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Time evolution of the bound state of a molecular hydrogen cation in an intense, linearly polarized laser
field is investigated by solving the full three-dimensional time-dependent Schrödinger equation. Our method
is based on the Born-Oppenheimer and dipole approximations, and the wave function is expanded in finite
series using B-spline functions and spherical harmonics in prolate spheroidal coordinates. After solving the
stationary Schrödinger equation, the initial state is propagated under the influence of the laser field employing
the Crank-Nicolson propagator. Using this method we calculate and present high-harmonic photon spectra and
above-threshold ionization angle-resolved electron spectra.
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I. INTRODUCTION

The interaction between intense laser fields and atomic
and molecular systems is a subject of great current interest,
both from experimental and theoretical points of view. This
interaction leads to highly nonlinear strong-field phenomena,
and much of our knowledge about such processes comes
from the study of high-order harmonic generation (HHG)
and above-threshold ionization (ATI) (see, for example, the
review articles [1–3] and references therein). To describe
such processes it is necessary to numerically solve the many-
electron time-dependent Schrödinger equation (TDSE) which
is beyond the capability of current computers. Because of this
bottleneck, the TDSE is usually solved in the single-active
electron (SAE) approximation in which only the valence
electron interacts with the laser pulse, while the core electrons
are frozen. This approximation has already been used for
atomic systems to describe HHG and ATI (see, for example,
the review articles [4–6] and implementations [7,8]). Typical
time consumption of the numerical algorithm for a fully
three-dimensional TDSE within the SAE approximation on
a single desktop PC ranges from a few minutes to a few days,
depending on the laser pulse duration, wavelength, intensity,
and nature of the problem.

Molecular systems introduce more complexity into the
TDSE [1]. That is why other theoretical models—such as
molecular Ammosov-Delone-Krainov theory [9] and molec-
ular strong-field approximation (MSFA) theory [10,11]—are
often used to study the ionization of molecular systems. For
example, for more intense laser fields the improved MSFA is
applied to HHG [12] and high-order ATI of diatomic [13] and
polyatomic [14] molecules. It is necessary to test the above-
mentioned models by solving the TDSE for molecular systems.
This is possible for the simplest and smallest molecule, the H+

2
ion. This molecule is relevant per se (for example, in environ-
ments ranging from interstellar chemistry to fusion reactors)
but, in the context of strong field physics, it is more important
since the symmetry properties of most diatomic molecular or-
bitals can be reproduced by choosing appropriate H+

2 orbitals.
The TDSE for H+

2 has been solved using various methods
and in various contexts (as an incomplete list we mention

[15–19] and references therein). However, for laser fields
having long wavelengths (�800 nm) and high intensities
(>1014 W/cm2) there is a limited number of ab initio full
three-dimensional calculations of HHG and ATI spectra of H+

2 .
New and more efficient methods of calculations are desirable.

In this paper we describe a numerical method for solving
the TDSE of a one-electron hydrogen molecular cation using
B-spline functions and spherical harmonics to represent the
wave function in the prolate spheroidal coordinates. This paper
is organized as follows. In Sec. II we introduce numerical
method for solving the stationary Schrödinger equation. The
initial state obtained by this method is propagated in time using
an algorithm described in Sec. III. In the last two sections,
application to HHG and ATI is presented. Atomic units
(a.u.; h̄ = 1, 4πε0 = 1, |e| = 1, and me = 1) are used through-
out the paper, unless stated otherwise.

II. MOLECULAR HAMILTONIAN IN PROLATE
SPHEROIDAL COORDINATES

A one-electron diatomic molecule in the Born-
Oppenheimer and fixed-nuclei approximation is described by
the Hamiltonian

H0 = −1

2
∇2 − Z1

r1
− Z2

r2
+ Z1Z2

R
, (1)

where Z1 and Z2 are nuclear charges and r1 and r2 are
electron distances from nuclei. The last term in (1) is the
Coulomb interaction of the two nuclei, which is constant and
can be omitted. We assume that the internuclear axis is aligned
along the z axis so that R = Rez. Electron distances from
nuclei are evaluated as r1 = |r + R

2 ez| and r2 = |r − R
2 ez|.

For the diatomic molecule there are special coordinates which
take care of the Coulomb singularities at the two nuclei, namely
the prolate spheroidal coordinates (ξ,η,ϕ), where ϕ is the angle
around the z axis and

ξ = r1 + r2

R
, ξ ∈ [1,∞), (2)

η = r1 − r2

R
, η ∈ [−1,1]. (3)
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These coordinates have been successfully used in Hartree-
Fock calculations for diatomic molecules [20–22]. The con-
nection between the Cartesian coordinates and the prolate
spheroidal coordinates is given by

x = R

2

√
(ξ 2 − 1)(1 − η2) cos ϕ, (4)

y = R

2

√
(ξ 2 − 1)(1 − η2) sin ϕ, (5)

z = R

2
ξη, (6)

with the volume element defined as dτ = R3

8 (ξ 2 −
η2)dξ dη dϕ.

Hamiltonian (1) in prolate spheroidal coordinates is

H0 = − 2

R2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

+
(

1

ξ 2 − 1
+ 1

1 − η2

)
∂2

∂ϕ2

]
+ V (ξ,η), (7)

where V (ξ,η) is the Coulomb interaction:

V (ξ,η) = −2
(Z1 + Z2)ξ − (Z1 − Z2)η

R(ξ 2 − η2)
. (8)

We will limit our study to a homonuclear H+
2 molecular

ion with Z1 = Z2 = 1, since this molecule has only one active
electron and is a good starting point to test the validity of
our numerical method. It can be shown that the Hamiltonian
(7) commutes with the projection operator Lz of the electron
angular momentum along the z axis, meaning that Lz is
a constant of motion. Thus, the wave function in prolate
spheroidal coordinates can be written as [23]

	(ξ,η,ϕ) = ψ(ξ,η)
exp(imϕ)√

2π
. (9)

When this function is introduced into the Schrödinger equa-
tion, the factor exp(imϕ) cancels and the quantum number m

appears in this equation as m2 so that the number λ = |m|(m =
0, ± 1, ± 2, . . . ) is used to describe one-electron orbitals. For
homonuclear molecules, Hamiltonian (7) also possesses in-
version symmetry with respect to the midpoint between nuclei
due to the Coulomb potential property V (ξ,η) = V (ξ, − η).
This means that the wave functions ψ(ξ,η) are even (gerade)
or odd (ungerade) functions.

We will solve the Schrödinger equation H0	(ξ,η,ϕ) =
E	(ξ,η,ϕ) by expressing wave functions in terms of B-spline
functions and spherical harmonics:

	(ξ,�,t) ≈
Nξ −1∑
i=1

L∑
l=|m|

ail(t)Bi(ξ )(ξ 2 − 1)|m|/2Ym
l (�), (10)

where η = cos θ and Nξ is the number of B-spline functions
used. For a review of the B-spline functions see [24]. Expan-
sion coefficients ail are time dependent when we propagate
the wave function under the influence of the laser field.
The sum over spherical harmonics is truncated at L and
the interval of the ξ coordinate is limited to [1,ξmax]. Factor
(ξ 2 − 1)

|m|/2
is used in the B-spline expansion in order to avoid

singularities at ξ = 1. The wave function should also satisfy

the boundary condition 	(ξmax,η,ϕ) = 0. This condition is
fulfilled by excluding the last B-spline function BNξ

from
the expansion (10). The symmetry of the wave functions is
included in the spherical harmonics since they also possess
inversion symmetry:

Ym
l (π − θ,ϕ + π ) = (−1)lY m

l (θ,ϕ). (11)

For gerade states we use only even l in expansion (10) and for
ungerade states we use only odd l. For example, for the σg state
(λ = 0) l = 0,2,4, . . . ,L; for the σu state l = 1,3,5, . . . ,L;
for the πg state (λ = 1) l = 2,4,6, . . . ,L; for the πu state
l = 1,3,5, . . . ,L, etc. Using this property of the spherical
harmonics, there is no need to define different basis sets
for even and odd m as done in the method of finite-element
discrete-variable representation [25,26].

The next step is to transform the Schrödinger equation into
a standard generalized eigenvalue problem. This is accom-
plished by inserting wave function (10) into the Schrödinger
equation and multiplying by (ξ 2 − 1)|m|/2Bj (ξ )Ym∗

k (θ,ϕ) and
finally integrating over dτ . In this way we obtain matrix
elements of the molecular Hamiltonian:

(H0)kl
ij = −δk,l

R

4

∫ ξmax

1
Bi(ξ

2 − 1)|m|/2

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ

− m2

ξ 2 − 1
+ 2Rξ

]
Bj (ξ 2 − 1)|m|/2dξ

+δk,l l(l + 1)
R

4

∫ ξmax

1
BiBj (ξ 2 − 1)|m|dξ. (12)

The last term was evaluated using the generalized Legendre
differential equation [27]:[

∂

∂η
(1 − η2)

∂

∂η
+ l(l + 1) − m2

1 − η2

]
P m

l (η) = 0. (13)

The right-hand side of the Schrödinger equation leads to the
overlap matrix element:

(S)kl
ij = δk,l

R3

8

∫ ξmax

1
BiBjξ

2(ξ 2 − 1)|m|dξ

− R3

8

∫ ξmax

1
BiBj (ξ 2 − 1)|m|dξ

{
cm
l−1c

m
l−2δk,l−2

+ [(
cm
l−1

)2 + (
cm
l

)2]
δk,l + cm

l cm
l+1δk,l+2

}
, (14)

where we have used the identity

cos θYm
l (θ,ϕ) = cm

l−1Y
m
l−1(θ,ϕ) + cm

l Ym
l+1(θ,ϕ), (15)

cm
l =

√
(l + 1)2 − m2

(2l + 1)(2l + 3)
. (16)

Integrals over η are evaluated in closed analytical form,
which is another advantage of the basis set expansion we used.
Since B-spline functions are piecewise polynomial functions,
integrals involving B-spline functions are calculated using
the Gauss-Legendre formula [28]. The Hamiltonian matrix
H0 is diagonal in l-space but the overlap matrix S is not.
Furthermore, these matrices are banded which further reduces
computation time. Eigenvalues and eigenvectors of the gen-
eralized eigenvalue problem H0 · a = ES · a are determined
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FIG. 1. Potential curves for several lowest-lying bound states.

using LAPACK subroutine DSPGVX [29]. In Fig. 1 we show
potential curves for σ and π states as functions of the
internuclear distance.

Calculated eigenvalues for several lowest lying states for
internuclear distance R = 2 a.u. are given in Table I with omit-
ted nuclear potential energy. We compared these calculated
eigenvalues with already published results [16,30] and found
a good agreement. Eigenvalues were calculated using up to 20
spherical harmonics and 80 B-spline functions of order 10 with
ξmax = 60. By solving the stationary Schrödinger equation we
were able to test the accuracy of the basis set expansion (10)
and to obtain an initial state for the TDSE.

III. TIME EVOLUTION OF THE INITIAL STATE

A one-electron molecule exposed to an intense laser field
is described by the TDSE:

i
∂	

∂t
= H	, H = H0 + VI (t), (17)

where operator VI (t) represents the electron-laser interaction
in the dipole approximation. In the length gauge this inter-
action is given by VL(t) = r · E(t), and in velocity gauge by
VV (t) = −iA(t) · p̂, where A(t) = − ∫ t E(t ′)dt ′ is the vector
potential of the laser field.

Under the influence of the laser field, the parity of the
wave function breaks down and in the expansion (10) we
have to include both even and odd spherical harmonics. For a
linearly polarized laser field along the internuclear axis, axial
symmetry is preserved but the same conclusion is not valid for

an arbitrarily polarized laser field. We assume that the laser
electric field is linearly polarized along the internuclear axis.
The interaction operator in velocity gauge is given by

VV (t) = −iA(t)
∂

∂z

= −iA(t)
2

R

1

ξ 2 − η2

[
(ξ 2 − 1)η

∂

∂ξ
+ (1 − η2)ξ

∂

∂η

]
,

(18)

while in length gauge it is

VL(t) = R

2
ξηE(t). (19)

Matrix elements corresponding to the interaction operator in
velocity gauge are given by

(VV )kl
ij = −i

R2A(t)

4

∫ ξmax

1
Bi

dBj

dξ
(ξ 2 − 1)|m|+1dξ

× [
cm
l−1δk,l−1 + cm

l δk,l+1
]

− i
R2A(t)

4
|m|

∫ ξmax

1
BiBj (ξ 2 − 1)|m|ξdξ

× [
cm
l−1δk,l−1 + cm

l δk,l+1
]

− i
R2A(t)

4

∫ ξmax

1
BiBj (ξ 2 − 1)|m|ξdξ

× [
(l + 1)cm

l−1δk,l−1 − lcm
l δk,l+1

]
. (20)

The last term was evaluated using the identity

(1 − η2)
∂

∂η
Ym

l = (l + 1)cm
l−1Y

m
l−1 − lcm

l Ym
l+1. (21)

As we can notice, the matrix VV is a narrow-banded matrix
coupling the l − 1 and l + 1 blocks. Matrix elements corre-
sponding to the interaction operator in length gauge are given
by

(VL)kl
ij = R4

16
E(t)

∫ ξmax

1
(ξ 2 − 1)|m|ξ 3BiBjdξ

× [
cm
l−1δk,l−1 + cm

l δk,l+1
]

− R4

16
E(t)

∫ ξmax

1
(ξ 2 − 1)|m|ξBiBjdξ

× {
cm
l−1c

m
l−2c

m
l−3δk,l−3 + [

cm
l−1

(
cm
l−2

)2 + (
cm
l−1

)3

+ cm
l−1

(
cm
l

)2]
δk,l−1 + [

cm
l

(
cm
l−1

)2 + (
cm
l

)3

+ cm
l

(
cm
l+1

)2]
δk,l+1 + cm

l cm
l+1c

m
l+2δk,l+3

}
, (22)

TABLE I. Bound state energies of the molecular hydrogen ion for internuclear distance R = 2 a.u. with omitted nuclear potential
energy 1/R.

State Eigenvalues (a.u.) Eigenvalues from [30] Eigenvalues from [16]

1σg − 1.102 634 214 494 909 7 − 1.102 634 214 494 946 4 − 1.102 634 214 5
1σu − 0.667 534 392 202 603 5 − 0.667 534 392 202 382 9 − 0.667 534 392 20
1πu − 0.428 771 819 896 048 5 − 0.428 771 819 895 856 4 − 0.428 771 819 90
2σg − 0.360 864 875 339 372 1 − 0.360 864 875 339 503 8 − 0.360 864 875 34
2σu − 0.255 413 165 086 447 2 − 0.255 413 165 086 484 5 − 0.255 413 165 09
1πg − 0.226 699 626 643 484 7 − 0.226 699 626 643 657 6 − 0.226 699 626 64
1δg − 0.212 732 681 811 212 5 − 0.212 732 681 810 763 1 − 0.212 732 681 81
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so that the interaction matrix also couples l − 3 and
l + 3 blocks, which in turn gives more nonzero off-diagonal
elements than the interaction matrix in velocity gauge.

The TDSE is solved by approximating the time-evolution
operator with the Crank-Nicolson approximation [7,31]:

a(t + �t) = S − i�t
4 VI (t + �t)

S + i�t
4 VI (t + �t)

× S − i�t
2 H0

S + i�t
2 H0

× S − i�t
4 VI (t)

S + i�t
4 VI (t)

a(t), (23)

where the elements of the overlap matrix S are defined
by Eq. (14). This propagator preserves the norm of the
wave function. There are other forms of the Crank-Nicolson
propagator (see for example [17,26,32]) defined by rearranging
terms in (23). We find that these forms of the Crank-Nicolson
propagator cannot give desirable numerical accuracy. This
conclusion has also been emphasized in [31].

If a part of the wave function reaches the boundary at
ξ = ξmax, it will be reflected back, causing unphysical interfer-
ence with the initial wave. This effect can be overcome by using
an absorber in the form of a negative imaginary potential in the
region close to the boundary wall [33]. In our HHG spectrum
calculations we use a negative imaginary potential in the form
of

Vabs(ξ ) =
{−iW0(ξ − ξ0)κ for ξ0 � ξ � ξmax,

0 otherwise, (24)

where 10−3 � W0 � 10−2, ξmax − ξ0 � 40 with κ = 1 or 2.
All matrices in the time evolution algorithm are banded

and these systems of linear equations can be solved using the
appropriate LAPACK subroutine together with the use of the
optimized BLAS library [34,35].

IV. APPLICATION TO HIGH-ORDER
HARMONIC GENERATION

In this section we present an application of the developed
propagation algorithm to high-order harmonic generation.
HHG is a highly nonlinear strong-field phenomenon which can
be explained by the three-step recollision model [5,36]: (a) the
electron under the influence of the laser field is “born” in the
continuum, (b) then it is accelerated by the applied laser field
and eventually is driven back to the parent ion, and (c) during
recombination of the electron with the parent ion a high-order
harmonic is emitted. This three-step model predicts that the
maximum harmonic order Nm is determined by the relation

Nmω = 1.325Ip + 3.173Up, (25)

where Ip is the ionization potential of the target and Up is the
ponderomotive energy of the electron, given in atomic units as
Up = I/(4ω2), where I and ω are the laser field intensity and
frequency, respectively. The factor 1.325 in above equation is
a semiclassical correction [37,38].

The intensity of the emitted harmonic of frequency � is
proportional to the Fourier transform of the time-dependent
dipole acceleration [39]:

I (�) =
∣∣∣∣ 1

tf − ti

∫ tf

ti

dA(t) exp(−i�t)dt

∣∣∣∣
2

. (26)
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FIG. 2. Comparison of the HHG spectra calculated using length
and velocity gauges for a laser pulse of intensity I = 3 ×
1014 W/cm2, wavelength λ = 800 nm, and duration of 18 optical
cycles. Initial state is 1σg. For other parameters see the text.

The dipole acceleration

dA(t) = −〈	(t)|∂V

∂z
|	(t)〉 − E(t) (27)

is calculated using the Gauss-Legendre integration method for
double integrals over the variables ξ and η [28].

The HHG spectrum is calculated using length or velocity
gauge for the laser-molecule interaction, with the electric field
given by

E(t) = E0 cos2

(
πt

τ

)
cos(ωt + φ), t ∈

[
−τ

2
,
τ

2

]
, (28)

with the carrier-envelope phase φ set to zero. All results
presented in this and the following section are obtained for
the equilibrium internuclear distance R = 2 a.u.

With initial state 1σg, laser field intensity I = 3 ×
1014 W/cm2, and a pulse duration of 18 optical cycles, we
find that it is sufficient to use up to 36 spherical harmonics in
order to achieve the convergence in length gauge. In velocity
gauge the convergence is achieved with 20 spherical harmonics
for the same laser field parameters. This is not surprising, since
it is known that the TDSE results converge faster in velocity
gauge [40]. In general, we use velocity gauge. In Fig. 2 we
compare HHG spectra obtained in length and velocity gauges
and, as we can notice, the HHG spectrum is gauge invariant
as it should be. Both spectra are calculated using Nξ = 200
B-splines of order k = 10, with ξmax = 180, ξ0 = 90, and
�t = 0.05 a.u. For harmonic orders above 71st, which are
far beyond the cutoff, the harmonic intensity is of the order
10−18 arb. units and, due to numerical error by finite precision
of computation, the velocity and length gauge results are
different.

Semiclassical formula (25) predicts that the cutoff of the
HHG spectrum is at the 61st harmonic, which is in excellent
agreement with our TDSE calculations.

In Fig. 3 we show HHG spectra calculated using velocity
gauge for different laser field intensities and wavelength
λ = 800 nm for the 1σu initial state. Other laser field
parameters are the same as in previous calculations. Cutoff
positions are at the 39th, 51st, and 63rd harmonics for given
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FIG. 3. HHG spectra calculated using velocity gauge for different
laser field intensities and wavelength λ = 800 nm. Initial state is 1σu.
Spectra are shifted vertically for clarity. Other laser parameters are
the same as in Fig. 2.

intensities. Notice that the results of Figs. 2 and 3, for the
same laser parameters, looks differently due to different initial
states (1σg having ionization potential 30.00 eV vs 1σu having
Ip = 18.16 eV).

V. APPLICATION TO ABOVE-THRESHOLD IONIZATION

We now focus our attention to the above-threshold ion-
ization of the H+

2 molecular ion. In this process an atom
absorbs more photons than the minimum number required for
ionization [2,41]. The overall characteristics of the ATI spectra
are peaks separated by the photon energy and shifted by the
ponderomotive energy. Because of energy conservation, the
energy corresponding to an ATI peak originating from ioniza-
tion with absorption of n photons is E = nω − (Ip + Up).

From a numerical point of view, calculations of the
photoelectron ionization probability are more time con-
suming than calculations of the HHG spectrum for the
same laser field parameters. In order to include photo-
electrons with large kinetic energy, a very large grid is
required.

The TDSE solver provides the wave function at the end
of propagation 	(tf ) and this wave function contains all the
information about physical observables. The photoelectron
spectrum can be extracted through the projection of the
final wave function to the continuum states satisfying the
appropriate incoming boundary condition. Since the field-
free Hamiltonian (7) is completely separable in the prolate
spheroidal coordinates, continuum states are built from the
“angular” �|m|(η) and “radial” �|m|(ξ ) parts of the wave
function satisfying equations

[
d

dη
(1 − η2)

d

dη
− m2

1 − η2
− c2η2 + A

]
�|m|(η) = 0, (29)

[
d

dξ
(ξ 2 − 1)

d

dξ
− m2

1 − η2
+ c2ξ 2 + 2Rξ − A

]
�|m|(ξ ) = 0,

(30)

with c = kR/2(k = √
2E), and A being the separation con-

stant. The angular equation is solved by expanding �|m|(η) into
a series of normalized associated Legendre polynomials [42]:

�|m|(η) =
∑
r=0

dr (c)V |m|
r+|m|(η),

where V
|m|
r+|m|(η) = M

|m|
r+|m|P

|m|
r+|m|(η) are normalized associated

Legendre polynomials, with M
|m|
r+|m| being normalization con-

stants. This method converts the angular equation into an
eigenvalue problem which can be solved by the LAPACK

subroutine DSBEVD. The separation constants are labeled by
A|m|q , where q (q = 0,1,2, . . . ) represents the number of
nodes of the function �|m|q(η) in the interval η ∈ [−1,1].
After obtaining eigenvalues A|m|q , the radial equation is
numerically solved by the finite-difference scheme proposed
by Killingbeck [43] and described in detail in [44]. The
phase shifts are obtained by matching the numerical solution
of the radial equation with the asymptotic solution when
ξ = ξmax � 1 [45]. These phase shifts are then transformed
into phase shifts defined by Ponomarev and Somov [46] �pm

and used to obtain continuum states with incoming boundary
condition [47]

�
(−)
k = 1

k

∞∑
m=−∞

∞∑
p=|m|

ipe−i�pm

×Ypm(η,ϕ)Y∗
pm(θk,ϕk)�|m|q(ξ,k), (31)

where Ypm(η,ϕ) = �|m|q(η) eimϕ√
2π

are “spheroidal harmon-
ics”, �pm are the two-center Coulomb phase shifts, and
p = |m| + q. Continuum states defined by (31) are nor-
malized in the momentum space according to the relation
〈�(−)

k |�(−)
k′ 〉 = δ(k − k′).

The photoelectron angular distribution (PAD) is obtained
as

d3P

d�kdE
= k|〈�(−)

k |	(tf )〉|2. (32)

The integration over ξ coordinate in the PAD (32) is carried out
with Gauss-Legendre quadrature points. We have found that
the number of terms in the summation over p in (31) must at
least be equal to the number of spherical harmonics used in the
TDSE solver in order to obtain converged PAD. Alternatively,
the photoelectron spectrum can be obtained by the window-
operator technique [48,49], which is a very convenient way to
calculate photoelectron spectra without explicit computation
of the unperturbed Hamiltonian’s continuum eigenfunctions.
We have also used this method to calculate ATI spectra
(see [50]). In the present paper all the ATI spectra are obtained
by the projection method at the equilibrium internuclear
distance R = 2 a.u.

In Fig. 4 we present the ATI spectra along the laser polariza-
tion direction, obtained for the wavelength λ = 400 nm (ω =
0.1138 a.u.) and laser field intensity I = 3.5 × 1014 W/cm2,
using 1σg as the initial state. The spectra are obtained using a
trapezoidal electric field E(t) = −E0f (t) sin(ωt), where pulse
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FIG. 4. Ionization probability along the laser polarization di-
rection for the initial state 1σg , obtained with the trapezoidal
laser pulse envelope. Laser parameters are I = 3.5 × 1014 W/cm2,
λ = 400 nm (ω = 0.1138 a.u.).

envelope f (t) is given by

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

t
nrT

, 0 � t � nrT ,

1, nrT � t � (nr + nc)T ,

(2nr+nc)T −t

nrT
, (nr + nc)T � t � (2nr + nc)T ,

(33)
where T = 2π/ω. We have used nr = 0.5 and nc = 4.

Due to very high ionization potential of the ground state
1σg (Ip = 30 eV) at the equilibrium internuclear distance, the
intensity of the laser field has to be very high in order to have
a substantial ionization probability. On the other hand, higher
intensity means more basis functions and a larger grid has to
be used in order to obtain a converged time-dependent wave
function.

At this wavelength and intensity we expect to see a
spectrum corresponding to high-order above-threshold ion-
ization (HATI) [51,52]. In Fig. 4, four distinct regions are
clearly visible in the spectra. The region up to approximately
3Up is the ATI spectrum which corresponds to the direct
electrons (ionization probability is of the order 10−2 arb. units).
This is followed by a transition region from the direct to
the rescattered electrons. Next, the plateau region, with the
ionization probability approximately two orders of magnitude
lower than that of the direct electron, extends from 4Up

up to approximately 10Up and represents the rescattered
electrons. Finally, after the cutoff, which is at the energy
10.007Up + 0.538Ip according to the semiclassical formula
from [53], the ionization probability exponentially decreases.

In Fig. 5 we show the PAD corresponding to the above
parameters. As we can notice, the presented PAD clearly man-
ifests typical ATI rings separated by photon energy. The cutoff
for ky = 0 and kz = √

20Up = 1.96 a.u. is clearly visible. The
spectra are calculated using 55 spherical harmonics, with grid
extending to ξmax = 600, and for Nξ = 1209, leading up to
about 55 000 basis functions in (10).

As the last example we show HATI spectra obtained
for the 1σu initial state and I = 1014 W/cm2, λ = 800 nm
(ω = 0.0569 a.u.) (Figs. 6 and 7). Since the wavelength is

FIG. 5. The logarithm of the photoelectron angular distribution
for the same laser field parameters as in Fig. 4. The false color scale
covers five orders of magnitude.

longer than in the previous calculations, the plateau region is
more pronounced. The spectra are calculated using 35 spher-
ical harmonics, with grid extending to ξmax = 1000, and for
Nξ = 1009.

VI. SUMMARY

In the present paper we have described a numerical method
for solving the TDSE for molecular hydrogen cation in a
linearly polarized laser field. It is assumed that the laser field
is polarized along the molecular axis. The method is based
on the expansion of the time-dependent wave function in a
basis of B-spline functions and spherical harmonics in prolate
spheroidal coordinates. The time evolution of the initial state
is performed by a Crank-Nicolson propagator.

In order to test the accuracy of our numerical method we
have calculated the energies of the several lowest lying bound
states. We have also calculated HHG spectra for different
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FIG. 6. Ionization probability along the laser polarization di-
rection for initial state 1σu, obtained with trapezoidal laser pulse
envelope. Laser parameters are I = 1014 W/cm2, λ = 800 nm
(ω = 0.0569 a.u.).
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FIG. 7. The logarithm of the photoelectron angular distribution
for the same laser field parameters as in Fig. 6.

laser field intensities using different initial bound states. The
produced HHG spectra are gauge invariant and the position of
the cutoff is in agreement with the semiclassical prediction.

As the final test, we reported calculations of the photoelec-
tron ionization probability. Ionization probability is calculated
by projecting the final wave function onto the continuum
states with an incoming boundary condition. In the spectra we
observed clearly resolved ATI peaks (Fig. 4) with four clearly
visible distinct regions. The region up to 3Up corresponds to
the direct ATI electrons. This region is followed by a transition
region from the direct to the rescattered electrons. The plateau
region extends from 4Up up to approximately 10Up and
represents rescattered electrons. Finally, the cutoff region
corresponds to the energies larger than 10.007Up + 0.538Ip.
We are not aware of any publication in which the high-
energy electron spectra with a plateau and clear cutoff were
obtained from the solution of the three-dimensional TDSE for
molecules.

Insights into symmetry related effects involving the highest-
occupied molecular orbitals of complex molecules can be
gained by studying their symmetry analog for H+

2 , and this
fact increases the importance of the method developed in our
paper.
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