skeletons of C∞ : {v0(x) = 1}, E+, and E+. The parameters of
V0(x) of Eqs. (1.10) and (6.1)–(6.3) are (m,a,b,c,d,K,α) =
(2,1,3,1,2,1,0.52π ). E+ and E+ correspond to the curves {v1(x) =
E} for E = 1.62 (externally tangent case) and 0.67 (internally tangent
case), respectively.

(4.2); the actual procedure follows Eq. (4.4) in Sec. IV A as

x∗ = arg max
x∈C∞

{−x · nv(x)}, (6.4)

and then, with this x∗, we find such p as satisfies Eqs. (2.7)
and (4.2) [replace x∗ with x+].

As described in Sec. IV B, if we choose v1(x) to be a
different functional form from v0(x), we can further arrange
the values of target parameters in v1(x) to decrease g(x) within
a suitable range. For example, we can consider a v0(x) that has
the sixth circular harmonic deformation. In such a case, as in
Sec. IV B, letting α and d in v1(x) be target parameters, we
first determine α∗ and d∗ as

(α∗,d∗) = arg min
0�α< π

3 ,d(α)
E+, (6.5)

where d(α) means a function that relates α to d through
Eq. (2.7). Next, to prevent the creation of temporal minima,
we moderate the above minimization by replacing d with d =
d∗ + ε (ε > 0), and revise α to satisfy Eq. (2.7) with this d. We
expect this procedure to bring about a robust local equilibrium
for external fields and to reduce the power consumption for
rotation. By observing the numerical result for Ph, we can
confirm whether the local equilibrium has been retained.

VII. SUMMARY

The underlying themes in this study have been to elucidate
the types of ratchet model (as combinations of the 2D
ratchet potential and the unbiased randomly varying field)
that produce a robust net rotation, and to determine how to
maximize the rotational output and efficiency. In this paper,
we have shown that the proposed ratchet model, consisting of
a 2D two-tooth ratchet potential and an RDDF, generates a
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net rotation in the direction of the ratchet potential, i.e., the
chirality. The 2D three-tooth ratchet model also possesses such
a property [24,25].

The mechanism of net rotation is not so obvious because the
deformation along the valley in the 2D ratchet model can be
composed of various types of deformation. The mathematical
origin of the net rotation can be found in Eq. (C14), i.e., L,ω ∝
ln [P (μ,t)P (−μ,t)

Q(μ,t)2 ]Jμ(t), in which Jμ(t), the barrier-crossing
current, and the multiplied factor, the entropylike measure for
the deviation of the positional distribution from the equilibrium
one, are correlated as a result of the rectification effect due to
the chirality, and the average of these products remains a bias
[Eq. (C16)].

Another explanation uses a ratchet exposed to an external
field made of superimposed uniaxially polarized fields within
the same 2D plane. The mechanism for the net rotation of
a two-tooth ratchet under a uniaxially polarized randomly
varying field can be explained using the mechanism for
the propeller rotation of a “gee-haw whammy diddle” or
“propeller stick” (cf. [23]). Employing M copies of such a
uniaxially polarized field, we orient their angles of polarization
to φk = 2πk

M
(0 � k < M), respectively, whereby the ratchet

is exposed to the field
∑

k hk(t)Nk [cf. Eq. (1.2)], where
Nk = (cos φk, sin φk) and hk(t) is a unbiased dichotomic noise,
independent of the others and varying between − h√

M
and h√

M

with mean frequency 	. Thus, this field mimics the RDDF.
Then, as a total of the propeller-stick-like responses to the
individual fields, we can expect this ratchet to yield a net
rotation in the direction determined by its chirality.

The optimization of the 2D ratchet potential has been
considered by employing the redesigned form of the ratchet
potential in Eq. (1.10). In the proposed potential, the parameter
m controls the sharpness of the valley; thereby, for m � 1, the
two curves with C∞ : {x|v0(x) = 1} and E : {x|v1(x) = E}
determine a skeleton of the 2D ratchet potential, and the
eigenvalues of the Hessian matrix are expressed approximately
in terms of the quantities derived from C∞ and E (Sec. II).
These enable us to easily design a strategy for maximizing
the performance indexes [L (MAM), ω (MAV), and η

(efficiency)].
From the analytic expressions for L and ω (Secs. III C),

we have specified the factor −x+ · n+ as the main objective
function to maximize, and Hn as the optional one to mini-
mize within the appropriate range for the local equilibrium
condition. Quantities −x+ · n+ and Hn are relevant to the
asymmetry of the potential profile along the pathway and
the curvature at the potential minimum, respectively. Through
the optimization of v1(x), the procedure to maximize the
main factor −x+ · n+ consists of G1 [Eq. (4.4)] and G2

[Eq. (4.5)] (Sec. IV A), and the one to minimize Hn consists
of G3 [Eq. (4.15)] and its moderation [Eq. (4.17)] (Sec. IV B).
The moderation of G3 is required to prevent the creation
of temporal minima. We reason that such temporal minima
cause extra dissipation that is observed as another peak in
Ph; the relaxation parameter ε [Eq. (4.17)] is determined
so that Ph has no additional peak in the plot for the noise
intensity D. Although the proposed optimization method has
been implemented on the basis of the two-tooth ratchet model,
it is applicable to three-tooth or other similar ratchet models
(Sec. VI) if G2 is generalized as in Eq. (2.7).

The outcomes of the optimization have been shown in
Secs. IV A and V for the cases of C∞ given by elliptic
or nonelliptic curves. The analytical expressions for the
maximized L, ω, and η are shown in the elliptic case
(Secs. IV A and D). Consistent with the numerical simulation
results in Sec. V A, these suggest that the peaks of L, ω, and η

increase as the diameter or eccentricity of the ellipse becomes
larger. A note for applying such larger values of diameter
or eccentricity is that h and 	 must be sufficiently small to
retain the local equilibrium. In the nonelliptic case (Sec. IV B),
the optimization procedure G3 with the moderation is useful;
compared with no moderation, it improves the efficiency with
a suitable choice of the relaxation parameter. In comparing
the efficiency between the elliptic (λ = 0) and nonelliptic
(λ �= 0) cases under the same condition of (m,a,b), we have
seen that the best result in the latter case exhibits a higher
peak than the best one in the former. This suggests that a
more sophisticated design of v0(x), incorporating higher-order
harmonic deformations, could improve efficiency.
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APPENDIX A: CORRELATION MATRIX OF RANDOMLY
DIRECTED FORCE

We consider the time correlation matrix for N t =
(cos �t, sin �t )T, which changes its direction randomly at
the rate 	 independent of the current direction. The angle
�t ∈ [0,2π ) is a stationary Markov jump process, whose
conditional probability density for the transition from �t =
φ′ during an infinitesimal interval �t > 0 obeys p�(φ,t +
�t |φ′,t) = (1 − �t	)δ(φ − φ′) + �t	p�(φ) + o(�t) with
non-negative p�(φ) satisfying

∫ 2π

0 p�(φ)dφ = 1 and the
Dirac’s δ function δ(·). This leads to the master equation for
p�(φ,t |φ′,t ′) (t � t ′) as

∂tp�(φ,t |φ′,t ′) = −	p�(φ,t |φ′,t ′) + 	p�(φ). (A1)

It is obvious that the stationary probability density of �t

coincides with p�(φ).
The master equation is solved as

p�(φ,t |φ′,t ′) = p�(φ) + e−	(t−t ′){δ(φ − φ′) − p�(φ)}.
(A2)

For At ≡ A(�t ) and Bt ≡ B(�t ), where A(φ) and B(φ) are
any functions of φ, the statistical average of AtB0 (t � 0) with
respect to {�t } reads as

〈AtB0〉� =
∫ 2π

0
dφ

∫ 2π

0
dφ′A(φ)B(φ′)p�(φ,t |φ′,0)p�(φ′)

=
∫ 2π

0
dφ

∫ 2π

0
dφ′A(φ)B(φ′)

× [p�(φ) + e−	t {δ(φ − φ′) − p�(φ)}]p�(φ′)

= (1 − e−	t )〈A0〉�〈B0〉� + 〈A0B0〉�e−	t , (A3)
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which leads to the time correlation function for t � 0:

〈AtB0〉� − 〈A0〉�〈B0〉� = e−	t {〈A0B0〉� − 〈A0〉�〈B0〉�}.
(A4)

The rotational symmetry for N t , i.e., p�(φ) = 1
2π

, is further
assumed in the paper, which leads to 〈cos �0 sin �0〉� =
〈sin �0 cos �0〉� = 0 and 〈cos �0 cos �0〉� =
〈sin �0 sin �0〉� = 1/2, and thus, by Eq. (A4),
〈N t NT

0 〉
�

= (e−	t/2)1̂ [Eq. (1.3)].

APPENDIX B: TRANSITION RATES

The transition rate W (σ,μ,t) [σ,μ ∈ {+,−}] in Eq. (3.24) is
derived based on Langer’s method [45,46]. Let B̃μ

ε be a narrow
band region with thickness 2ε inside which the ridge curve B̃μ

is contained (see Fig. 2, or Fig. 6 in [25]). In the regions
B̃μ

ε , the current density J(x,t) is concentrated by bottleneck
structures, whereas, in the central region of Dμ

ε , J(x,t)
can be regarded approximately as vanishing. Thus, we may
specify locally nonequilibrium or equilibrium regions either
inside or outside B̃μ

ε . On each region, we assume J(x,t) as
follows [25]:

(a) In the domain Dμ
σ complementary to B̃μ

ε , i.e., Dμ
σ \ B̃μ

ε ,
we assume J(x,t) ≈ 0, i.e., p(x,t) approximately obeys the
thermal equilibrium probability density function. Then, we
have p(x,t) ≈ e−V (x,t)/DeV ( y,t)/Dp( y,t) for x, y ∈ Dμ

σ \ B̃μ
ε .

From Eq. (3.12), this leads to

P (σ,μ,t) ≈
∫

x∈D
μ
σ

dx e−V (x,t)/DeV ( y,t)/Dp( y,t), (B1)

where we assume p(x,t) ≈ 0 for x ∈ B̃μ
ε . Also, we have

P (σ,t) ≈
∫

x∈Dσ

dx e−V (x,t)/DeV ( y,t)/Dp( y,t). (B2)

(b) Consider a family of curves that are parallel to the curve
B̃μ in B̃μ

ε , and unit vectors τ̃μ
σ (x) and ñμ

σ (x) that are tangent and
normal, respectively, to such a curve passing through a point
x ∈ B̃μ

ε . Then, we assume that a current can arise along the
vector field ñμ

σ (x), while an equilibrium condition is retained
along the direction τ̃μ

σ (x). Namely, we have τ̃μ
σ (x) · J(x,t) =

0 and J̃μ ≡ ñμ
σ (x) · J(x,t) in which J̃μ is a constant on a curve

perpendicularly crossing the family of the curves parallel to
B̃μ (J̃μ depends on the coordinate on B̃μ). Therefore, Jμ(t) in
Eq. (3.16) reads as

Jμ(t) ≈ (δσ,−μ − δσ,μ)
∫

x∈B̃μ

dx J̃μ. (B3)

To estimate the integration in Eq. (B1), let us define a local
coordinate system x = xσ + σμ(ξτ σ + ηnσ ) near xσ with
the unit tangential and normal vectors to Bσ , τ σ , and nσ , at
x = xσ , as eigenvectors of Ĝ(xσ ) = ∂x∂

T
x V (xσ ,t). Here, the

values of σ and μ, “+” and “−”, are mapped to the numbers
+1 and −1, respectively. Then, we expand V (x,t) as

V (x,t) ≈ V (xσ ,t) − μ f σ · (ξτ+ + ηn+)

+ 1
2�τ (xσ )ξ 2 + 1

2�n(xσ )η2, (B4)

where f σ ≡ f I (xσ ) + hN t . Note that the eigenvalues of
Ĝ(xσ ), �τ (xσ ), and �n(xσ ) depend on I . Since h and D

are assumed to be small, neglecting the terms of O(h2), we
estimate the integration in Eq. (B1) as∫

x∈D
μ
σ

dxe−V (x,t)/D

≈ e−V (xσ ,t)/D
∫ ∞

0
dη

∫ ∞

−∞
dξe−�τ (xσ )ξ 2+�n(xσ )η2/2D

×
(

1 + μ f σ · n+
D

η

)

≈ e−V (xσ ,t)/D

2

√
2πD

�τ (xσ )

(√
2πD

�n(xσ )
+ 2μ f σ · n+

�n(xσ )

)
,

(B5)

where we have used the Gaussian integral approximation by
the replacement

∫
x∈D

μ
σ
dx → ∫ ∞

−∞
∫ ∞

0 dξdη.
Substituting Eq. (B5) in Eqs. (B1) and (B2), we obtain

P (σ,t) ≈ 2πD√
�τ (xσ )�n(xσ )

e−V (xσ ,t)/DeV ( y,t)/Dp( y,t), (B6)

P (σ,μ,t) ≈ Q(μ|σ,t)P (σ,t), (B7)

Q(μ|σ,t) ≈ 1

2

(
1 + 2μ f σ · n+√

2πD�n(xσ )

)
. (B8)

Similarly, on the local coordinate system near x̃μ ∈ B̃μ,
x = x̃μ + ξ τ̃μ

σ + ηñμ
σ , where τ̃μ

σ ≡ τ̃μ
σ (x̃μ) and ñμ

σ ≡ ñμ
σ (x̃μ)

(see Sec. III A), we expand V (x,t) as

V (x,t) ≈ V (x̃μ,t) + Vτ (ξ,t) + Vn(η,t), (B9)

Vτ (ξ,t) ≡ 1
2�τ (x̃μ)ξ 2, Vn(η,t) ≡ 1

2�n(x̃μ)η2. (B10)

Because τ̃μ
σ · J(x,t) = 0, or

0 = [−∂ξV (x,t)]p(x,t) − D∂ξp(x,t), (B11)

then by separation of variables, we have p(x,t) ≡
exp [−Vτ (ξ,t)

D
]pn(η,t) for x ∈ B̃μ

ε .
Multiplying J̃μ = ñμ

σ (x) · J(x,t) by eVn(η,t)/D , and integrat-
ing over η in the range [−ε,ε], we obtain∫ ε

−ε

dη eVn(η,t)/DJ̃μ

=
∫ ε

−ε

dη eVn(η,t)/D{[−∂ηV (x,t)]p(x,t) − D∂ηp(x,t)}.

(B12)

From the assumption for J̃μ, this leads to

J̃μ = D∫ ε

−ε
dy eVn(y,t)/D

× exp

[−Vτ (ξ,t) + Vn(η,t)

D

]
pn(η,t)

∣∣∣∣
η=−ε

η=ε

. (B13)

From Eq. (B6), we have

eV ( y,t)/Dp( y,t)| y=x̃μ+εμñσ
≈

√
�τ (xμσ )�n(xμσ )

2πDe−V (xμσ ,t)/D
P (μσ,t).

(B14)
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Applying this to eVn(η,t)/Dpn(η,t)|η=−ε

η=ε =
e{V ( y,t)−V (x̃μ,t)}/Dp( y,t)| y=x̃μ−εμñσ

y=x̃μ+εμñσ
in Eq. (B13), we obtain

J̃ μ = Wξ (σ,μ,t)P (−σ,t) − Wξ (−σ,μ,t)P (σ,t) (B15)

with

Wξ (σ,μ,t) ≡ 1

2π

√
�τ (x−σ )�n(x−σ )∫ ε

−ε
dy eVn(y,t)/D

× exp

{
V (x−σ ,t) − Vτ (ξ,t) − V (x̃μ,t)

D

}
.

(B16)

From Eqs. (B3) and (B16), the transition rate W (σ,μ,t) in
Eq. (3.23) is found to be

W (σ,μ,t) ≈ 1

2π
e−[V (xμ,t)−V (x−σ ,t)]/D

×
√

�τ (x−σ )�n(x−σ )|�n(x̃μ)|
�τ (x̃μ)

. (B17)

Here, we have approximated
∫ ε

−ε
dy eVn(y,t)/D

and
∫

x∈Bμ dξ e−Vτ (ξ,t)/D with the Gaussian

integrals
∫ ∞
−∞ dη e�n(x̃μ)η2/(2D) =

√
2πD

|�n(x̃μ)| and∫ ∞
−∞ dξ e−�τ (x̃μ)ξ 2/(2D) =

√
2πD

�τ (x̃μ) , respectively. We have

also replaced V (x̃μ,t) with V (xμ,t), because, from
x̃μ − xμ ∼ O(h), V (x̃μ,t) = V (xμ,t) + O(h2). Then we
obtain Eq. (3.24).

APPENDIX C: LINEAR RESPONSE APPROXIMATIONS

In this section, Jμ(t), P (σ,t), and Q(μ,t), which are
required in the calculations for L, ω, and Ph, are estimated
within a linear response approximation for small h and I . For
those estimations in O(h) and O(I ), we employ

∂tP (σ,μ,t) ≈ δσ,−μJμ(t) − δσ,μJμ(t), (C1)

assuming Jμ
σ (t) ∼ O(h2) [which is confirmed later in

Eq. (C16)] in Eqs. (3.21) and (3.22). We expand P (σ,t) and
W (σ,μ,t) in Eqs. (3.23) and (3.24) as

P (σ,t) ≈ P0(σ ) + P1(σ,t), (C2)

W (σ,μ,t) ≈ W0

[
1 + h

D
N t · (xμ − x−σ )

− I
θ (xμ) − θ (x−σ )

2πD

]
, (C3)

where the first and second [and the third in Eq. (C3)] terms are
of zeroth and first order in h and I , respectively; normalizations∑

σ P0(σ ) = 1 and
∑

σ P1(σ,t) = 0 are assumed. Term W0,
defined in Eq. (3.36), represents the rate of barrier-crossing
events under the thermal activation in the absence of the
load and the external field. In the expansion for Eq. (C3),
the eigenvalues of Ĝ(x) in Eq. (3.24) are replaced with those
of ∂x∂

T
x V0(x), for simplicity.

Substituting Eqs. (C2) and (C3) into Eq. (3.23), we obtain
P0(σ ) = 1/2 from the zeroth-order equality, and, up to O(h)

and O(I ),

Jμ(t) ≈ W0

[
P1(μ,t) − P1(−μ,t) − μh

D
N t · x+ − I

4D

]
.

(C4)

Note that we have x−σ = −xσ from the twofold symmetry,
and, since θ (xμ) − θ (x−σ ) = ∠x−σ Oxμ denoting the angle
from x−σ to xμ, ∠xμOxμ > 0 and ∠x−μOxμ < 0, we have
θ (xμ) − θ (xμ) − [θ (xμ) − θ (x−μ)] = π .

Applying this to ∂tP1(σ,t) ≈ J−σ (t) − J σ (t) from
Eq. (C1), we find

P1(σ,t) = σ

∫ t

−∞
dsK(t − s)Fs, (C5)

where K(t) = e−4W0t (t � 0) and Ft = 2hW0
D

N t · x+. Hence,
we obtain

P (σ,t) ≈ 1

2

[
1 + 2σ

∫ t

−∞
dsK(t − s)Fs

]
. (C6)

Assuming the local equilibrium around the potential minima,
P (σ,μ,t) and Q(μ|σ,t) are found as

P (σ,μ,t) ≈ Q(μ|σ,t)P (σ,t), (C7)

Q(μ|σ,t) ≈ 1

2

(
1 + 2μ f σ · n+√

2πD�n(xσ )

)
, (C8)

where f σ ≡ f I (xσ ) + hN t [Eq. (B8) in Appendix B].
Therefore, substituting Eqs. (C6) and (C8) into Q(μ,t) =∑

σ∈{μ,−μ} Q(μ|σ,t)P (σ,t), we find

Q(μ,t) ≈ 1

2

(
1 + 2μhN t · n+√

2πDHn

)
. (C9)

Substituting Eq. (C6) into Eq. (C4), we obtain

Jμ(t) ≈ 2μW0

∫ t

−∞
dsK(t − s)Fs − μ

2
Ft − IW0

4D
. (C10)

1. Calculations of MAM (L) and MAV (ω)

First, L(I ) and ω(I ) in Eqs. (3.26) and (3.28) are calculated
as follows. From Eqs. (1.3) and (C10), we have Jμ(t) =
〈Jμ(t)〉� = − IW0

4D
, and

L(I ) ≈ −gLW0I

2D
(x+ × x+)z, (C11)

ω(I ) ≈ −πgOW0I

2D
. (C12)

Note that (x+ × x+)z > 0.
Terms L(h) and ω(h) are approximated up to O(h2) as

follows. From Eqs. (C6) and (C9), up to O(h), ln P (σ,t)
Q(μ,t) in

Eqs. (3.30) and (3.31) reads as

ln
P (σ,t)

Q(μ,t)
≈2σ

∫ t

−∞
dsK(t − s)Fs − 2μhN t · n+√

2πDHn

. (C13)
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Thus, we have

[
ln

P (μ,t)

Q(μ,t)
+ ln

P (−μ,t)

Q(μ,t)

]
Jμ(t)

= − 4μh√
2πDHn

(N t · n+)Jμ(t), (C14)

and, from Eq. (C10),

μ(N t · n+)Jμ(t)

= μ(N t · n+)

[
2μW0

∫ t

−∞
dsK(t − s)Fs − μ

2
Ft

]

= 2W0

∫ t

−∞
dse−4W0(t−s)〈Fs(N t · n+)〉�

− 1

2
〈Ft (N t · n+)〉�. (C15)

From Eqs. (1.3) and (C5), we also have

〈Fs(N t · n+)〉� = 2hW0

D
〈(N s · x+)(N t · n+)〉�

= hW0

D
(x+ · n+)e−	(t−s),

and

〈Ft (N t · n+)〉� = hW0

D
x+ · n+.

Substituting these into Eq. (C15), we find

μ(N t · n+)Jμ(t) = 2hW 2
0

D
(x+ · n+)

∫ t

−∞
dse−4W0(t−s)

× e−	(t−s) − hW0

2D
(x+ · n+)

= −hW0

2D

	

	 + 4W0
(x+ · n+).

Thus, Eq. (C14) reads as

[
ln

P (μ,t)P (−μ,t)

Q(μ,t)2

]
Jμ(t)

= 2h2

D
√

2πDHn

	W0

	 + 4W0
(x+ · n+). (C16)

Substituting this into Eqs. (3.30) and (3.31), we obtain

L(h) ≈ − 4g′
Lh2

D
√

2πDHn

	W0

	 + 4W0
(x+ × x+)z(x+ · n+),

(C17)

ω(h) ≈ − 4πg′
Oh2

D
√

2πDHn

	W0

	 + 4W0
x+ · n+. (C18)

Combining Eqs. (C11) and (C17), also Eqs. (C12) and (C18),
we obtain Eqs. (3.34)–(3.38). Here, g′

O

gO
= g′

L

gL
is assumed so

that ω is proportional to L.

2. Power

Applying Eqs. (1.3) and (C10) to Eq. (3.33), within the
approximation of O(h2), we obtain

Ph ≈ −gV h
∑

μ

[
4W0

∫ t

−∞
dsK(t − s)Fs − Ft

]
(μN t · xμ)

= −4gV h2W0

D

[
4W0

∫ t

−∞
dse−4W0(t−s)〈(N s · x+)

× (N t · x+)〉� − 〈(N t · x+)2〉�
]

= −2gV h2|x+|2W0

D

[
4W0

∫ t

−∞
dse−4W0(t−s)−	(t−s) − 1

]

= 2gV h2|x+|2W0

D

	

	 + 4W0
. (C19)

Therefore, we find Eq. (3.40).

3. Check of L′
t ≈ L and ω′

t ≈ ωt

From Eq. (1.6), we have

L′
t = L − (〈X〉 × 〈Ẋ〉)z. (C20)

Substituting Eqs. (C6) and (C10) into 〈X〉 ≈ ∑
σ xσP (σ,t)

and 〈Ẋ〉 ≈ gV

∑
μ xμ{J−μ(t) − Jμ(t)} [Eq. (3.32)], we obtain

〈X〉 ∝ ∑
σ σ xσ and 〈Ẋ〉 ∝ −∑

μ μxμ omitting the propor-
tional coefficients. Therefore, the second term in Eq. (C20)
reads as

(〈X〉 × 〈Ẋ〉)z ∝ −
∑
σ,μ

σμ(xσ × xμ)z = 0. (C21)

Since we have neglected the terms of O(h2) in 〈X〉 and 〈Ẋ〉,
we can regard Eq. (C20) as L′

t = L + o(h2). Similarly, ω′
t in

Eq. (1.7) reads as

ω′
t = ωt − 1

|x|2 (〈X〉 × 〈Ẋ〉)z + o(h2). (C22)

Therefore, neglecting the terms of o(h2), we have ω′
t ≈ ωt .

APPENDIX D: DETAILED ANALYSIS IN THE ELLIPTIC
TWO-TOOTH RATCHET CASE

For the elliptic curve C∞ = {x|v0(x) = x2

a2 + y2

b2 = 1} (a >

b), its trajectory, as well as the normal and tangential vectors
along it, are parametrized with the angular variable θ ∈ [0,2π )
as x ≡ (a cos θ,b sin θ )T and

τ v = 1

Nv

(
b cos θ

a sin θ

)
, nv = 1

Nv

(−a sin θ

b cos θ

)
, (D1)

respectively, where Nv = √
a2 sin2 θ + b2 cos2 θ . Letting θ+

be the angle corresponding to the local minimum x+, it
is determined by G1: θ+ = arg maxθ {−nv · x}. We therefore
have

cos 2θ+ = a − b

a + b
, sin 2θ+ = 2

√
ab

a + b
, (D2)
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and maxθ {−nv · x+} = a − b. Also, in the same parametriza-
tion, v1(x) is represented as

xTÔαÊdÔ
T
α x ≡ E0 + ε

2
cos(2θ − 2θ+) ≡ E(θ ), (D3)

where

4E0 ≡ (d2 − 1)(a2 − b2) cos(2 α) + (d2 + 1)(a2 + b2),
(D4)

2ε cos 2θ+ ≡ (d2 − 1)(a2 + b2) cos(2 α) + (d2 + 1)(a2 − b2),

ε sin 2θ+ ≡ ab(d2 − 1) sin(2 α). (D5)

From Eq. (D3), assuming m → ∞ with ε � 0, d > 1, and 0 �
α < π

2 , the local minimum and the saddle on C∞ correspond
to θ = θ+ and π

2 + θ+, and we have E+ = E0 + ε
2 and E+ =

E0 − ε
2 [Kε = �V from Eq. (2.9)] for the circumscribed and

inscribed ellipses E+ and E+, respectively.
We obtain Eqs. (4.13) and (4.14) as follows: from Eq. (D2),

ε = ε cos(2θ − 2θ+)|θ=θ+ and dE(θ)
dθ

|
θ=θ+

= 0 (which corre-
sponds to G2), we have

ε = [ε cos 2θ+ cos 2θ + ε sin 2θ+ sin 2θ ]θ=θ+

= (ε cos 2θ+)
a − b

a + b
+ (ε sin 2θ+)

2
√

ab

a + b
, (D6)

0 = [ε sin 2θ+ cos 2θ − ε cos 2θ+ sin 2θ ]θ=θ+

= (ε sin 2θ+)
a − b

a + b
− (ε cos 2θ+)

2
√

ab

a + b
, (D7)

then, substituting Eqs. (D4) and (D5) into Eq. (D7), we find
Eq. (4.14), and also substituting Eq. (D5) and 2ε cos 2θ+ =√

ab(a − b)(d2 − 1) sin (2 α) [from Eqs. (4.14) and (D4)] to
Eq. (D6), we find Eq. (4.13).

Furthermore, based on Eqs. (2.15) and (2.16) in Sec. II B,
we obtain the eigenvalues of the Hessian matrix at the local
minimum and the saddle in m � 1 as follows. Since, from

Eqs. (2.7) and (D1)–(D3), we have

∂xv0(x) = 2

ab

(
b cos θ

a sin θ

)
, ∂x∂

T
x v0(x) = 2

( 1
a2 0
0 1

b2

)
,

τ v · ∂xv1(x) = 2τT
v ÔαÊdÔ

T
α x = 2E(θ )

x · τ v

= 2Nv

E(θ )

ab
,

N2
v nT

v

{
∂x∂

T
x v1(x)

}
nv = xT∂x∂

T
x v1(x)x|θ→θ+π/2

= 2E

(
θ + π

2

)
,

noting that x = (x · τ v)τ v + (x · nv)nv and Eq. (2.7) in the
second line, we find the diagonal components of Ĝ0(x) in
Eqs. (2.15) and (2.16) as

m2

2
|∂xv0(x)|2 = m2

a2b2
{a2 + b2 − (a2 − b2) cos 2θ}, (D8)

g(x) = 2
E(θ ) − E

(
θ + π

2

)
a2 sin2 θ + b2 cos2 θ

= 4ε cos(2θ − 2θ+)

a2 + b2 − (a2 − b2) cos 2θ
. (D9)

Then, at x = x+ (θ = θ+) and x = x+ (θ = π
2 + θ+),

Eq. (2.15) reads as

Ĝ0(x+) ≈ 2m2

ab
τ vτ

T
v + 2�V

ab
nvnT

v , (D10)

Ĝ0(x+) ≈ 2m2

a2b2
(a2 + b2 − ab)τ vτ

T
v − 2�V

a2 + b2 − ab
nvnT

v .

(D11)

The diagonal components of Ĝ0(x+)[Ĝ0(x+)] in Eq. (D10)
[Eq. (D11)] correspond to Hτ and Hn (Gτ and Gn) in
Eqs. (3.36) and (3.38), respectively.

Substituting these results into Eqs. (3.34), (3.37), (3.39),
(3.40), and (3.6), we find Eqs. (4.8)–(4.12).
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