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Surprising convergence of the Monte Carlo renormalization group
for the three-dimensional Ising model
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We present a surprisingly simple approach to high-accuracy calculations of the critical properties of the
three-dimensional Ising model. The method uses a modified block-spin transformation with a tunable parameter
to improve convergence in the Monte Carlo renormalization group. The block-spin parameter must be tuned
differently for different exponents to produce optimal convergence.
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I. INTRODUCTION

The Monte Carlo renormalization group (MCRG) method
is a systematic procedure for computing critical properties
of lattice spin models [1,2]. It has been shown to be both
flexible and effective in the calculation of critical exponents,
critical temperatures, and renormalized couplings constants
[3–9]. A particularly interesting application of MCRG is the
three-dimensional Ising model [10,11]. This model has proven
to be one of the most difficult for which to obtain accurate
estimates, because the approach to the fixed point is so slow.
Attempts have been made to bring the fixed point closer to the
nearest-neighbor model [12], but these have been controversial
[13] and have not resulted in improved results.

The most encouraging result has been that of Blöte
et al. [14], who used a three-parameter approximation to
the fixed point along with a modified majority rule for the
RG transformation. We have discovered a particularly simple
modification of this calculation, which simulates the nearest-
neighbor critical point and optimizes the RG transformation
for the even and odd exponents separately.

Hasenbusch has done a particularly fine study using Monte
Carlo simulations with finite-size scaling [15]. Recently, the
conformal bootstrap method has achieved impressive results
[16–19]. We will compare our results with theirs in Table VIII.

In the following sections, we recall the MCRG method,
illustrate the slow convergence with the majority rule, and
introduce a tunable RG transformation in Sec. IV [14]. The
improved convergence of the tuned RG transformation is
then demonstrated in Secs. V–IX. Finally, we present our
conclusions and discuss future work.

II. MCRG COMPUTATIONS

We consider the three-dimensional Ising model on a
simple cubic lattice, of size N × N × N . The Hamiltonian is
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given by

H = K
∑

〈j,k〉
σjσk, (1)

where σj = ±1, and the sum is over all nearest-neighbor
pairs. The dimensionless coupling constant K includes the
inverse temperature β = 1/kBT , so as to make the Boltzmann
factor eH.

We used the Wolff algorithm [20] to simulate the model
at an inverse temperature of Kc = 0.221 654 4 [21]. The
renormalized configurations were obtained from these sets.
For each configuration, the lattice was divided up into cubes,
each containing eight sites, so that the scaling factor b = 2.
We will denote this block of spins, as well as the renormalized
spins associated with them, by �. A value of plus or minus
one was assigned to each renormalized spin to represent the
original spins in each cube.

We used the ran2 random number generator from Ref. [22].
The lengths of the simulations we used are given in Table I.
The renormalized configurations can be described by the set
of (unknown) renormalized coupling constants, K (n)

α . The
subscript α denotes the type of coupling (nearest-neighbor,
next-nearest-neighbor, four-spin, etc.). The nearest-neighbor
coupling constant K defined earlier is also denoted by K (0)

nn .
All other coupling constants at level n = 0 vanish.

To determine the critical exponents, we then wish to
calculate the matrix of derivatives of the couplings at level
n + 1 with respect to the couplings at level n,

T
(n+1,n)
α,β = ∂K (n+1)

α

∂K
(n)
β

. (2)

This matrix of derivatives is then given by the solution of the
equation

∂
〈
S(n+1)

γ

〉

∂K
(n)
β

=
∑

α

∂
〈
S(n+1)

γ

〉

∂K
(n+1)
α

∂K (n+1)
α

∂K
(n)
β

, (3)

where

∂
〈
S(n+1)

γ

〉

∂K
(n)
β

= 〈
S(n+1)

γ S
(n)
β

〉 − 〈
S(n+1)

γ

〉 〈
S

(n)
β

〉
(4)
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TABLE I. Data for the yT 1 simulations.

2563 1283 643 323 163

No.sites/N
3 2.2 × 105 2.2 × 105 2.2 × 105 4 × 107 4 × 108

No.Wolff/N
3 22 91 420 3.2 × 104 1.2 × 106

�No.Wolff 164 87 50 26 15
Cluster 1.0 × 105 2.4 × 104 5.2 × 103 1.2 × 103 2.7 × 102

and

∂
〈
S(n+1)

γ

〉

∂K
(n+1)
α

= 〈
S(n+1)

γ S(n+1)
α

〉 − 〈
S(n+1)

γ

〉 〈
S(n+1)

α

〉
. (5)

For our calculations, we have included Ne = 30 even
and No = 20 odd interactions. We have followed [23], who
calculated all 53 even and 46 odd interactions that fit in either
a 3 × 3 square or a 2 × 2 × 2 cube of spins, and we used their
first 34 even operators (excluding the 25th, 29th, 31st, and
32nd) and their first 20 odd operations. The eigenvalues of the
T -matrix in Eq. (2) are found separately for the even and odd
operators. The critical exponents are then obtained from the
usual equations.

III. THE SLOW CONVERGENCE
OF THE MAJORITY RULE

The usual majority rule performs very well for the two-
dimensional Ising model, which converges to the fixed point
values of the exponents by the second iteration of the RG
transformation [2]. For the three-dimensional Ising model,
however, convergence is very slow, as shown in Table II.
Reading across at each level n of RG iterations, the values
of the approximations for yT 1 are quite consistent. There is
no problem with finite-size effects on the RG trajectories,
indicating that the range of the renormalized Hamiltonian is
limited. However, even after five iterations of the renormaliza-
tion group, the value of yT 1 does not seem to have converged.
Anticipating our final result of yT 1 ≈ 1.591, Table II is very
far from convergence.

TABLE II. The eigenvalue exponent yT 1 for majority transforma-
tion, which is equivalent to using a large w in Eq. (6).

n Ne 2563 1283 643 323

1 10 1.4189(7) 1.4202(5) 1.4203(2) 1.4206(1)
20 1.4230(7) 1.4241(5) 1.4240(2) 1.4241(1)
30 1.4224(7) 1.4243(5) 1.4237(2) 1.4238(1)

2 10 1.5093(6) 1.5106(3) 1.5108(1) 1.5120(1)
20 1.5076(6) 1.5088(3) 1.5086(1) 1.5084(1)
30 1.5072(6) 1.5084(3) 1.5082(1) 1.5076(1)

3 10 1.5521(5) 1.5534(5) 1.5544(2)
20 1.5508(5) 1.5515(5) 1.5507(2)
30 1.5504(5) 1.5512(5) 1.5501(2)

4 10 1.5733(7) 1.5745(5)
20 1.5721(7) 1.5711(5)
30 1.5718(7) 1.5702(5)

5 10 1.5825(11)
20 1.5797(11)
30 1.5788(11)

TABLE III. The eigenvalue exponent yT 1. The parameter
w = 0.4314.

n Ne 2563 1283 643 323 163

1 10 1.5870(6) 1.5864(2) 1.5865(1) 1.5872(1) 1.58835(4)
20 1.5923(7) 1.5914(3) 1.5916(1) 1.5920(1) 1.59266(5)
30 1.5930(8) 1.5924(3) 1.5922(2) 1.5927(2) 1.59308(5)

2 10 1.5908(5) 1.5903(2) 1.5907(1) 1.5920(1)
20 1.5917(5) 1.5912(2) 1.5915(1) 1.5923(1)
30 1.5919(5) 1.5914(2) 1.5916(1) 1.5921(1)

3 10 1.5910(5) 1.5904(2) 1.5922(1)
20 1.5912(5) 1.5905(2) 1.5920(1)
30 1.5912(5) 1.5905(2) 1.5918(1)

4 10 1.5906(6) 1.5918(3)
20 1.5906(6) 1.5914(3)
30 1.5906(6) 1.5912(3)

5 10 1.5911(6)
20 1.5909(6)
30 1.5908(7)

IV. TUNABLE BLOCK-SPIN TRANSFORMATION

Instead of using the usual majority rule, the renormalized
spin was assigned a value according to the following proba-
bility [14]:

P (σ ′
�) = exp

(
w σ ′

�

∑
j∈� σj

)

exp
(
w

∑
j∈� σj

) + exp
( − w

∑
j∈� σj

) . (6)

For w = ∞, this becomes identical to the majority rule.
A special feature of the present calculation is that the RG

transformation in Eq. (6) was optimized separately for the even
and odd operators. The determination of the optimal value of
the parameter w was also done much more carefully than in
earlier work. The value of w was adjusted so that the largest
eigenvalue (for the even and odd operators separately) was
nearly constant for n > 1.

V. THE LARGEST EVEN EIGENVALUE EXPONENT, yT1

The results for the largest even eigenvalue are given in
Table III. In contrast to the slow convergence seen in Table II,
the convergence is striking. For n = 1, the majority rule has
yT 1 ≈ 1.422, changes to yT 1 ≈ 1.507 for n = 2, and increases
to yT 1 ≈ 1.579 for n = 5. The tuned RG transformation
in Table III starts with yT 1 ≈ 1.593 for n = 1, moves to
yT 1 ≈ 1.592 for n = 2, and stays at yT 1 ≈ 1.591 for n =
3, 4, and 5. Our best estimate for the largest even eigenvalue is
yT 1 = 1.591(1).

VI. THE LARGEST ODD EIGENVALUE EXPONENT, yH1

Table IVshows the convergence of yH1 for the tuned
renormalization group. Reading along the rows, we see that
there is virtually no effect of the size of the lattice on the
estimated values of yH1. Only for a renormalized lattice of
4 × 4 × 4 can a decrease in the value of yH1 of about 0.000 14
be seen. Neither is there a noticeable dependence on the
number of operators for a given number of RG iterations n.
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TABLE IV. The eigenvalue exponent yH1. The parameter
w = 0.555.

n No 2563 1283 643 323 163

1 5 2.50830(8) 2.50831(3) 2.50829(1) 2.50828(1) 2.50823(1)
10 2.50853(14) 2.50869(4) 2.50860(2) 2.50860(2) 2.50856(1)
15 2.50844(15) 2.50871(5) 2.50859(2) 2.50861(2) 2.50859(1)
20 2.50843(15) 2.50871(5) 2.50860(2) 2.50862(2) 2.50860(1)

2 5 2.48503(2) 2.48504(1) 2.48503(1) 2.48503(2) 2.48481(1)
10 2.48507(3) 2.48506(1) 2.48505(1) 2.48506(2) 2.48498(1)
15 2.48508(3) 2.48507(1) 2.48506(1) 2.48507(2) 2.48493(2)
20 2.48508(3) 2.48507(1) 2.48506(1) 2.48507(2) 2.48494(2)

3 5 2.48285(3) 2.48287(2) 2.48286(1) 2.48267(4)
10 2.48284(3) 2.48287(2) 2.48288(1) 2.48279(4)
15 2.48285(3) 2.48288(2) 2.48288(1) 2.48274(4)
20 2.48285(3) 2.48288(2) 2.48288(1) 2.48274(4)

4 5 2.48300(5) 2.48293(4) 2.48279(3)
10 2.48299(5) 2.48295(4) 2.48290(3)
15 2.48300(5) 2.48295(4) 2.48283(3)
20 2.48300(5) 2.48294(4) 2.48282(3)

5 5 2.48271(12) 2.48250(9)
10 2.48272(12) 2.48259(9)
15 2.48273(12) 2.48251(9)
20 2.48274(12) 2.48251(9)

6 5 2.48223(23)
10 2.48234(24)
15 2.48234(25)
20 2.48231(25)

The first iteration of the renormalization group (n = 1)
gives an estimate of about yH1 ≈ 2.5086. For n = 2, it has
dropped slightly to yH1 ≈ 2.485 07, and for n = 3, 4, and 5,
it is yH1 ≈ 2.4829. Our best estimate is yH1 = 2.4829(2).

VII. THE SECOND-LARGEST EVEN EIGENVALUE
EXPONENT, yT2

Table Vshows estimates for the second even eigenvalue
as a function of the number of RG iterations, n, and the
size of the renormalized lattices. This eigenvalue is negative
(“irrelevant”), and controls the leading corrections to scaling.

The second largest eigenvalues are naturally not as accu-
rately determined as the largest. We need about 20 operators
to see the asymptotic behavior. There is a slight trend for the
values of yT 2 to increase in magnitude with an increasing num-
ber of RG iterations, suggesting that the asymptotic eigenvalue
exponent is actually larger. Note that similar slow convergence
for the calculation of yT 2 was already observed and reported
by Baillie et al. [23]. Perhaps we can estimate yT 2 = −0.75(5)
from the tables, but that might be overly optimistic.

The correction-to-scaling exponent is given by the ratio of
ω = −yT 2/yT 1, so that we would estimate ω = 0.75/1.591 =
0.47(3).

VIII. THE SECOND-LARGEST ODD EIGENVALUE
EXPONENT, yH2

The second-largest odd eigenvalue exponent, like its
counterpart in the two-dimensional Ising model, is positive

TABLE V. The eigenvalue exponent yT 2. The parameter
w = 0.4314, the tuned parameter for yT 1. The simulations were the
same as for yT 1, which are given in Table III.

n Ne 2563 1283 643 323 163

1 10 −0.60(2) −0.548(6) −0.545(2) −0.546(3) −0.5300(10)
20 −0.70(2) −0.622(9) −0.616(3) −0.622(4) −0.6081(12)
30 −0.67(2) −0.644(12) −0.626(3) −0.638(4) −0.6186(12)

2 10 −0.64(2) −0.608(5) −0.611(2) −0.607(2)
20 −0.70(2) −0.664(7) −0.668(2) −0.668(3)
30 −0.71(2) −0.698(10) −0.691(3) −0.688(4)

3 10 −0.66(2) −0.635(5) −0.634(2)
20 −0.71(2) −0.691(8) −0.696(3)
30 −0.72(2) −0.722(10) −0.725(4)

4 10 −0.67(1) −0.658(6)
20 −0.74(2) −0.726(9)
30 −0.73(2) −0.753(10)

5 10 −0.73(2)
20 −0.77(2)
30 −0.76(2)

(“relevant”). It has smaller statistical errors than its even
counterpart, but it also shows a slightly slower convergence. As
shown in Table VI, the first iteration of the RG transformation
(n = 1) is 0.287(6), and therefore quite far from the best
estimate. By n = 3 and greater, the value of the second odd
eigenvalues has converged to about yH2 = 0.403(4).

TABLE VI. The eigenvalue exponent yH2. The parameter
w = 0.555, the tuned parameter for yH1. The simulations were the
same as for yH1, which are given in Table IV.

n No 2563 1283 643 323 163

1 5 0.232(4) 0.236(1) 0.2409(6) 0.2469(7) 0.2561(2)
10 0.287(5) 0.287(2) 0.2888(7) 0.2910(8) 0.2935(3)
15 0.287(6) 0.290(2) 0.2911(8) 0.2931(9) 0.2957(3)
20 0.287(6) 0.297(2) 0.2972(8) 0.2992(9) 0.3012(3)

2 5 0.306(3) 0.307(1) 0.3152(4) 0.3284(5) 0.3405(2)
10 0.362(4) 0.360(2) 0.3635(5) 0.3689(6) 0.3677(2)
15 0.366(4) 0.365(2) 0.3680(5) 0.3728(6) 0.3744(2)
20 0.371(5) 0.372(2) 0.3735(5) 0.3777(6) 0.3770(2)

3 5 0.318(3) 0.331(1) 0.3455(5) 0.3586(5)
10 0.379(3) 0.384(1) 0.3900(6) 0.3871(6)
15 0.384(3) 0.390(1) 0.3949(6) 0.3949(6)
20 0.392(3) 0.396(2) 0.4000(6) 0.3976(7)

4 5 0.335(3) 0.353(1) 0.3638(4)
10 0.390(3) 0.400(1) 0.3935(4)
15 0.396(3) 0.406(1) 0.4024(4)
20 0.402(3) 0.411(1) 0.4053(5)

5 5 0.349(3) 0.366(1)
10 0.397(3) 0.397(1)
15 0.403(3) 0.407(1)
20 0.410(3) 0.410(1)

6 5 0.364(3)
10 0.395(3)
15 0.406(3)
20 0.409(3)
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TABLE VII. Five correlation functions obtained from the same simulations as in Tables III and V, with the parameter w = 0.4314.
(a = 000-100; b = 000-110; c = 000-111; d = 000-100-010-110, and e = 000-100-010-001.)

L3 
 2563 1283 643 323 163

2563 a 0.330491(1)
b 0.208951(1)
c 0.163751(2)
d 0.175667(1)
e 0.115223(1)

1283 a 0.277505(3) 0.330980(2)
b 0.193674(4) 0.209600(3)
c 0.156671(4) 0.164487(4)
d 0.123980(2) 0.176051(2)
e 0.096526(2) 0.115679(2)

643 a 0.264324(7) 0.278867(6) 0.332281(2)
b 0.189019(8) 0.195345(8) 0.211325(3)
c 0.154033(9) 0.158523(8) 0.166440(3)
d 0.113330(5) 0.124977(4) 0.177075(2)
e 0.091201(5) 0.097588(4) 0.116894(2)

323 a 0.261975(16) 0.267975(16) 0.282485(5) 0.335734(4)
b 0.189760(18) 0.193421(18) 0.199785(5) 0.215903(5)
c 0.155992(20) 0.158896(20) 0.16350(6) 0.171623(5)
d 0.111433(12) 0.115920(11) 0.127626(4) 0.179794(3)
e 0.090799(11) 0.093920(12) 0.100414(4) 0.120119(3)

163 a 0.268326(40) 0.271726(37) 0.277684(11) 0.292087(9) 0.344889(3)
b 0.199029(42) 0.201440(44) 0.205131(12) 0.211566(11) 0.228043(3)
c 0.166844(46) 0.168865(48) 0.171831(13) 0.176526(12) 0.185370(3)
d 0.115740(29) 0.118288(26) 0.122836(8) 0.134672(7) 0.187019(2)
e 0.095977(28) 0.097952(28) 0.101185(8) 0.107933(7) 0.128690(2)

83 a 0.291884(85) 0.294200(87) 0.297557(25) 0.303419(22) 0.317542(6)
b 0.228122(96) 0.229982(95) 0.232453(29) 0.236208(25) 0.242812(7)
c 0.199280(102) 0.200925(102) 0.203053(32) 0.206160(26) 0.211216(7)
d 0.132318(70) 0.134094(64) 0.136752(19) 0.141473(17) 0.153630(5)
e 0.113640(65) 0.115173(63) 0.117304(18) 0.120794(17) 0.128180(5)

43 a 0.358390(186) 0.360473(181) 0.362650(60) 0.365979(44) 0.371601(13)
b 0.307968(197) 0.309833(214) 0.311695(66) 0.314279(50) 0.318110(14)
c 0.286644(206) 0.288429(226) 0.290147(68) 0.292477(54) 0.295778(14)
d 0.183398(168) 0.185148(152) 0.187090(51) 0.190036(37) 0.195074(11)
e 0.167453(156) 0.169101(150) 0.170828(51) 0.173341(38) 0.177337(10)

IX. CONVERGENCE OF THE
CORRELATION FUNCTIONS

Note that Blöte et al. were able to achieve improved
convergence with w = 0.4 and a different Hamiltonian, which
appeared to be closer to the fixed point [14].

Our results show that the improved convergence came
primarily from the choice of RG transformation. Indeed,
there is no evidence that the tuned RG transformation brings
the renormalized Hamiltonians closer to the fixed point.
Apparently, the renormalization trajectory is such that even
though it passes through points a significant distance from the
fixed point, the convergence of yT 1 is very good.

The fact that the RG trajectory itself does not converge
rapidly can be seen in Table VII. This table is organized
differently than the tables for the eigenvalue exponents. Rows
correspond to equally sized renormalized lattices, with the
size indicated by the first column. The entries are the values
of the corresponding correlation functions, divided by the size

of the lattice, to facilitate comparisons. It can be seen that
although the correlation functions are closer to each other when
they correspond to more renormalization iterations, they have
not converged for the RG iterations down to 43. A comparison
with the entries on the diagonal in Table III shows a relatively
weak size effect for the eigenvalue exponent values.

X. SUMMARY AND FUTURE WORK

The results of our computations and a comparison with
other works are shown in Table VIII. The agreement between
the various methods is generally good, although some differ-
ences exist. Since we do not have estimates of the systematic
errors in our results, we cannot really say what the source of
the differences are.

The most reliable of the estimates shown in Table VIII are
probably those of Hasenbusch [15]. This was a very careful
Monte Carlo finite-size study that included many effects of
corrections to scaling to provide limits on the systematic errors.
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TABLE VIII. Estimates of the critical exponents and the eigenvalue exponents from several sources. Values that are marked with an asterisk
are calculated to be consistent with the published exponents in the same source. For Refs. [15] and [24], yT 1 and yH1 are obtained for the
corresponding values of ν and η.

This work Ref. [14] Ref. [15] Ref. [24] Ref. [24] Ref. [19]
MCRG MCRG MC ε-expansion d = 3 bootstrap

yT 1 1.591(1) 1.585(3) 1.5872(3)∗ 1.590(63)∗ 1.5862(33)∗ 1.58735(8)
yH1 2.4829(2) 2.481(1) 2.4819(1)∗ 2.4820(25)∗ 2.4833(13)∗ 2.481849(6)
ν 0.6285(4)∗ 0.6309(2)∗ 0.63002(10) 0.6290(25) 0.6304(13) 0.62998(3)
η 0.0342(4)∗ 0.038(2)∗ 0.03627(10) 0.0360(50) 0.0335(25) 0.036302(12)
β 0.3250(2)∗ 0.3274(9)∗ 0.32645(10)∗ 0.3257(26) 0.3258(14) 0.326423(18)
γ 1.2356(8)∗ 1.2378(27)∗ 1.2372(4)∗ 1.2355(50) 1.2396(13) 1.23708(5)
yT 2 −0.75(5) −0.832(6)∗ −0.814(19)∗ −0.799(10)∗ −0.8303(18)
ω 0.47(3)∗ 0.524(4) 0.512(12) 0.504(6) 0.5231(12)

There are discrepancies between our estimate of ω and the
estimates of Hasenbusch [15] and Guida and Zinn-Justin [24].
Our value ω = 0.47(3) is substantially lower than the others.
This could be partly due to the large fluctuations, but it could
be that the estimates for yT 2 are not yet converged. Table V
could be easily viewed as indicating that the absolute values
of the estimates of yT 2 are still increasing with the iterations
of the renormalization group.

The most interesting estimates are those in the last column,
which were calculated with the conformal bootstrap method
[16–19]. The discrepancies with these results are the largest
concern, especially when the extremely small errors in confor-
mal bootstrap results are considered.

The most obvious source of systematic error in our calcu-
lation of the largest eigenvalue exponents is the uncertainty
of the value of the critical coupling that was used in the
Monte Carlo simulation. The usual way to estimate the
critical coupling from MCRG is to use the convergence of
the renormalized correlation functions. Unfortunately, it is
clear from Table VII that the convergence of the correlation
functions for the tuned RG transformation is not sufficient for
that purpose. It might be possible to do the calculation with
the assistance of an extrapolation of the values, but it seems
more promising to use the convergence of the eigenvalues. Pre-
liminary calculations are very encouraging, but more work is
needed.
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