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Columnar domains and anisotropic growth laws in dipolar systems
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Magnetic and dielectric solids are well-represented by the Ising model with dipolar interactions (IM+DI). The
latter are long-ranged, fluctuating in sign, and anisotropic. Equilibrium studies have revealed novel consequences
of these complicated interactions, but their effect on nonequilibrium behavior is not explored. We perform a deep
temperature quench to study the kinetics of domain growth in the d = 3 IM+DI. Our main observations are (i)
the emergence of columnar domains along the z axis (Ising axis) with a transient periodicity in the xy plane;
(ii) anisotropic growth laws: �ρ(t) ∼ tφ ; �z(t) ∼ tψ , where �ρ = (x,y) and � is the characteristic length scale;
(iii) generalized dynamical scaling for the correlation function: C(ρ,z; t) = g(ρ/�ρ,z/�z); and (iv) an asymptotic
Porod tail in the corresponding structure factor: S(kρ,0; t) ∼ k−3

ρ ; S(0,kz; t) ∼ k−2
z . Our results explain the

experimentally observed columnar morphologies in a wide range of dipolar systems, and they have important
technological implications.

DOI: 10.1103/PhysRevE.95.060103

Many magnetic and dielectric solids involve long-range
dipole-dipole interactions in addition to short-range exchange
interactions [1–11]. The simplest model that describes them is
the nearest-neighbor (NN) Ising model with dipolar interac-
tions (IM+DI). For N Ising spins on a d-dimensional lattice,
the Hamiltonian is given by

H = −J
∑
〈i,j〉

σiσj − D
∑

i,j

i �=j

(
3 cos2 θij − 1

r3
ij

)
σiσj . (1)

Here σi = ±1, J and D (>0) are the strengths of NN exchange
and dipolar interactions (DI), �rij is the vector joining σi and σj

in units of lattice spacing a, and θij is the angle made by �rij with
the Ising axis (z axis). The presence of r3

ij in the denominator
makes DI long-ranged due to which spin-spin interactions
are significant up to many lattice spacings. The coupling is
ferromagnetic for 55◦ < θ < 125◦ and antiferromagnetic for
other values. Therefore, a ferromagnetic alignment is favored
along the z direction, but domain walls are preferred in
the xy plane. Further, the conflicting interactions cause spin
frustrations that introduce several local minima in the energy
function.

The difficulties in handling long-ranged DI make the
analysis of IM+DI challenging analytically and computa-
tionally. Consequently, there are very few studies of this
model, although it is realized by a large number of complex
materials. These isolated studies have addressed phases and
critical points that reveal novel manifestations of DI and
are summarized below: (i) Ground-state (GS) enumerations
(T = 0) and Monte Carlo (MC) simulations (T �= 0) for a
cubic lattice (L3, L = 6,8) indicate that the model exhibits
distinct phases as the ratio � = J/D is varied, e.g., � < 0.13
gives different antiferromagnetic structures while � > 0.16
yields a ferromagnet [1]. (ii) The GS of a slab L × L × W

(L � W ), on the other hand, is comprised of parallel striped
domains that transit to a bubble phase upon application of
an external magnetic field [12]. (iii) Similarly, the GS of
an elongated sample W × W × L is ferromagnetic [13]. (iv)
Using Feynman-graph expansions, Larkin and Khmel’nitskii
demonstrated that the critical exponents for IM+DI in d = 3

are those of the classical Landau theory with logarithmic
corrections to the power laws [14]. (v) These results were
reconfirmed by Aharony using exact renormalization-group
methods. He further showed that the model belongs to the
same universality class as the short-range Ising ferromagnet in
(d + 1) dimensions [15]. (vi) Using a field-theoretic approach,
Frey et al. [16] demonstrated that the model exhibits a
crossover from Ising behavior with nonclassical exponents
to an asymptotic uniaxial dipolar behavior characterized
by classical exponents with logarithmic corrections. Later,
Henneberger et al. also observed this crossover from mode-
coupling theory [17]. (vii) These logarithmic corrections were
then validated by experiments on uniaxial ferromagnets and
ferroelectrics, confirming that they are physical realizations of
IM+DI [7,18,19].

Surprisingly, there are no studies that address the
nonequilibrium properties of the IM+DI in d = 3. There are
a few in d = 2 [20,21], but they lack the anisotropy of the
d = 3 model. How this anisotropy affects the dynamics is an
open question. In this context, let us consider the kinetics of
domain growth or phase ordering following a sudden quench in
temperature. The dynamical process by which the system in the
disordered phase evolves to an ordered phase by the formation
of domains and their subsequent growth is called coarsening
[22,23]. If the morphology of the coarsening domains is
unchanged in time, the system exhibits dynamical scaling
and is characterized by a unique length scale �(t) that grows
with time. The growth law reveals details of the free-energy
landscape and relaxation time-scales. For example, pure and
isotropic systems with nonconserved kinetics such as the
Ising model (D = 0) obey the Lifshitz-Allen-Cahn (LAC)
law: �(t) ∼ t1/2 [24,25]. It is characteristic of systems with
no energy barriers to coarsening and a unique relaxation
time-scale. Systems with disorder and competing interactions,
on the other hand, have a complicated free-energy landscape
and a plethora of relaxation time-scales. The interfaces are
rough fractals, and the barriers to coarsening EB ∼ �2−α ,
where α is the roughness exponent [26–28]. Domain growth in
these systems exhibits logarithmic behavior in the asymptotic
limit [29].
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In this paper, we present a study of the kinetics of domain
growth after a deep quench in the d = 3 IM+DI using
MC simulations. We focus on the following issues: How
are the anisotropy and competing nature of the interactions
reflected in the growth law? Does this system still exhibit
dynamical scaling? Are there signatures of spin frustrations,
barriers to coarsening, and multiple relaxation time-scales?
The answers to these questions have important implications
for both equilibrium and nonequilibrium properties.

By using Ewald summation [30] to efficiently handle DI,
we were able to simulate large systems of up to 1283 spins.
We perform deep quenches into the ferromagnetic phase, and
we study domain growth at different values of �. The main
results of our paper are as follows: (i) The anisotropy effects of
DI are clearly manifested in our d = 3 simulations. Elongated
columnar domains emerge along the z axis after the quench,
and they grow rapidly to span the lattice length (along z).
There is a transient signature of periodic arrangement of the
coarsening columns in the xy plane. (ii) Domain growth is
anisotropic in the xy plane and along z: �ρ(t) ∼ tφ , �z(t) ∼ tψ ,
where �ρ = (x,y) and � is the length scales. The exponents φ

and ψ are universal. (iii) The correlation function exhibits
generalized scaling: C(ρ,z; t) = g(ρ/�ρ,z/�z). Correspond-
ingly, the structure factor S(kρ,kz; t) is also anisotropic. (iv)
The large-k behavior of S(kρ,kz; t) exhibits Porod decay:
S(kρ,0; t) ∼ k−3

ρ ; S(0,kz; t) ∼ k−2
z . Thus the interfaces are

smooth in spite of the anisotropy and competing DI.
There is a wide class of physical systems that are well

represented by IM+DI. A thermal quench is easy to induce
in a laboratory and is usually the starting point for nonequi-
librium studies. Therefore, our results on phase ordering
have great relevance to many experimental systems. These
include nuclear magnetic moments in alkali hydrides and
solid 3He [2,3]; electron magnetic moments in rare-earth
fluorides, chlorides, and hydroxides [4–6]; electric dipole
moments in ferro and antiferroelectric structures [7–9]; etc.
Another relevant system of current interest is the rare-earth
compound LiHoF4 and its dilution series LiHoxY1−xF4. Apart
from the wide variety of phases, they also exhibit a quantum
phase transition upon application of a transverse field [10,11].
Our study will also be useful for understanding ordering
phenomena in substitutional and interstitial alloys (where
short-range chemical forces compete with long-range elastic
forces), superionics, molecular crystals, adsorbed monolayers
at surfaces, etc. [1]. Many experimental measurements in
dipolar systems probably access nonequilibrium states with
long relaxation times. We expect our study to improve
interpretations of these observations.

We now describe the details of our simulations. Our
starting point is a random configuration of σi = ±1 (disordered
phase) quenched rapidly to T = 0.25Tc in the ordered phase.
To determine the temperature quenches, we use the phase
diagram obtained by Kretschmer and Binder for a simple
cubic lattice [1]. The quenches were performed only in the
ferromagnetic phase, i.e., � > 0.16. The system evolves via
Glauber spin-flip kinetics with METROPOLIS acceptance rates.
All simulations were done on cubic lattices of size 1283

unless stated otherwise. Each data set has been averaged
over 48 different initial conditions. The standard error in a
data point is smaller than the symbol size and is not shown

FIG. 1. Domain morphologies for different values of � and t (in
MCS): (�, t) = (a) (10, 4), (b) (10, 64), and (c) (100, 64). Green
(gray) and blue (black) represent σi = 1 and −1, respectively.

for clarity. The Ewald summation technique (with metallic
boundaries) was used to compute the dipolar term of Eq. (1),
accurate up to an error δ < 10−3 [30]. From our simulations of
smaller lattices with better error bounds (δ < 10−4), we found
that a further increase in accuracy did not alter the growth
laws. The system was allowed to evolve up to 1500 Monte
Carlo steps (MCS), which took about 150 h per run on an
Intel Xeon E5-2680 v3 CPU running at 2.5 GHz. Our large
system size, Ewald sums, long evolution times, and significant
averaging have been computationally challenging, but they
enabled us to make accurate observations of nonequilibrium
properties.

In Fig. 1, we show the snapshots of domain morphologies
for different values of � and t (in MCS): (�, t) = (a) (10, 4),
(b) (10, 64), and (c) (100, 64). Green (gray) and blue (black)
regions represent σi = 1 and −1, respectively. Immediately
after the quench [Fig. 1(a)], columnar domains start forming
along the z direction and grow rapidly. In Fig. 1(b), the length
of the domains is almost equal to the size of the simulation
cell. Such elongated needlelike domain structures have been
seen experimentally [31] as well as in MC simulations of the
uniaxial dipolar magnet LiHoF4 [10]. They are also observed
in single crystals of BaTiO3, rochelle salt, and KH2PO4 using
optical techniques [9]. Recall that the dipolar interaction favors
ferromagnetic alignment in the z direction and domain walls
in the xy plane. The effect of dipolar strength can be seen from
Figs. 1(b) and 1(c): for stronger DI (� = 10) the domains are
highly anisotropic, while for weak DI (� = 100) they are more
isotropic.

How do we quantify morphologies and domain growth?
The usual probes are the correlation function C(�r,t) and
the structure factor S(�k,t) [22]. If the domain growth is
characterized by a unique length scale �(t), then C(�r,t) and
S(�k,t) show the dynamical scaling property: C(�r,t) = g(r/�);
S(�k,t) = �df (k�). Because the morphologies are anisotropic,
we introduce C(�r,t) ≡ C( �ρ,z; t), where �ρ = (x,y). If we
assume that there are unique length scales �ρ and �z character-
izing domain growth in the xy and z directions, then the corre-
lation function should exhibit generalized dynamical scaling
[32,33]: C( �ρ,z; t) = g(ρ/�ρ,z/�z). We designate C( �ρ,0; t) =
g1(ρ/�ρ) and C(0,z; t) = g2(z/�z). There are corresponding
forms for S(�k,t) ≡ S( �kρ,kz; t), where �kρ = (kx,ky).

In Fig. 2(a), we show the scaled correlation functions in the
xy plane: C( �ρ,0; t) versus ρ/�ρ at t (MCS) = 16, 64, 256,
and 1024 for � = 10. The corresponding scaled correlation
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FIG. 2. Scaled correlation functions for � = 10 at different
values of t (in MCS): (a) C(ρ,0,t) vs ρ/�ρ (filled symbols); (b)
C(0,z,t) vs z/�z (open symbols). (c) Corresponding scaled structure
factors indicating Porod decay (solid lines). (d) Analogous plot for
t = 32 MCS and different values of �. The xy and z data sets are
shifted vertically for clarity.

functions in the z direction, C(0,z; t) versus z/�z, are shown
in Fig. 2(b). The data for t > 32 are not shown here as the
growth at these times is limited by the finite size of the
simulation cell. Both data sets exhibit dynamical scaling,
indicating that the system is characterized by unique but
distinct length scales along the xy and z directions. Notice
that C(ρ,0; t) for t � 64 MCS shows oscillatory behavior
characteristic of periodically modulated structures [22]. We
have examined xy cross sections of the snapshots in Fig. 1(a).
These show a bicontinuous morphology reminiscent of phase-
separation kinetics rather than the bloblike morphology that
characterizes nonconserved dynamics. In Fig. 2(c) we show
the corresponding scaled structure factors on a log-log scale.
The system exhibits the Porod law S(k,t) ∼ k−(d+1) in both
directions, indicating the presence of smooth interfaces. To
probe the effect of DI, we plot in Fig. 2(d) the structure factor
for � = 0.5, 10, and 100 at t = 32 MCS. The data collapse
demonstrates that the morphologies are invariant with respect
to �.

Next, we quantify the domain growth. In Fig. 3(a), we plot
�ρ(t) (solid symbols) and �z(t) (open symbols) as a function
of t on a log-log scale for � = 0.5, 10, and 100. For � = ∞
(D = 0), the growth is isotropic and governed by the LAC
law with φ = ψ = 0.5 (shown for reference). In the case
of isotropic long-ranged interactions ∼r−3, it was argued by
Bray that ψ = 1 [34] (also shown for reference). The dipolar
interactions in our model are anisotropic. Consequently, for
� = 0.5 and 10, �z(t) grows faster than the LAC law (ψ = 0.5)
but slower than Bray’s prediction. For � = 100, ψ � 0.5 as
the dipolar strength is very small. On the other hand, �ρ obeys
LAC growth with φ � 0.5. We also point out that log-log plots

FIG. 3. (a) � vs t in the xy plane (solid symbols) and the z

direction (open symbols) for different values of �. Reference lines
with slopes 1 and 1/2 are also indicated (see text). (b) Length scales
for � = 0.5 and system sizes L = 64,96,128.

underestimate exponents due to the presence of a nonzero
offset.

To study the system-size effects, we show �ρ and �z as a
function of t for � = 0.5 and L = 64, 96, and 128 in Fig. 3(b).
The growth exponents are unaffected by the system size L.
Note that the flattening of �z at late times is observed after
the vertical columns have coarsened to L. (It can be seen
that �ρ also saturates soon thereafter.) Coarsening of domains
then occurs only in the xy plane via lateral movement of
(vertical) domain walls. The system typically settles into a
near-equilibrium state with one domain wall in the z direction.
As stated earlier, the stable equilibrium state is ferromagnetic
for the parameter values considered here. It is interesting
to note that diverse initial conditions yield nearly the same
“ground state” of the system.

We emphasize that anisotropic interactions do not always
give rise to anisotropic exponents. We have performed MC
simulations of the NN IM with interactions Jρ in the (x,y)
plane and Jz = 5Jρ along the z direction, and we found
that ψ = φ � 1/2. The anisotropic growth exponents in our
dipolar system are a consequence of the complicated DI, which
fluctuate in sign and are long-ranged.

Finally, we conclude this paper with a discussion on what
our results could mean for experimentalists and theorists. The
Ising model with dipolar interactions (IM+DI) provides an
accurate framework to describe a wide range of physical
systems. It exhibits a rich interplay of short-range nearest-
neighbor (NN) exchange interactions and long-range dipole
interactions (DI) with nontrivial consequences on systemic
properties. The DI pose many challenges in analytical and
computational studies. We have performed comprehensive
large-scale Monte Carlo (MC) simulations to study the kinetics
of domain growth after a temperature quench in the d = 3
IM+DI. This phenomenon is interesting for both fundamental
and applied studies.

Domain growth in IM+DI is affected by the relative
strengths of NN exchange and DI. In the strong dipolar
regime, the domains are columnar along the z axis and
coarsen faster along z than in the xy plane. At early times,
there is transient periodicity of the domains in the xy

plane. In general, we find that DI have a profound effect
even when they are much weaker than the NN exchange
interactions. Columnar morphologies have been observed
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experimentally in the dipolar quantum magnet LiHoF4 [31],
and ferroelectrics such as rochelle salt, KH2PO4, and the
technologically important BaTiO3 [9]. The anisotropic growth
laws that we observe have not been addressed in experiments.
We believe this investigation is important as columnar domains
have diverse implications. For example, recent experiments
reveal that they are important in the context of electric and
magnetic switches in memory devices as they are robust
against charge and magnetic field perturbations [35]. Moments
in a ferromagnet, on the other hand, can be unintentionally
reoriented and the data erased by perturbing magnetic fields
generated externally or internally. Further, sidewise motion
of domain walls is undesirable to prevent cross-talk between
neighboring electrodes (columns) on the same crystal plate.
In a related context, columnar phases can also be employed
in the creation of anisotropic microstructures. The robust

morphologies of columns of up spins and down spins
in dipolar solids could therefore offer novel experimental
possibilities. Laboratory experiments probably access long-
lived metastable states, the kind obtained in our simulations.
Our numerics can hence be exploited to estimate interfacial
energies, barrier energies, and relaxation times of experimental
samples. We believe that this work is a starting point to
understand pattern formation, morphological features, growth
laws, and other nonequilibrium properties in these complex
systems.
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