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Energy transfer channels and turbulence cascade in Vlasov-Maxwell turbulence
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Analysis of the Vlasov-Maxwell equations from the perspective of turbulence cascade clarifies the role of
electromagnetic work, and reveals the importance of the pressure-strain relation in generating internal energy.
Particle-in-cell simulation demonstrates the relative importance of the several energy exchange terms, indicating
that the traceless pressure-strain interaction “Pi-D” is of particular importance for both electrons and protons.
The Pi-D interaction and the second tensor invariants of the strain are highly localized in similar spatial regions,
indicating that energy transfer occurs preferentially in coherent structures. The collisionless turbulence cascade
may be fruitfully explored by study of these energy transfer channels, in addition to examining transfer across
spatial scales.
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Introduction. Turbulence is characterized by the transfer
of energy from large to small scales where dissipation
occurs. This cascade process, fundamental in hydrodynam-
ics [1], magnetohydrodynamics [2], and fluid plasma mod-
els [3], may be analyzed using phenomenological approaches
[4], scale-to-scale transfer [5,6], and rigorous third order laws
[7–9]. Here we are concerned with the nature of cascade in
collisionless plasmas, especially at scales in which kinetic
processes dominate [10]. The collisionless cascade has been
studied in various simplified approaches, such as spectral
phenomenologies [11,12] and gyrokinetic approximations
[13,14]. Fourier scale filtering has been employed to study
the electrostatic “free energy” cascade [15] in gyrokinetics,
and associated numerical models [16]. Other simplifications
assume that linear modes, e.g., kinetic Alfvén waves or
whistler modes [12,17–19], dominate the nonlinear couplings.
Here we adopt a different approach in which we analyze
ideal energy transfer in the full Vlasov-Maxwell system,
without reliance on specific mechanisms, modes, or fluid
simplifications. This Rapid Communication begins such study
by identifying the relevant channels of energy transfer. Using
kinetic plasma simulation, we evaluate the relative strength
of these transfer channels and demonstrate their concentration
in spatial coherent structures. This provides a perspective of
cascade and dissipation, without the need to select specific
dissipative processes.

Energy balance. The mean-field velocity distribution f =
f (x,v,t) of the plasma species α, with mass mα , depends
on position x, velocity v, and time t , and obeys the Vlasov
equation

∂tfα + v · ∇fα + F
mα

· ∇vfα = 0. (1)

Absent external forces, the force on particles with charge
qα is F = qα[E + (v/c × B)], with E and B determined by
Maxwell’s equations. The sources for electric field E and

magnetic field B are the charge density ρ and (total) electric
current density j .

The number density of species α is nα = ∫
fα(x,v,t)dv,

while the corresponding total kinetic energy is Eα =
1
2mα

∫
v2fα(x,v,t)dv. The first two velocity space mo-

ments of the Vlasov equation are a continuity equation
∂tρα + ∇ · (ραuα) = 0, and a momentum equation ∂t (ραuα) +
∇ · (ραuαuα) = −∇ · Pα + nαqα(E + uα/c × B), for each
species α. The time rate of change of the total kinetic energy
in the species α obeys [20,21]

∂tEα + ∇ · (Eαuα + Pα · uα + hα) = nαqαuα · E. (2)

In the above expressions, the mass density is ρα = mαnα ,
the fluid flow (bulk) velocity is uα = n−1

α

∫
vfα(x,v,t)

dv, the pressure tensor is Pα = mα

∫
(v − uα)(v − uα)

fα(x,v,t)dv, and the heat flux vector is hα = 1
2mα

∫
(v − uα)2

(v − uα)fα(x,v,t)dv, each of these for the species α.
Decomposing the total energy Eα into average and ran-

dom parts facilitates the understanding of heating pro-
cesses. On defining the fluid kinetic energy of species α

as E
f
α = 1

2ραu2
α and the thermal (random) energy as Eth

α =
1
2mα

∫
(v − uα)2fα(x,v,t)dv, it is evident that Eα = E

f
α +

Eth
α . Multiplying the momentum equation by uα results in

the fluid flow energy equation:

∂tE
f
α + ∇ · (Ef

α uα + Pα · uα

)

= (Pα · ∇) · uα + nαqαuα · E. (3)

Substituting Eq. (3) into Eq. (2) we obtain [20,21]

∂tE
th
α + ∇ · (

Eth
α uα + hα

) = −(Pα · ∇) · uα. (4)

Finally, from Maxwell’s equations, the electromagnetic energy
Em = 1

8π
(B2 + E2), obeys

∂tE
m + c

4π
∇ · (E × B) = − j · E, (5)
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FIG. 1. Available routes for energy conversion in collisionless
plasma turbulence. 〈Eth

α 〉 is thermal (random) energy; 〈Ef
α 〉 is fluid

flow energy; 〈Em〉 is electromagnetic energy density. α labels each
species. Brackets indicate volume average.

where j = ∑
α nαqαuα is the total electric current density.

Integrating Eqs. (3), (4), and (5) over the entire volume, and in-
voking periodic (or isolating) boundary conditions, we find that

∂t 〈Ef
α 〉 = 〈(Pα · ∇) · uα〉 + 〈nαqαuα · E〉, (6)

∂t 〈Eth
α 〉 = −〈(Pα · ∇) · uα〉, (7)

∂t 〈Em〉 = −〈 j · E〉, (8)

where 〈· · · 〉 denotes a spatial average.
The above energy balance equations are elementary conse-

quences of the Vlasov equation. From a turbulence perspective,
they indicate how the cascade converts energy from one form
to another, but do not include either large-scale sources or
small-scale sinks. Fully accounted for are all wave particle
interactions that can convert fluctuation energy into internal
energy. The Vlasov system is an ideal model, lacking small
corrections that lead to entropy production [22], so we do
not address whether this conversion becomes irreversible.
Theory, computations, and observations [23,24] indicate that
departures from an ideal description occur at small spatial
scales, e.g., at the Debye scale, and in localized regions of
space associated with coherent structures [25–27]. Coherent
structure formation itself is driven by ideal nonlinear couplings
[28] and consequently, Vlasov channels for energy transfer are
instrumental in creating the path to dissipation.

From Eq. (2), changes in particle kinetic energy are due
to jα · E where the electric current density of species α is
jα = nαqαuα . This term contributes to Eq. (6), but not Eq. (7).
Therefore all work done on particles by the electromagnetic
field changes only the particle fluid energy. Accordingly, from
Eq. (7), the random component of particle energy is not directly
modified by jα · E. Instead, changes of random energy take
place only through the term (Pα∇) · uα , which exchanges
energy between the fluid kinetic energy E

f
α of species α and

the thermal (random) energy Eth
α of the same species.

To emphasize these distinct roles, the channels of energy
conversion are shown in Fig. 1. The pressure tensor is usefully
decomposed into the (isotropic) scalar p that remains when
collisions are present, and a deviatoric part �ij that may be
large for low collisionality plasmas. Accordingly, the pressure
interaction is

− (P · ∇) · u = −pδij ∂jui − (Pij − pδij )∂jui

= −pθ − �ijDij , (9)

where p = 1
3Pii , �ij = Pij − pδij , θ = ∇ · u, and Dij =

1
2 (∂iuj + ∂jui) − 1

3θδij . The term involving p is the pressure
dilatation, familiar in ordinary fluid and magnetohydrody-
namics (MHD), and found to be important in compressible
cascades [29–32]. We refer to the term involving the traceless

time (Ωi
-1)
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FIG. 2. Cumulative time-integrated values of pressure dilatation
and Pi-D internal energy-producing terms for protons and electrons.
Arrow indicates time of detailed analysis. Slopes are proportional to
corresponding dissipation rates.

tensor � as the “Pi-D” interaction, emphasizing that we
treat it in the general case here, evaluating it directly from
numerical simulations, without invoking collisional closures
[33]. In collisional cases it is possible to find a closure relating
Pi-D term to velocity gradients, so that this term is replaced
by viscosity terms. Consequently, Pi-D can be viewed as
“collisionless viscosity.”

To demonstrate the relative importance of these energy
transfer channels, we employ a kinetic simulation using the
P3D code [34]. We note that the particle-in-cell (PIC) algorithm
includes numerical limitations (including irreversible dissipa-
tion) related to finite particle number. While these associated
departures from pure Vlasov solutions scale in a physically rea-
sonable way [35], a direct Vlasov solution would be preferable,
but at the present time is computationally prohibitive [36] for
large system sizes. A 2.5-dimensional L × L periodic geome-
try, with two-dimensional wave vectors and three-dimensional
velocity and magnetic field vectors enables a high spatial
resolution, 81922 grid points, and a large system size L =
102.4di . The simulation used 300 particles of each species per
cell and ∼4 × 1010 total particles. The ion to electron mass
ratio is mi/me = 25. The ion beta is βi = 0.1; and the electron
beta is βe = 0.1; the uniform magnetic field is B0 = 5 directed
out of the plane. All quantities are normalized to reference
values: density nr = 1, magnetic field Br = 1, and proton mass
mi = 1. Length is normalized to the ion inertial length di , and
velocity to the Alfvén speed vAr = Br/(4πminr )1/2. The run
shown here is a decaying initial value problem, starting with
uniform density (n0 = 1) and temperature (T0 = 1.25). Initial
velocity and magnetic fluctuations are transverse to B0, with a
prescribed spectrum for wave numbers 2 � |k| � 4 (see [37]
for details). The data were low-pass filtered to remove noise.

Strength of energy channels. The time histories of (inte-
grated) global volume averages of pressure dilatation −p∇ · u
and the Pi-D interaction term −�ijDij (separately for α =
protons and electrons), are shown in Fig. 2. Table I shows
instantaneous values of these quantities as well as the electro-
magnetic work jα · E at the time of analysis around
t = 205
−1

i , shortly after the mean-square current reaches its
maximum.

One observes that the Pi-D term is larger than the pressure
dilatation for protons and electrons. The global average of the
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TABLE I. Volume-integrated quantities related energy transfer
and computed from the 2.5D undriven PIC code near the time of
maximum mean-square current density. Quantities listed are in the
code units v3

Ard
−1
i . Values of jα and E time averaged over an electron

gyroperiod are used in computing 〈 jα · E〉 to eliminate very high
frequency oscillations.

Global Average Electrons Protons

p-dilatation: 〈−pθ〉 0.0018 0.00075
Pi-D: 〈−�ijDij 〉 0.0045 0.0016
〈 jα · E〉 0.0052 0.0016

electromagnetic work, jα · E, is comparable to the Pi-D term
for the two species, 0.0016 (v3

Ard
−1
i ) for protons and 0.0052

(v3
Ard

−1
i ) for electrons. All three terms, −p∇ · u, Pi-D, and

jα · E, can be locally + or −, with a net positive average due
to a slight asymmetry of the distribution.

Coherent structures and intermittency. Activity in these
energy transfer channels is distributed nonuniformly in real
space. Figure 3 shows spatial contour maps of the Pi-D terms,
separately for protons and electrons. The first thing to notice
is that the larger values (of both signs) are concentrated in
small scale structures. Many such concentrations are sheetlike
regions along what appears to be the boundaries of interacting
magnetic flux tubes. This is reminiscent of the patterns of
intense electric current density in MHD [38,39] and in plasma
turbulence [26]. In decaying turbulence, these are regions of
enhancements of kinetic activity [40,41]. In addition, the maps
of the proton term −�

p

ijD
p

ij and the electron term −�e
ijD

e
ij

are very similar in position and shape. This is reminiscent of
the finding [25], that in turbulence, proton currents collapse
to a few ion inertial scales, while electron scale current sheets
collapse to still finer scales (e.g., de), often forming inside the
proton current structures.

The spatial concentration of the Pi-D due to cascade
provides a pathway for coherent structures to contribute to
plasma dissipation, i.e., degeneration of energy in fluid scale
fluctuations. Presumably transfer to still smaller scales leads

FIG. 3. Contour maps of Pi-D terms −�α
ijD

α
ij for (a) electrons

(α = e) and (b) protons (α = p) normalized to respective root mean-
square values. Both display concentrations in small subvolumes,
in sheetlike structures. There is remarkable similarity in proton
and electron cases. Conversion between flow energy and internal
energy is strong in these structures. The global average is positive
corresponding to generation of internal energy.

to non-Vlasov collisional effects that provide entropy increase
and heating. Here, due to the PIC algorithm, heating at small
scales is due to finite particle number (see, however, [35]).

An overall view of the collisionless cascade emerges in this
way: An MHD cascade creates strong current sheets that in
turn generate localized small-scale vortices [42,43]. During the
cascade electromagnetic work, j · E, is done on particles, at
locations concentrated near coherent current structures [27]. In
the large Reynolds number limit, nearby vortices are stretched
to planar sheetlike structures that have equal parts symmetric
and antisymmetric velocity stresses. The traceless pressure
tensor �ij interacts with the symmetric velocity stress [44]
at these locations to distort distribution functions [40,41],
producing anisotropic heating [43,45] and other kinetic effects.
This also explains (see also [43]) the strong correlation
between proton heating and vorticity [46,47].

The remarkable connections between coherent structures
and energy conversion are further clarified by examining the
spatial concentration of Pi-D in comparison with symmetric
velocity stress, vorticity, and current density. Natural measures
of these are the normalized second (tensor) invariants, for
the symmetric traceless stress, QD = 1

2DijDij /〈2DijDij 〉;
for the vorticity, Qω = 1

4ω2/〈ω2〉 and for the mean-square
total current density, Qj = 1

4 j2/〈 j2〉. To portray the spatial
correlations among these quantities, Fig. 4 compares the
electron Pi-D map with contour maps of QD , Qω, and Qj .
One sees that these quantities are concentrated in very similar
spatial regions. This intermittency was completely absent in
the specified initial data. Therefore the observed coherent
structure is a consequence of the turbulent cascade.

Conditional averages. The striking correlation seen in Fig. 4
is quantified by computing conditional averages. Figure 5
shows conditional averages of the Pi-D terms, the rate of
production of internal energy, −�ijDij , separately for protons
and electrons. The conditions are based on values of QD ,
Qω, and Qj . For example, to compute 〈−�e

ijD
e
ij |Qj 〉, one

averages the electron Pi-D including only values occurring at
spatial positions at which the mean-square total electric current
density (Qj ) exceeds a selected threshold. The figure confirms
that, for both electrons and protons, elevated levels of −�ijDij

are found in regions with enhanced vorticity (consistent
with earlier reports [43,47]) and in regions of enhanced
symmetric stress. In contrast, averages of Pi-D conditioned
on total current density remain fairly constant for protons, and
slightly decrease for electrons. Note that values of Pi-D for
protons are even more elevated in regions of large symmetric
stress than in regions of large (mean-square) vorticity. These
conditional variations of Pi-D provide important constraints
on understanding mechanisms of plasma heating.

Discussion and conclusions. In this Rapid Communication
we have examined new directions for studying turbulence
cascade in the Vlasov-Maxwell system that describe the ideal
dynamics of a weakly collisional plasma. In analogy to the
Euler equations for ideal fluids, the Vlasov is a lossless
mean-field description, describing the cascade in a large
system, without reference to the collisional effects at finer
spatial and temporal scales.

From the Vlasov equation, the major contributors to con-
version of energy are the species-dependent j · E, the species-
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FIG. 4. Left to right: Pi-D term for electrons; QD and Qω for electron flow, and Qj from total current density.

dependent pressure dilatation −p∇ · u, and the species-
dependent “Pi-D” term −�ijDij . The Pi-D terms and pressure
dilatation are the only couplings in the Vlasov-Maxwell system
that can generate internal energy. Accordingly, the electro-
magnetic work terms only exchange energy with the fluid flow
energy of the various species. This elementary property of the
Vlasov system has evidently not been fully appreciated as a
guideline for analysis of collisionless turbulence.

Of some significance, is the fact that the contributions of
the off-diagonal terms of the pressure tensor, through the Pi-D
terms, are found empirically to be larger than the contributions
of the (diagonal) pressure dilatation term. In addition, we
find that all pressure-stress terms, including Pi-D, become
highly localized in space due to turbulent cascade, similar to
the localization found previously for electromagnetic work
on particles ( j · E), for the vorticity, and for electric current
density. A further remarkable result is that several types of
coherent structures occur in similar but not identical [43]
positions and patterns in space. This implies that a strong
dynamical coupling exists between energy conversion and
both velocity and magnetic stress tensors, even in collisionless
plasmas.

The results presented here suggest an emerging picture of
the energy channels that lead to dissipation in low collisionality
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FIG. 5. Conditional averages of the (a) electron Pi-D term and
(b) proton Pi-D term. In both cases the conversion of internal energy
by the Pi-D terms is concentrated in coherent structures generated by
the turbulence. For electrons, vorticity and symmetric stress are both
important. For protons, symmetric stress is the most important; for
signed vorticity effect, see [43,47].

plasma turbulence: The larger MHD-scale nonlinearities are
reasonably well understood [5,32,48] and drive scale-to-scale
transfer, with a net transfer to small scales. As the cascade
transfers energy to smaller scales, the dynamics progressively
generates coherent structures [26], as observed here. Within
these structures, one finds a concentration of all channels of
energy conversion. Magnetic energy, at scales approaching
proton kinetic scales, is converted into both proton flows
and electron flows. This process is highly associated with
local current density [24,26]. Pressure dilatation and pressure-
symmetric stress interactions (pressure dilatation and Pi-D)
take over at that point and convert energy from these flows
into internal energy. Vorticity distorts the distribution functions
[36,40,41,43,45] while pressure-symmetric stress interactions
convert these flows into internal energy.

We note that this description of the pathways to dissipation
in a Vlasov plasma appears to be quite general, and may,
presumably, be applied to whistler or kinetic Alfvén wave
turbulence [18,23], or more general cases. The sequence of
energy transfer channels described above is also reminiscent of
the structure of heating mechanisms invoked in reconnection
studies [49,50]. However, the approach suggested here does
not require a focus on any particular wave or mechanism.

These results provide guidance for pursuing additional
study of dissipation in space and astrophysical turbulence. The
statistical properties of these new types of correlated intermit-
tent structures warrant further study, while scale decomposi-
tion [6,16,31,32] of energy transfer and exchange will reveal
cascade properties in the kinetic range of plasma turbulence. A
deeper understanding of energy transfer channels will be useful
in interpreting results from space missions, including the ongo-
ing MMS and Cluster missions, the upcoming Solar Probe Plus
and Solar Orbiter mission, and the planned THOR mission.
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