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In our study, the dual time-stepping strategy of the gas-kinetic scheme is constructed and used for the
simulation of unsteady flows. In comparison to the previous implicit gas-kinetic scheme, both the inviscid
and viscous flux Jacobian are considered in our work, and the linear system of the pseudo-steady-state is
solved by applying generalized minimal residual algorithm. The accuracy is validated by several numerical
cases, the incompressible flow around blunt bodies (stationary circular cylinder and square cylinder), and the
transonic buffet on the NACA0012 airfoil under hybrid mesh. The numerical cases also demonstrate that the
present method is applicable to approach the fluid flows from laminar to turbulent and from incompressible to
compressible. Finally, the case of acoustic pressure pulse is carried out to evaluate the effects of enlarged time
step, and the side effect of enlarged time step is explained. Compared with the explicit gas-kinetic scheme, the
proposed scheme can greatly accelerate the computation and reduce the computational costs for unsteady flow
simulations.
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I. INTRODUCTION

Based on the Bhatnagar-Gross-Krook (BGK) model [1],
the gas-kinetic scheme, which describes the macroscopic fluid
flows by using microscopic distribution functions, is very
promising in the field of nonequilibrium simulations [2,3].
Many published results have demonstrated the accuracy and
effectiveness of the gas-kinetic scheme in the simulations of
laminar [4–6] and turbulent flows [7–12]. However, for the
complexity of flux computation, the gas-kinetic scheme is
much more expensive compared with conventional numerical
approaches. It is highly necessary to develop a fast algorithm
for the gas-kinetic scheme to simulate unsteady flows.

The fast approach for unsteady flows become more and
more important in the field of engineering. An explicit scheme
can be seen as the best choice for the simulation of unsteady
flows with sufficient accuracy. However, in some cases, the
physical time scales might be much larger than the explicit
time step determined by the Courant-Friedricks-Lewey (CFL)
numbers, which will lead to very expensive computational
cost. Dual time-stepping strategy was first implemented
by Jameson by using an explicit multistage scheme [13],
and the efficiency is improved greatly when the multistage
scheme is accelerated by local time stepping and multigrid.
Examples of applications on structured grids can be found in
Ref. [14]. Implementations of the dual time-stepping strategy
on unstructured grids were described in Ref. [15]. The implicit
scheme also can be employed to accelerate the convergence of
the pseudo-steady-state, and the details of implementations can
be seen in the literature [16,17]. Dual time-stepping strategy
becomes one of the popular methods used widely and has
been proved as an effective method for unsteady flows in
conventional approach. However, for the gas-kinetic scheme,
study for the dual time-stepping strategy has not been reported.
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It is necessary to propose a dual time-stepping method for the
gas-kinetic scheme.

In our paper, we proposed a dual time-stepping method for
the gas-kinetic scheme, and the implicit gas-kinetic scheme
and the local time-stepping are adopted to accelerate the
convergence of the pseudo-steady-state. Chit [18] proposed
an implicit gas-kinetic method based on the approximate
factorization-alternating direction implicit (AF-ADI) scheme,
and the results are agree well with the compared data. Xu
and Mao [5] developed an implicit scheme based on the Euler
fluxes and LU-SGS method, and the method is applied to
simulate hypersonic laminar viscous flows. Jiang and Qian
[19] make a comparison of implicit GKS and the multigrid
GKS in three-dimensional (3D) simulations. Li [20] proposed
an unstructured implicit GKS based on the LU-SGS method.
Different from previous implicit gas-kinetic schemes, the
generalized minimal residual method (GMRES) [21–23] is
used to solve the linear systems of flux Jacobian matrix, and in
the construction of linear systems, not only the Euler flux
Jacobian, but also the viscous flux Jacobian, which is not
mentioned in the previous implicit gas-kinetic schemes, is
considered.

In present study, we set up several numerical cases to
validate the dual time-stepping strategy for the gas-kinetic
scheme, and several features of the free stream flow conditions
have been considered. The case of incompressible flow around
the circular cylinder is focused on the simulation of unsteady
flows at low Reynolds numbers. The usefulness of the dual
time-stepping method in the simulation of incompressible tur-
bulent flow is demonstrated in the second test case, and both the
vortex shedding frequency and the surface loads are obtained.
The third case is about the transonic buffet on the NACA0012
airfoil, which is studied by experiments and numerical methods
such as McDevitt and Okuno [24], Xiong [25], Iovnovich [26],
Gao [27], Zhang [28], and Quan [29]. For the approach of
turbulent flows, turbulence models [30,31] are coupled with the
gas-kinetic scheme. To explain the side effect of the enlarged
time step, the numerical case of acoustic pressure pulse is
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performed. Since there are only very few studies of gas-kinetic
schemes focused on the simulation of unsteady flows, most
of the compared data are based on the conventional CFD
methods.

The rest of our paper is organized as follows. In Sec. II, the
gas-kinetic scheme, the dual time-stepping strategy, and the
flux Jacobian are introduced briefly. In Sec. III, four numerical
test cases (incompressible laminar flow over the stationary
circular cylinder, incompressible turbulent flow around a
square cylinder, the transonic buffet on the NACA0012 airfoil
surface at high Reynolds number, and the acoustic pressure
pulse) are conducted for different purposes. Finally, a short
conclusion is summarized in Sec. IV.

II. NUMERICAL METHODS

A. Gas-kinetic scheme

In this section, the computational procedure of the gas-
kinetic scheme proposed by Xu [4] is introduced briefly.

1. Initial reconstruction

Similar to the finite volume method, the gas-kinetic scheme
in the finite volume method can be expressed as

wn+1
I = wn

I − 1

�I

∫ tn+1

tn

NIF∑
J=1

F(t)J SJ dt, (1)

where I is the index of the finite volume, J means the index
of interface belonged to the cell I,NIF is the total number of
the cell interfaces around the finite volume I,�I denotes the
measure of the finite volume I , and SJ is the measure of the
J th cell interface of finite volume I . The macroscopic variable
w appeared in the Eq. (1) reads as

w =
⎛⎝ ρ

ρUi

E

⎞⎠ =
∫

ψf d�,

(2)

ψ =
(

1,ui,
1

2
(u · u + ξ · ξ )

)T

,

and the flux F at the cell interface is

F = (
Fρ,FρUi

,FE

)T =
∫

(u · n)ψf d�,

(3)

d� =
(

D∏
i=1

dui

)(
K∏

i=1

dξi

)
.

f is the distribution function, D represents the dimension, K

denotes the total degree of freedom of internal variables ξ ,ρ

is the density, U is the macroscopic velocity, E is the energy
of gas in the finite volume, u is the particle velocity, and
n represents the normal vector pointing outside of the finite
volume.

For the gas-kinetic scheme in the finite volume method,
flux across the cell interface is based on initial reconstruction
in which interpolation techniques and limiters are used. For
unstructured grids, it is proved that the Venkatakrishnan

limiter [32], which has been used in our method, works
well.

The conservative variable in the finite volume can be
expressed as

wI (x) = wI (xI ) + [(x − xI ) · ∇wI ]φI , (4)

where φI denotes the limiter in the finite volume I,xI is
coordinate of the cell center, x means the position of a point
located in the finite volume, and ∇wI denotes the spatial
gradient of conservative variable in the finite volume I .

The Venkatakrishnan limiter employed in our study reads as

φIJ =

⎧⎪⎨⎪⎩
L

(
wM

I − wI ,�IJ

)
, �IJ > 0,

L
(
wm

I − wI ,�IJ

)
, �IJ < 0,

1, �IJ = 0,

(5)

where

L(a,b) = a2 + 2ab + ε

a2 + 2b2 + ab + ε
, (6)

φI = min φIJ , (7)

�IJ = (xJ − xI ) · ∇wI , (8)

ε = (ζ h̄)3, ζ > 0. (9)

h̄ denotes the average cell size of the grid in the computational
domain, ζ is a constant number, wM

I and wm
I are the maximum

and minimum values of macroscopic conservative variables
in the neighbors of the cell I , respectively. The value of ζ

has a great effect on the accuracy and convergence of the
numerical algorithm. Because determining a proper value of
ζ is a confusing and difficult problem in practice, it is hard to
get a suitable value for ζ . In our work, we follow the ideas in
Ref. [33], which modified Eq. (9) as

ε = η(wMax − wMin), η ∈ (0.01,0.2). (10)

Since wMax and wMin are the maximum and minimum
values of macroscopic conservative variables in the whole
computational domain, they do not rely on the local value and
provide a threshold value for the smooth region. In our tests, the
value of η is given as 0.15 following the suggestion in Ref. [34].

2. Flux across the cell interface

After the reconstruction stage, F can be computed by using
Eq. (3). The only issue left is to calculate the distribution
function f at the cell interface. In this paper, we take a
special case, in which the interface is normal to the x axis,
to demonstrate the computational procedure of the flux at the
cell interface. In practice, the cell interface is rarely normal to
the x axis, especially for grids with triangles and tetrahedrons.
So, the transformation of coordinate system must be applied.
f can be written as

f = (
1 − e− t

τ

)
(g0 − tu · ∇g0) + e− t

τ (ḡ − tu · ∇ḡ)

+ t

(
∂g0

∂t
+ u · ∇g0

)
− τ

(
1 − e− t

τ

)(∂g0

∂t
+ u · ∇g0

)
− τe− t

τ

(
∂ḡ

∂t
+ u · ∇ḡ

)
. (11)
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For notational convenience we define

ḡ = [1 − H (x · n)]gl + H (x · n)gr, (12)

where H (x) is the Heaviside function

H (x) =
{

0, x < 0,

1, x � 0.
(13)

g0,g
l , and gr , obtained after the initial reconstruction of macro-

scopic conservative variables, are the Maxwellian distribution
function at and both sides of cell interface respectively. The
kernel of the gas-kinetic scheme is to compute the distribution
function f at the cell interface, and the detailed determinations
of ∇g0,∇gl,∇gr,

∂g0

∂t
,
∂gl

∂t
, and ∂gr

∂t
can be seen in Refs. [4,35].

3. Collision time and numerical viscosity

The collision time appearing in Eq. (11) is defined as

τ = μ

p
+ |pl − pr |

|pl + pr |�t. (14)

p represents the pressure. μ is the dynamic viscosity coef-
ficient. The second term on the right-hand side of Eq. (14)
represents the artificial numerical viscosity. �t is the explicit
time step, which can be calculated by

�t = δCFL · min

{
�I

(c)I

}
. (15)

c reads as

c =
NIF∑
J=1

[(|U · nJ | + as)SJ ], (16)

and as represents the sound speed in the finite volume I .
For the prediction of turbulent flows, Eq. (14) can be

rewritten as

τ = μ + μt

p
+ |pl − pr |

|pl + pr |�t, (17)

where μt is the turbulent eddy viscosity, which comes from
the allied turbulence model. There are other techniques, Chen
et al. [36] and Succi et al. [37], used for modifying the collision
time, and we use Eq. (17) in our paper for simplicity.

B. Dual time-stepping strategy

The simulation of unsteady flows is becoming more and
more important in many disciplines of engineering. An explicit
scheme is considered as the best choice for the simulation of
unsteady flows with great accuracy. However, in some cases,
such as the unsteady turbulent flows, the physical time scales
might be very large compared with the explicit time steps,
which are determined by CFL numbers. Since predicting
such flows using an explicit scheme spends so long times,
computational costs are very expensive. It is necessary to
develop less expensive methods with acceptable accuracy. In
this section, the dual time-stepping strategy, which is very
popular in the approach of unsteady flows in conventional
methods, is introduced briefly.

The explicit and implicit schemes can be expressed as one
basic nonlinear scheme, which reads as

�I

�tI
�wn

I = − β

1 + ω
Rn+1

I − 1 − β

1 + ω
Rn

I + ω

1 + ω

�I

�tI
�wn−1

I ,

(18)

where �wn
I = wn+1

I − wn
I ,�tI represents the local time step,

and the parameters β and ω appeared in Eq. (18) are used to
determine the type (explicit or implicit) and also the temporal
accuracy.

Dual time-stepping strategy in our paper is based on the
Eq. (18). We set β = 1 and ω = 0.5. Hence, we obtain

3�n+1
I wn+1

I − 4�n
I w

n
I + �n−1

I wn−1
I

2�tp
= −Rn+1

I , (19)

where �tp denotes the global physical time step and Eq. (19)
is a second-order time-accurate version of Eq. (18). The left-
hand side of Eq. (19) is a three-point backward-difference
approximation of the time derivation. Thus, Eq. (19) can be
treated as a modified steady-state problem to be solved using
a pseudo-time-step t∗

∂
(
�n+1

I w∗
I

)
∂t∗

= −R∗
I (w∗

I ), (20)

where w∗ is the approximation to wn+1. The unsteady residual
can be expressed as

R∗
I (w∗

I ) = R(w∗
I ) + 3

2�tp

(
�n+1

I w∗
I

) − Q∗
I , (21)

where Q∗
I represents the source term,

Q∗
I = 2

�tp
�n

Iw
n
I − 1

2�tp
�n−1

I wn−1
I . (22)

The steady-state solution of Eq. (20), which is obtained
by using GMRES method in our paper, approximates the
macroscopic flow variables at the time-step level n + 1, i.e.,
wn+1 = w∗. To apply an implicit scheme for the steady
solution w∗ in pseudotime t∗, the first stage is to formulate

FIG. 1. The finite volumes at both sides of the J th interface.
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FIG. 2. The computational domain of flow around a circular
cylinder. The diameter of circular cylinder is d = 1, and the outer
diameter of the computational domain is 50d .

Eq. (20) as an nonlinear implicit scheme as follow

∂w∗
I

∂t∗
= −(R∗

I )l+1, (23)

where l + 1 is the new time level of pseudotime. Then, the
right-hand side of Eq. (23) can be linearized as

(R∗
I )l+1 ≈ (R∗

I )l + ∂ R∗
I

∂w∗ �w∗
I , (24)

where

�w∗ = (w∗)l+1 − (w∗)l , (25)

and
∂ R∗

I

∂w∗ = ∂ RI

∂w
+ 3�

2�tp
. (26)

Substituting Eq. (24) and Eq. (26) into Eq. (23), we get the
following implicit scheme[(

1

�t∗
+ 3

2�tp

)
�n+1

I +
(

∂ R
∂w

)
I

]
�w∗

I = −(R∗)l . (27)

Let

A =
[(

1

�t∗
+ 3

2�tp

)
�n+1

I +
(

∂ R
∂w

)
I

]
,

(28)
X = �w∗

I , B = −(R∗
I )l ,

Eq. (27) can be rewritten as

AX = B. (29)

TABLE II. The comparison of the Strouhal number of flows
around a circular cylinder.

Re∞ Present Williamson [43] Silva [44]

60 0.1329 0.1358 -
80 0.1509 0.1528 0.1495
100 0.1621 0.1643 0.1615

For solving the linear equations of Eq. (29), the GMRES
method is employed in our paper.

C. Flux Jacobian

In the Sec. II B, a linear system expressed as Eq. (29)
is constructed for the implicit gas-kinetic scheme. Both
the implementations of the implicit gas-kinetic scheme in
structured grids [5] and unstructured grids [20] have been
developed by other researchers. In this section, we only focus
on the determination of the flux Jacobian at the cell interface.

In order to employ the implicit gas-kinetic scheme, the
time-averaged flux is needed. For a gas-kinetic scheme, the
time-averaged flux function reads as

FJ = 1

�t

∫ tn+�t

tn

F(t)J SJ dt, (30)

where �t means the explicit time step determined by Eq. (15).
Rn+1

I in the right-hand side of Eq. (19) can be written as

Rn+1
I = 1

�t

∫ tn+�t

tn

NIF∑
J=1

F(t)J SJ dt

=
NIF∑
J=1

(
1

�t

∫ tn+�t

tn

F(t)J SJ dt

)
, (31)

and then,

Rn+1
I =

NIF∑
J=1

FJ . (32)

Thus,

∂ Rn+1
I

∂wI

�wn
I =

NIF∑
J=1

(
∂ FJ

∂wJ

�wn
J

)
. (33)

Although the expression of the flux Jacobian has been given in
Eq. (33), it is still difficult to be computed based on the BGK
model. In our study, we construct the flux Jacobian based on
the Euler equations and Navier-Stokes equations. The partial

TABLE I. Drag and lift coefficients of flows around a circular cylinder.

Park et al. [41] Yuan [6] Tritton [42] Present

Re∞ Cd C̃d C̃l Cd Cd Cd C̃d C̃l

60 1.39 0.0014 0.1344 1.419 1.398 1.39 0.0010 0.1248
80 1.35 0.0049 0.2452 1.376 1.316 1.35 0.0042 0.2355
100 1.33 0.0091 0.3321 1.352 1.271 1.33 0.0093 0.3220
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FIG. 3. The definition of length of recirculation bubble (Lw).

derivative in the right and left-hand side of Eq. (33) can be
decomposed as(

∂ R
∂w

)
I

=
(

∂ Rc

∂w

)
I

+
(

∂ Rv

∂w

)
I

(34)

FIG. 4. Mean velocity at the central line.

FIG. 5. Length of recirculation bubble vs Reynolds numbers.

and (
∂ F
∂w

)
J

=
(

∂ Fc

∂w

)
J

+
(

∂ Fv

∂w

)
J

, (35)

respectively. Rc and Fc are corresponding to the convective
part. Rv and Fv are corresponding to the viscous part. For the
convective part, we employ the flux Jacobian due to the Roe
scheme [38] as follows:

∂ RcI

∂w
�wn

I = 1

2

NIF∑
J=1

[(
∂ Fc

∂w
�wn

)
I

+
(

∂ Fc

∂w
�wn

)
J ′

− |λRoe|J
(
wn

J ′ − wn
I

)]
,

(36)

and Fig. 1 plots the finite volumes at both sides of the J th
interface.

The viscous part is very important for the simulation of
viscous flows, but it is not yet mentioned in the previous

FIG. 6. Pressure coefficient on the cylinder surface at Reynolds
numbers Re∞ = 60,80,100.
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(a) (b)

(c) (d)

FIG. 7. Time history of the streamlines past a circular cylinder. t represents the period.

implicit gas-kinetic schemes. In our study, it can be written
as (

∂ Fv

∂w

)
J

�wn
J ≈

(
∂ Fv

∂w

)
J ′

�wn
J ′ −

(
∂ Fv

∂w

)
I

�wn
I . (37)

The details of ( ∂ Fc

∂w
),( ∂ Fv

∂w
), Eq. (36), and Eq. (37) can be seen

in the literature [17]. Up to now, the computation of the flux
Jacobian is completed.

III. NUMERICAL RESULTS AND DISCUSSIONS

The gas-kinetic scheme proposed by Xu [4] is a unified
method, which can be used for both incompressible and
compressible flows. In our study, we present an implicit
gas-kinetic scheme allied with dual time-stepping strategy,
which is proved to be successful in the numerical methods
based on Navier-Stokes equations. Several test cases are set
up in this section, and they are used to demonstrate that
the dual time-stepping method is not only useful for both
incompressible and compressible flows, but also for laminar
and turbulent flows.

The source code based on our proposed algorithm is
deployed on the Stanford University Unstructured (SU2)
open-source platform [39,40]. We appreciate the development
team of SU2 for their great works.

A. Case 1: Incompressible laminar flow around
a circular cylinder

The laminar flow past a single stationary circular cylinder,
which has been studied by many experiments and numerical
methods [6,41,42], is a benchmark of unsteady flows. In our
paper, the aim of this test case is to validate the dual time-
stepping strategy in the prediction of unsteady incompressible
laminar flows.

In the case, the free-stream Mach number is Ma∞ = 0.1.
The Reynolds numbers are Re∞ = 60,80, and 100. The
definition of Reynolds number is read as

Re∞ = ρ∞U∞d

μ∞
, (38)

where d represents the diameter of the circular cylinder,
ρ∞,U∞, and μ∞ denote the density, velocity, and the laminar
viscosity of free stream flow respectively.

TABLE III. The comparison of computational workloads (serial computation) between explicit scheme and dual time-stepping strategy for
the simulation of laminar flow (Re∞ = 100) around the stationary cylinder.

Scheme �t Inner iteration Pseudosteady residual Wall time (t = 45) Speedup

Explicit 0.0015 − − 829.88 min −
Dual time-stepping 0.1 10 <10−7 186.38 min 4.45
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FIG. 8. Computational domain and boundary conditions for the
simulation of incompressible flow around a square cylinder.

The computational domain shown in Fig. 2 is divided into
an O-type grid, which has 400 points on the cylinder surface
and 200 points on the radial direction. The characteristic
information-based (Riemann invariants) far-field boundary
condition is applied on the outer of computational domain,
and the no-slip and adiabatic wall condition is enforced on the
surface of cylinder. The nearest distance of mesh points from
the wall is 0.001, and the y plus is about 0.2.

Table I shows the results of both drag coefficients and
lift coefficients at different Reynolds numbers. Cd denotes
the time-averaged total drag coefficient, C̃d represents the
fluctuations of drag coefficients away from Cd , and C̃l is the
amplitude of the fluctuations of lift coefficient. The compared
data come from other numerical methods and experiments
[6,41,42]. The results demonstrate a good agreement with the
referenced data. Table I shows that both the fluctuations of
Cd and Cl are evident, and it is clear that the fluctuations of
lift coefficient are much bigger than drag coefficient. As Re∞
increases, the amplitude of fluctuations of total drag coefficient
and lift coefficient increase, but the time-averaged total drag
coefficient decreases.

In dimensional analysis, the Strouhal number St is a
nondimensional parameter, which describes the vortex
shedding frequency of unsteady flows, and it is defined in our
paper as

St = f d

U∞
. (39)

FIG. 9. Grids of full domain and near view in the simulation of
incompressible flow around a square cylinder.

FIG. 10. The definition of the length of recirculation region (xR).

f denotes the vortex shedding frequency. Williamson gives an
approximative formula for Strouhal number versus Reynolds
number [43], which can be expressed as

St = −3.3265/Re + 0.1816 + 1.6 × 10−4Re. (40)

The Strouhal numbers investigated in our paper are compared
with data from other researchers. Table II gives the details of
Strouhal numbers in our study, and the results shows a good
accordance with compared data.

The length of the recirculation bubble Lw is defined as
the distance between two stagnation points downstream of the
cylinder. For unsteady flows, the determination of Lw defined
in Fig. 3 is based on the mean flow field in a long time interval.
In our study, we use the horizontal velocity on the line y = 0
to calculate the length of recirculation bubble, and Fig. 4 plots
the mean horizontal velocity at different Reynolds numbers.
Figure 5 shows the comparison of Lw with data from other
numerical methods and experiments [41,44,45].

The pressure coefficients of mean flow field at different
Reynolds numbers on the cylinder surface are shown in Fig. 6,
where θ = 0◦ and θ = 180◦ correspond to the stagnation
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TABLE IV. Simulation results of the flow around a square cylinder. (TL k-ε model represents the two layer k-ε model.)

Contribution Model xR/h Cd C̃d C̃l St

Present SST model 1.45 2.02 0.234 1.134 0.124
Lyn [51] Experiments 1.38 2.1 − − 0.132
Lee [53] Experiments − 2.05 0.16–0.23 − −
Vickery [52] Experiments − 2.05 0.1–0.2 0.68–1.32 −
Iaccarino [47] Unsteady 1.45 2.22 0.056 1.83 0.141
Rodi [48] TL k-ε model 1.25 2.004 0.07 1.17 0.143
Bosch [49] TL k-ε model − 1.750 0.0012 0.178 0.122

and base points respectively. The plots demonstrate a good
accordance with the compared data by Park [41].

A qualitative picture of flow streamlines, Re∞ = 100, laid
over a Mach number contour plot is presented in Fig. 7. As
expected, the periodic vortex shedding can be seen clearly in
the wake of circular cylinder. It is obvious that the vortices are
shed alternative from each side of the circular cylinder, and
then converted down stream in the wake of the cylinder.

Table III shows the time step of the explicit scheme and
dual time-stepping strategy, respectively (Re∞ = 100). The
time step of the explicit scheme is determined by Eq. (15)
and the time step of dual time-stepping method is the physical
time step. The wall times are also given at a certain time in the
Table III. It is obvious that the dual time-stepping strategy of
gas-kinetic scheme can save a lot of computational workloads
in the approach of unsteady incompressible flows, and the
residual of pseudo-steady-solution is sufficient to guarantee the
accuracy of the dual time-stepping method for flow simulation
of unsteady flows.

B. Case 2: Incompressible turbulent flow around
a square cylinder

The incompressible turbulent flow around a square cylinder
is investigated in this section. The case is studied by many
numerical methods [46–49] and experiments [50–53]. In our
paper, we explore it using a gas-kinetic scheme coupled with
Menter’s shear stress transport (SST) turbulence model [31],
and a gas-kinetic scheme coupled with SST turbulence model
has been introduced in Ref. [34].

The aim of this test case is to examine the behavior of dual
time-stepping method on the incompressible turbulent flow. At
the beginning of the simulation, an incompressible free stream
flow with Ma∞ = 0.15 and Re∞ = 22,000 is initiated in the
computational domain. With the time evolution, the unsteady
phenomena appear inside the flow field. The Reynolds number
Re∞ is defined as

Re∞ = ρ∞U∞h

μ∞
, (41)

and h represents the side length of square cylinder. For the
turbulent flow, a small, 2%, turbulence intensity is imposed in
the inlet, and the ratio of eddy viscosity and laminar viscosity
equals 0.1 in the far field.

The computational domain is a 20h × 15h rectangle.
The square cylinder is located at (5h,7.5h). The boundary
conditions used in the approach are adopted from the study

of Franke [46]. Figure 8 shows the details of computational
domain and boundary conditions for the flow simulation.

Figure 9 shows the hybrid grids used for the prediction of
incompressible flow around a square cylinder. The grid is made
up of rectangles and triangles, and the total number of cells in
the domain is 70652. The rectangular part distributed around
the cylinder is used to guarantee the simulation accuracy inside
viscous boundary layer, and the rectangular part in the wake of
cylinder is used to obtain the accurate vortex frequency. The
nearest distance from cylinder wall is 0.0008, and the y plus
is y+ ≈ 1.25.

The incompressible turbulent flow (Re∞ = 22,000) around
a square cylinder, which is investigated in our paper, presents
coherent vortex shedding with a periodically oscillating wake.
A summary of data, from present simulation, several numerical
methods and experiments, are reported in Table IV. Cd denotes
the time-averaged drag coefficient, and the Strouhal number
St is defined as

St = f h

U∞
, (42)

where f is the frequency of vortex shedding. C̃d and C̃l are the
root mean square of drag and lift coefficient respectively. The
vortex shedding frequency represented by Strouhal number St
is in a good agreement with experimental and computational
results found in the literature [47–49,51]. One of the important

FIG. 11. Streamwise velocity profiles in the wake centerline of a
square cylinder.
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FIG. 12. Streamwise velocity profiles at four positions in the wake of a square cylinder.

FIG. 13. Time history of the streamlines in the wake of a square cylinder. t represents the period.

TABLE V. The comparison of computational workloads (serial computation) between explicit scheme and dual time-stepping strategy for
the simulation of flow around a square cylinder.

Scheme �t Inner iteration Pseudosteady residual Wall time (t = 18) Speedup

Explicit 0.0006 − − 383.6 min −
Dual time-stepping 0.15 20 <10−7 38.8 min 9.89
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features that has to be analyzed is the length of recirculation
region just downstream of a square cylinder. The recirculation
region, which is formed due to the separation, is characterized
by xR , and the definition of xR is shown in Fig. 10. To
determine the value of xR , the mean flow field must be
obtained in a long time interval. The value of xR in our
study is in a good accordance with the data from experiments
and other numerical methods [47,48,51]. The surface loads
are also of great importance. It can be seen in Table IV
that the time-averaged drag coefficient in our simulation is
acceptable compared with the other data. C̃d and C̃l represent
the fluctuations of drag and lift coefficient respectively, and
both of them are in good accordance with the compared
data.

The horizontal velocity distributed on the centerline is
plotted in Fig. 11. The information of time-averaged separation
region behind the cylinder can be found through the velocity
profiles along the centerline. It shows a fairly well agreement
in comparison to experimental and numerical approach data.
Figure 12 displays the streamwise velocity profiles at four
positions behind a square cylinder. Very good agreement is

FIG. 14. Computational grids for NACA0012 airfoil.

TABLE VI. NACA0012 transonic buffet sets [24]. (The Reynolds
number of free stream flow in the experiments is about Re∞ ≈
1.0 × 107.)

Set α∞(◦) Ma∞ f exp

6 6 0.72 0.55
1 4 0.75 0.47
5 4 0.77 0.44
4 4 0.80 0.38

obtained between present results and data extracted from the
literature [47,51].

A qualitative picture of the vortex shedding behind the
square cylinder is presented in Fig. 13. The streamlines are
laid over on the Mach number contour plots. As expected, the
alternative vortex shedding from the top and bottom side of
the cylinder is shown clearly in the pictures, and the vortices
are converted downstream in the wake of the cylinder.

For the approach of incompressible turbulent flow around
a square cylinder, the explicit time step can be obtained by
the Eq. (15). The details of the explicit time step and the
physical time step of dual time-stepping strategy are shown in
Table V. It is evident that to predict the flow state at a certain
time t = 18, the dual time-stepping method only costs about
one-tenth of the computational time of the explicit scheme.
The accuracy of the approach is also guaranteed by using 20
inner iterations in a single physical time step.

C. Case 3: Transonic buffet on a NACA0012 airfoil

For the transonic flow around an airfoil under certain com-
bined conditions including Mach number, Reynolds number,
the airfoil profile, and the angle of attack, a strong shock
wave oscillation, which is termed as a buffet, may be aroused
and self-sustained even in the absence of any airfoil motions.
Such a case studied in our paper is a transonic turbulent flow
over the NACA0012 airfoil. The Mach number of the free
stream flow is Ma∞ = 0.72. The Reynolds number, which
is defined as Re∞ = ρ∞U∞c/μ∞, equals to 1 × 107, where
c = 1.0 represents the chord length of NACA0012 airfoil. The
angle of attack is α = 6◦.

The aim of the case in this section is to validate the dual
time-stepping method of the gas-kinetic scheme in the simu-
lation of unsteady transonic turbulent flow. For the simulation
of turbulent flow, the Spalart-Allmaras (SA) turbulence model
[30] is combined with the gas-kinetic scheme in the case. The
SA turbulence model is one of the popular turbulence models,
and it is very suitable for the simulation of separated flow. The
details of the coupled methods [12] and the turbulence model

TABLE VII. Transonic buffet frequency and the amplitude of lift
coefficient.

Present McDevitt [24] Iovnovich [26]

f 0.4879 0.55 0.5
�Cl 0.41 − 0.46
�X/c 0.25 − 0.26
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FIG. 15. The evolution of pressure coefficient in a period. t represents the period.

are not the main focuses of present work, and they will not be
described in detail here.

In Fig. 14, the computational domain and the hybrid grids
used in this approach are displayed. The total number of cells
in the domain is 86665. The rectangular meshes are used to
maintain sufficient accuracy of prediction within the boundary
layer near the airfoil. The rectangle region is extruded 75 layers
from the airfoil, and there are 400 points located on the airfoil.
The nearest distance of mesh points to the airfoil is 2.5 × 10−6,
and the y plus is y+ ≈ 0.9. The outer domain is about 50 times
the chord length of the airfoil.

The experiments of NACA0012 transonic buffet were
carried out by McDevitt and Okuno [24] at the NASA Ames
Research Center’s high-Reynolds number facility. The four
condition sets that McDevitt and Okuno chose to obtain the
stable self-sustained transonic buffet in the experiments are
listed in Table VI. f denotes the reduced frequency, and it is
defined as

f = 2πf c

U∞
. (43)

In our study, the conditions in set 6 are chosen for the
test of transonic buffet on NACA0012 airfoil. To validate the
current computational setup, the results of computed transonic

FIG. 16. The λ-shock structure over a NACA0012 airfoil.

buffet in our paper are compared with experiments and other
numerical methods. Table VII lists the details of comparisons
using the conditions of set 6 in Ref. [24]. �Cl represents the
amplitude of the lift coefficient, and �X denotes the distance
of shock-buffet traveling on the airfoil surface. The results
demonstrate a very good accordance with the references.

The evolution of the pressure coefficient in a period is
plotted in Fig. 15. As expected, the shuttle of the shock
buffet is shown in the figure. Figure 16 displays the captured
shock-wave boundary layer interaction. The λ-shock structure
can be seen in the plot. Since the resolution of mesh is
insufficient for the flow at high Reynolds number, the λ region
is not well resolved and the λ structure is not very clear.

FIG. 17. Unsteady response to the physical time step. a∞ repre-
sents the sound speed of the free stream flow.
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TABLE VIII. The comparison of computational workloads (serial computation) between explicit scheme and dual time-stepping strategy
for the simulation of transonic buffet on the NACA0012 airfoil.

Scheme �t Inner iteration Pseudosteady residual Wall time (t = 0.042) Speedup

Explicit 6 × 10−7 − − 1148.76 min −
Dual time-stepping 0.0001 10 <10−7 73.99 min 15.53

To study the effect of the physical time step on transonic
buffet responses, predictions were performed using the phys-
ical time step ranging from 0.0001–0.001. Figure 17 shows
the time histories of lift coefficient at different time steps. The
convergence is evident with decreasing physical time step, and
the time step 0.0001 is chosen in our tests.

The computational workloads of the explicit scheme and
dual time-stepping method are also compared in Table VIII.
From the Table VIII, we can easily conclude that the dual time-
stepping method can not only reduce the computational costs
greatly, but also predict the transonic buffet with sufficient
accuracy.

D. Case 4: Acoustic pressure pulse

As is shown in the Fig. 17, the physical time step has an
effect on the accuracy of the approaches. So it is necessary to
study the time-dependent accuracy. The test case of acoustic
pressure pulse is chosen to demonstrate the deterioration of
accuracy by using the dual time-stepping method. The aim of
this case is not to detail all the phenomena affected by the
enlarged time step, but to give a general picture of the side
effect to the dual time-stepping strategy.

The computational domain is [0,1] × [0,1] with 400 × 400
Cartesian grids. The initial perturbation is given by a Gaussian
pressure distribution at the center of the computational domain
at t = 0.

ρ = ρ∞, u = v = 0, p = p∞ + εe−αη2
, (44)

FIG. 18. Horizontal pressure (p′ = (p − p∞)/pref ) profiles at
y = 0.5 and the nondimensional time t is 0.32. The exact solution is
referred to in the literature [54].

where ε = 0.01,η =
√

(x − 0.5)2 + (y − 0.5)2, and α =
ln 2/0.042. The reference parameters are pref = p∞,ρref =
ρ∞,uref = √

pref/ρref , and tref = lref/uref .
It is well known that the CFL number is of fundamental

importance for the numerical solution of unsteady flows. The
physical time step should be determined based on whether
acoustic processes need to be resolved. For an acoustic
problem, it is generally necessary to maintain the CFL number
computed by Eq. (15) as δCFL < 1 to ensure temporal accuracy.
Figure 18 shows the horizontal pressure profiles at t = 0.32,
and in the picture result of �t = 0.0005 is computed by
explicit scheme under the condition δCFL < 1. The accuracy
lost is evident with the increasing physical time steps. It is
clear that although using the dual time-stepping strategy can
reduce computational workloads, how or whether to use it
is determined by the tolerance of errors of the parameters
focused.

IV. CONCLUSIONS

In present work a scheme, which is of particular usefulness
for unsteady flow predictions in the field of engineering, is
proposed. To accelerate the convergence of the pseudo-steady-
state, an implicit gas-kinetic scheme is employed in the inner
iteration. Both the inviscid flux Jacobian and viscous flux
Jacobian are considered in the construction of linear system,
which is approached by using GMRES method. The side effect
of the enlarged time step is also discussed in our paper. The
test cases not only cover viscous flows throughout the Mach
number range from incompressible to transonic flows, but also
cover the flows throughout the range from laminar to turbulent
flows. The results of all the cases are in good agreement with
the referred data and meet the goals, which are designed for the
validation. It can be obviously seen in the present study that the
ability of our scheme to save the computational workloads is
evident compared with the explicit scheme. The good results
also demonstrate that the dual time-stepping strategy of the
gas-kinetic scheme can simulate unsteady flows accurately
and effectively.
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