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We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching
close to the zero-mass ultrarelativistic regime treated in the previous literature. Starting from an expansion of
the Maxwell-Jüttner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and
discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through
numerical comparison with standard tests and solvers in relativistic fluid dynamics such as Boltzmann approach
multiparton scattering and previous relativistic lattice Boltzmann models. This work provides a significant step
towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless
particles regimes.
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I. INTRODUCTION

Relativistic kinetic theory and relativistic fluid dynamics
play an increasingly important role in several fields of modern
physics, with applications stretching over widely different
scales, ranging from a very rich phenomenology in the realm
of astrophysics [1] down to atomic scales (e.g., in the study
of the electron properties of graphene in effective 2D systems
[2] or the phenomenology of exotic states of quantum matter,
such as the recently discovered Weyl fermion pseudoparticles
[3]), further down to subnuclear scales, in the realm of
quark-gluon plasmas [4]. This motivates the quest for powerful
and efficient computational methods, able to accurately study
fluid dynamics in the relativistic regime and possibly also to
seamlessly bridge the gap between relativistic and low-speed
nonrelativistic fluid regimes. Over the years, lattice kinetic
theory has been at the basis of the development of increasingly
complex and accurate lattice Boltzmann methods (LBM), able
to simulate many relevant physics problems, including, e.g.,
high Reynolds turbulent regimes, transport in porous media,
multiphase flows, and many others [5–7]. One key advantage of
most LBM algorithms lies in their computer-friendly structure,
which has allowed the development of several massively
parallel HPC implementations [8–11].

The past decade has witnessed several attempts to develop
LBM capable of handling the relativistic regime. The first
model was developed by Mendoza et al. [12,13], based on the
Grad’s moment matching technique. Romatschke et al. [14]
developed a scheme for an ultrarelativistic gas based on the
expansion on orthogonal polynomials of the Maxwell-Jüttner
distribution, following a procedure similar to the one used
for nonrelativistic LBM. However, this model is not compat-
ible with a Cartesian lattice, thus requiring interpolation to

implement the streaming phase. Li et al. [15] have extended
the work of Mendoza et al. using a multi-relaxation-time
collision operator, which, by independently tuning shear and
bulk viscosity, has allowed the use of a Cartesian lattice.
However, this model is not able to recover the third-order
moments of the distribution. Mohseni et al. [16] have shown
that it is possible to avoid multitime relaxation schemes,
still using a D3Q19 lattice and properly tuning the bulk
viscosity for ultrarelativistic flows, so as to recover only
the conservation of the momentum-energy tensor. This is a
reasonable approximation in the ultrarelativistic regime, where
the first-order moment plays a minor role, but leaves open the
problem of recovering higher order moments. A further step
was taken in Ref. [17], with a relativistic lattice Boltzmann
method (RLBM) able to recover higher-order moments on
a Cartesian lattice. This model provides an efficient tool for
simulations in the ultrarelativistic regime.

All these developments use pseudoparticles of zero proper
mass m (or, more accurately, pseudoparticles for which the
ratio particle mass over temperature, m/T , goes to zero). This
implies that the equation-of-state appropriate for the fluid is the
ultrarelativistic one, ε = 3nT , where ε is the energy density
and n the particle density. On the other hand, with the aim of
extending the range of physical applications, one would like
to explore wider ranges of the m/T ratio and consider mildly
relativistic, as well as ultrarelativistic regimes. From the algo-
rithmic point of view, this discussion translates into the aim
to develop a unified LBM, with the conceptual and technical
ability to bridge the gap between the ultrarelativistic regime
(u/c = β � 1, where u is the fluid speed and c the speed of
light), all the way down to the nonrelativistic one (β → 0).

This work describes an initial step along this direction,
introducing a new RLBM able to cover a wider range of
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fluid velocities. In the development of the model, we follow
a procedure similar to the one used for many nonrelativistic
LBMs; starting from an expansion of the Maxwell-Jüttner dis-
tribution on orthogonal polynomials, we perform a Gauss-type
quadrature procedure and discretize the relativistic Boltzmann
equation on space-filling Cartesian lattices. We validate this
RLBM by comparing with standard tests and solvers in
relativistic fluid dynamics and then present a few simulation
examples in the direction of prospective applications in astro
and subnuclear physics. Realistic applications, as well as
hard-core computational aspects, are left for future work.

This paper is structured as follows: In Sec. II, we review the
relativistic Boltzmann equation and present an overview of the
algorithmic steps involved in the development of our method.
In Sec. III, we describe in full detail the procedure used to
discretize the relativistic Boltzmann equation on a Cartesian
lattice. In Sec. IV, we numerically validate the model against
some well-known relativistic flows, while in Sec. V we present
preliminary prospects of future physics applications. The
paper ends with Sec. VI, summarizing our results and future
directions of research. Since the mathematics becomes quickly
very involved, many details are moved to the Appendices,
while the most complex mathematical expressions are made
available in the form of Supplemental Material [18].

II. MODEL DESCRIPTION

In this section, we introduce the relativistic Boltzmann
equation and summarize our approach to its discretization in
terms of a new RLBM; full details follow in the following
section, so a self-contained description of our approach
stretches across those two sections.

We consider a single nondegenerate relativistic fluid whose
quantum effects are not taken into account. The system is
made up of particles with rest mass m; in kinetic theory,
one is interested in the probability of finding a particle with
momentum p at a given time t and position x; we adopt the
usual relativistic notation, xα = (ct,x) and pα = (p0, p), with
x and p ∈ R3. The particle distribution function f (x, p,t) =
f (xα,pβ) obeys the relativistic Boltzmann equation that, in
the absence of external forces, reads

pα ∂f

∂xα
= �(f ), (1)

with an appropriate collision term �(f ). In the nonrelativistic
regime one usually replaces the collision term with the BGK
approximation [19]; we adopt the relativistic generalization
provided by the Anderson-Witting model [20,21]:

�(f ) = −Uαpα

τf c2
(f − f eq), (2)

with τf the relaxation (proper-)time, Uα = γ · (c,u) (γ =
1/

√
1 − u2/c2) the macroscopic four-velocity, and f eq the

local equilibrium distribution, namely the Maxwell-Jüttner
distribution:

f eq = 1

N exp

(
−pμUμ

kBT

)
; (3)

N is a normalization constant and kB the Boltzmann constant.
In the remainder of this paper we adopt units such that c =
1, kB = 1.

Following Grad’s theory [22] the macroscopic description
of a relativistic fluid is based on the moments of the distribution
function. We consider the first three moments of the distribu-
tion, namely the particle four-flow Nα , the energy-momentum
tensor T αβ , and the third-order momentum T αβγ :

Nα =
∫

fpα d p
p0

, (4)

T αβ =
∫

fpαpβ d p
p0

, (5)

T αβγ =
∫

fpαpβpγ d p
p0

. (6)

Hereafter, we will use the subscript E to refer to these
tensors taken at the equilibrium, i.e., using f eq in place of f

in their definition. It can be shown that (see, e.g., Ref. [23])
Nα

E and T
αβ

E are given by

Nα
E = nUα, (7)

T
αβ

E = (ε + P )UαUβ − Pηαβ ; (8)

n is the particle number-density, ε the energy density, P the
pressure, and ηαβ the Minkowski metric tensor [that we write
as ηαβ = diag(1,−1,−1,−1)].

The Anderson-Witting model correctly reproduces the
conservation equations:

∂αNα = 0, (9)

∂βT αβ = 0. (10)

A. Discrete relativistic Boltzmann equation

We now describe our approach to derive a relativistic lattice
Boltzmann equation, following a procedure similar to the one
used with nonrelativistic [24–27] and earlier ultra-relativistic
LBMs [14,17]. We perform the following steps:

(1) Write Eq. (1) in terms of quantities that can be dis-
cretized on a regular lattice. Following a standard procedure,
we write the explicit expression of the relativistic lattice
Boltzmann equation,

p0∂tf + pl∇lf = −pμUμ

τf

(f − f eq), (11)

and divide left- and right-hand sides by p0, obtaining

∂tf + vl∇lf = −pμUμ

τf p0
(f − f eq), (12)

with vl = pl/p0 the components of the microscopic velocity;
in other words, we cast the equation in a form in which the
time-derivative and the propagation term are the same as in
the nonrelativistic regime; the price to pay is an additional
dependence on p0 of the relaxation term.

(2) Expand f eq in an orthogonal basis; we adopt Cartesian
coordinates and use a basis of polynomials orthonormal with
respect to a weight given by the Maxwell-Jüttner distribution
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in the fluid rest frame (u = 0):

ω(p0) = 1

NR

exp (−p0/T ). (13)

where, again, NR is a normalization factor. Call {J (i),i =
1,2 . . . } these polynomials (that we compute in the following
section); then,

f eq( p,Uμ,T ) = ω(p0)
∞∑

k=0

a(k)(Uμ,T )J (k)( p), (14)

where the projection coefficients a(k) are

a(k)(Uμ,T ) =
∫

f eq( p,Uμ,T )J (k)( p)
d p
p0

. (15)

The approximation f Neq( p,Uμ,T ), obtained truncating the
summation in Eq. (14) to the N th order, recovers the same
moments as the original distribution function to order N , given
that the expansion coefficients correspond to the moments of
the distribution. For example, a third-order expansion ensures
that the results of the integrals in Eqs. (4)–(6) are correctly
recovered.

(3) Find a Gauss-like quadrature on a regular Cartesian
grid able to reproduce correctly the moments of the original
distribution up to order N . We proceed in such a way as
to preserve one of the most important features of lattice
Boltzmann models, namely exact streaming; this means that all
quadrature points vl

i = pl
i/p

0 must sit on lattice sites. At this
point, the discrete version of the equilibrium function reads as
follows:

f
Neq
i = wi

KN∑
k=0

a(k)(Uμ,T )J (k)
(
p

μ

i

)
, (16)

with wi appropriate weights, and KN is the number of
orthogonal polynomials up to the order N .

(4) Use the above result to write the discrete relativistic
Boltzmann equation,

fi(x + vi�t,t + �t) − fi(x,t) = −�t
p

μ

i Uμ

p0τ

(
fi − f

eq
i

)
,

(17)
where vi are the microscopic lattice velocities of each
streaming population, and τ the relaxation time in lattice units
(whose relation with τf will be discussed in Sec. IV)

Equation (17) allows us to simulate the evolution of the
system in discrete space and time. Once the fi are known, one
computes the energy-momentum tensor [Eq. (5)] as

T αβ =
∑

i

fip
α
i p

β

i . (18)

The Anderson-Witting collisional model is only compatible
with the Landau-Lifshitz decomposition [23], which implies

n = UαNα, (19)

εUα = T αβUα, (20)

so we obtain the energy density ε and Uα solving the eigenvalue
problem in Eq. (20). Finally, temperature is linked to energy
and particle density via a suitable equation of state.

Note that Eqs. (19) and (20) stem from the property of
the collision operator to conserve the number of particles and
their energy. As a result, its zeroth- and first-order moments
are bound to vanish. Thus, for instance, in the continuum
case, right-hand side of Eq. (11), we calculate the respective
moments of the collision operator:∫

Uμ

τf

(fpμ − f eqpμ)
d p
p0

= 1

τf

(
UμNμ − UμN

μ

E

)
, (21)

∫
Uμ

τf

(fpμpν − f eqpμpν)
d p
p0

= 1

τf

(
UμT μν − UμT

μν

E

)
,

(22)

and due to the fact that these two expression should be equal
to zero, we get

UμNμ = UμN
μ

E, (23)

UμT μν = UμT
μν

E . (24)

Since we know the equilibrium moments, it can be shown that

UμNμ = UμN
μ

E = n, (25)

UμT μν = UμT
μν

E = εUν. (26)

However, it is important to observe that these expressions do
not imply that Nμ = N

μ

E and T μν = T
μν

E , but rather that the
nonequilibrium components of Nμ and T μν are orthogonal
to the four-velocity. The same is true in the discrete case,
with integrals replaced by summations over the set of discrete
velocities.

B. Equation of state

As outlined in the Introduction, we consider the case of
(in-principle) arbitrary values of the particle mass (and hence
of the m/T ratio); this allows us to consider general equations
of state (EOS) not confined to the ultrarelativistic limit.

In the ultrarelativistic regime, the EOS is well known:

ε = 3nT . (27)

A more general EOS for a perfect gas—valid for any value
of the m/T ratio—has been derived several decades ago by
Karsch et al. [28]:

ε − 3nT = (nT )
m

T

K1(m/T )

K2(m/T )
, (28)

P = nT ; (29)

here and in the following, Ki is a modified Bessel function of
the second kind of index i. Note that xK1(x)/K2(x) → 0 as
x → 0, so Eq. (28) correctly reproduces the ultrarelativistic
limit [Eq. (27)] as m/T → 0. For the nonrelativistic limit, one
writes

(ε − nm) − 3nT = (nT )

[
m

T

K1(m/T )

K2(m/T )
− m/T

]
. (30)

Noting that [xK1(x)/K2(x) − x] → −3/2 as x → ∞, and
defining εc = ε − nm (the non-relativistic kinetic energy
density), we also recover the well-known nonrelativistic
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FIG. 1. Plot of the right-hand side of Eq. (31) as a function of
temperature T , with T rescaled in units of m.

expression εc = 3/2nT . It is also interesting to look at the
difference between Eqs. (28) and (27) in the intermediate
regimes. To this effect, we rearrange Eq. (28) in the following
way:

ε

3nT
= 1 + 1

3

m

T

K1
(

m
T

)
K2

(
m
T

) , (31)

explicitly highlighting the ratio between the two EOS. This
quantity is plotted in Fig. 1 as a function of T .

C. Transport coefficients

The transport coefficients of the model, i.e., shear and bulk
viscosities and thermal conductivity, are defined as usual from
the nonequilibrium contributions of the energy-momentum
tensor [23]. The shear viscosity can be obtained by using the
following expression:

2η∂<αUβ> =
(
�α

γ �
β

δ − 1
3�αβ�γδ

)
T γ δ, (32)

where �αβ ≡ ηαβ − UαUβ , and the expression ∂<αUβ>

stands for

∂<αUβ> =
[

1
2

(
�α

γ �
β

δ + �α
δ �β

γ

)
− 1

3�αβ�γδ

]
∂γ Uδ. (33)

The bulk viscosity κ , on the other hand, can be calculated by
using

−κ∂αUα = −P − 1
3�αβT αβ, (34)

and finally, the thermal conductivity λ, with the expression

λ(∂αT − T Uβ∂βUα) = �α
γ UβT βγ . (35)

It is important to mention that, unlike the nonrelativistic
case, there is no straightforward way to compute the transport
coefficients directly from the model parameters, since it is
known that the Chapman-Enskog and the Grad procedure
deliver (slightly) different results [23]. There are also other
kinds of expansions developed for that purpose [29,30] and yet
a unique expression has not been found. Following Mendoza
et al. [17], in this work we shall assume the transport
coefficients delivered by the Grad procedure. See later for
further discussions on this point.

III. LATTICE DISCRETIZATION

In this section we describe in details all steps, outlined in
the previous section, required to implement a relativistic lattice
Boltzmann procedure, that is, all the ingredients necessary to
define and evolve Eq. (17).

A. Relativistic orthonormal polynomials

We start by constructing an orthonormal basis of polynomi-
als. Following Mendoza et al. [17] we adopt the equilibrium
distribution in the comoving frame as our weight function:

ω(p0) = 1

NR

exp (−p0/TR). (36)

Hereafter, we will use TR as a normalization factor to write
adimensional quantities and to convert from physics to lattice
units.

In order to construct a set of orthogonal polynomials we
apply the well-known Gram-Schmidt procedure, starting from
the set V = {1,pα,pαpβ, . . . }. To carry out this procedure,
one must compute integrals of the form

Iαβγ ... =
∫

exp

(
−pμUμ

T

)
pαpβpγ . . .

d3p

p0
, (37)

which can be written in terms of Bessel functions [23]. For
example,

I =
∫

exp

(
−pμUμ

T

)
d3p

p0
= 4π

m

T
T 2K1

(m

T

)
, (38)

Iα =
∫

exp

(
−pμUμ

T

)
pα d3p

p0
= 4π

(
m

T

)2

T 3K2

(m

T

)
Uα;

(39)

integrals with higher powers of p are derived by differentiating
with respect to m/T and taking into account well-known
properties of the Bessel functions.

It is useful to normalize ω(p0), so that∫
ω(p0)

d3p

p0
= 1, (40)

implying that

NR = 4π
m

TR

T 2
RK1

(
m

TR

)
= 4πm̄T 2

RK1(m̄), (41)

where we adopt the shorthand m̄ = m/TR .
The complete set of polynomials up to the second order has

14 independent elements while 30 elements are needed at the
third order. See Appendix B for all second-order polynomials,
while the complete set (up to third order) is available as
Supplemental Material [18]; we label all polynomials as J

(n)
k1···kn

,
where n is the order of the polynomial and the k indexes
corresponds to the components of pμ they depend upon. As
an example, the first nonconstant polynomial is

J
(1)
0 = 1

A

[
p0

TR

− m̄
K2(m̄)

K1(m̄)

]
= 1

A

[
p̄0 − m̄

K2(m̄)

K1(m̄)

]
. (42)

All polynomials are adimensional, so we write them in terms
of p̄α = pα/TR; all coefficients, including the normalization
constant A, only depend on m̄.
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We now compute a(k)(Uμ,T ), the projections of
f eq(p,Uμ,T ) [see Eq. (15)], in a generic reference frame.
We choose to normalize f eq so that

nUα = Nα
E =

∫
f eqpα d p

p0
, (43)

implying

N = 4π
(m

T

)2
T 3K2

(m

T

)
. (44)

The computation of these coefficients is a tedious but straight-
forward task, as it implies again integrals of the form of
Eq. (37). The coefficients of all polynomials up to the second
order are listed in Appendix C, and all remaining ones are
available as Supplemental Material [18]; coefficient labeling
follows the same rules as for polynomials. For example, the
explicit expression of a

(1)
0 reads

a
(1)
0 =

∫
f eqJ

(1)
0

dp3

p0

= 1

N
1

A

∫
exp

(
−pμUμ

T

)[
p0

TR

− m̄
K2(m̄)

K1(m̄)

]
dp3

p0

= 1

TR

1

A

[
U0 − K2(m̄)

K1(m̄)

K1
(

m
T

)
K2

(
m
T

)
]
.

All projection coefficients a(k) carry a dimension of one over
temperature (or energy); correspondingly, we write them as an
explicit 1/TR prefactor followed by adimesional expressions
written in terms of m/TR = m̄ and m/T .

B. Polynomial expansion of the distribution
function at equilibrium

It is now possible to write a polynomial approximation to
f eq at any order N , via Eq. (14), using the explicit expressions
for the polynomials and for the expansion coefficients com-
puted in the previous subsections. The analytic expressions
quickly become very awkward; for example, the expansion of
f eq at first order has five terms and reads

f eq

(
p,U,

m

Tr

,
m

T

)

= ω(p0)
1

TR

{
1

A2

[
p̄0 − m

K2(m̄)

K1(m̄)

]

×
[
U0 − K1

(
m
T

)
K2(m̄)

K2
(

m
T

)
K1(m̄)

]

+ 1

B2
(p̄xUx + p̄yUy + p̄zUz) + K1

(
m
T

)
m̄K2

(
m
T

)
}

, (45)

with the coefficients A and B defined in Appendix A. In
general, upon factoring out the term 1/TR , the expression
of f eq only depends on the ratios m/TR = m̄ and T/TR

(in fact, we can always write m
T

= m
TR

TR

T
). As we will see

later, m̄ is fixed by the quadrature, while T/TR controls
the translation from physical to lattice units. In Fig. 2,
we compare approximations at the first, second, and third
order against the analytic Maxwell Jüttner distribution, for

FIG. 2. Comparison of the analytic Maxwell Jüttner distribution
against first, second, and third order approximations computed using
an orthogonal polynomial basis. Left: m = 5, T = 1, p = (px,0,0),
and u = (0.3,0,0); Right: m = 1, T = 1, p = (px,0,0), and u =
(0.4,0,0). For each plot, column bars represent the percentage
relative L2-error of each approximation with respect to the analytic
distribution.

several values of m, T , and u; as expected, the first-order
approximation fails to reproduce the analytic behavior, while
the second- and third-order expansions provide increasingly
accurate approximations.

C. Quadratures with prescribed abscissa

In order to implement an RLBM on a Cartesian space-filling
lattice, we need to find the weights and the abscissas of a
quadrature satisfying the following orthonormal condition:∫

ω(p̄0)J (l)(p̄μ)J (k)(p̄μ)
d3p̄

p̄0
=

∑
n

wnJ
(l)

(
p̄μ

n

)
J (k)

(
p̄μ

n

)
= δlk, (46)

where {J (i),i = 1,2 . . . K} are the orthogonal polynomials
derived in Sec. III A, p

μ
n are the four-momentum vectors

defined at appropriate points in momentum space, and the
wn are suitable weights [31]. Our goal is to satisfy the above
equation up to the sixth order in p, so up to the fifth order of
the equilibrium distribution is recovered.

As already discussed, we want to ensure exact streaming,
that is, we require that all p

μ
n sit exactly on sites of our

Cartesian grid. We can fulfill this requirement, since we work
with a finite value of the particle mass m (hence with a
finite value of m/TR). To this effect, we adopt populations
belonging to several particle groups G, each group defining
(pseudo-)particles that, at each time step, move from one lattice
site to other sites at a given fixed distance. A large list of
groups that we can select from is collected in Appendix C. For
instance, the well-known nonrelativistic D3Q19 model uses
the set {G1,G2,G3}. Consequently, Eq. (46) becomes∫

ω(p̄0)J (l)(p̄μ)J (k)(p̄μ)
d3p̄

p̄0

=
∑

i

∑
j

wjJ
(l)(p̄μ

i,j

)
J (k)(p̄μ

i,j

) = δlk, (47)
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FIG. 3. Examples of stencils for the relativistic lattice Boltzmann
method. Left: stencil for a second order approximation formed by
G = (G1, G2, G3, G4, G5, G6), with 57 pseudopopulations; right:
stencil for a third-order approximation formed by G = (G1, G2, G3,
G4, G5, G8, G9, G10, G12, G13, G15), with 161 pseudopopulations.

with p̄
μ

i,j corresponding to the ith element of the j th group,
and wj is the weight of the j th group.

When using more than one group, we ensure exact stream-
ing requiring that velocities of particles belonging to each
group are proportional to the (Cartesian-) distance they have
to travel to reach their destination. This means that different
groups belong to different energy shells. Indeed, we write

p
μ

i,k = mγk(1,v0�ni,k). (48)

Here:
(1) �ni,k = (nx

i,k,n
y

i,k,n
z
i,k) ∈ N3 are the coordinates of the

ith element of the kth group of the stencil; ||�nk|| is the common
value of ||�ni,k|| for all vectors belonging to group k.

(2) γk is the relativistic γ factor associated to vk = v0||�nk||.
(3) v0 is a common velocity parameter that can be freely

chosen under the condition that vk � 1,∀k.
Otherwise stated, the set of the �ni,k defines the travel path

of each element of each group; then, once v0 has been set to
a specific value, all elements of the group are assigned to an
energy shell per Eq. (48). Figure 3 shows examples of lattices
compatible with the requirements of Eqs. (47) and (48).

Assuming that a quadrature has been found and a suitable
value for v0 has been selected, Eq. (17) becomes

fi(�x + v0�ni,kδt,t + δt) − fi(�x,t) = −δt
p

μ

i Uμ

p0
i τ

(
fi − f

eq
i

)
.

(49)
Therefore, our requirement

v0�ni,kδt = �Ni,kδx, (50)

where δx is the lattice spacing and �Ni,k are integer numbers,
is equivalent to a relation between time and space units on the
lattice.

D. Finding quadratures

Assuming for the moment that a certain set of particle
groups has been selected, our next step is to find the weights
wj of a quadrature that solves Eq. (46), which we copy here
for convenience, up to a prescribed order:∫

ω(p̄0)J (l)(p̄μ)J (k)(p̄μ)
d3p̄

p̄0
=

∑
n

wnJ
(l)

(
p̄μ

n

)
J (k)

(
p̄μ

n

)
= δlk, (51)

where p
μ

i,k are four-momentum vectors defined in Eq. (48).
Recall that the values of the p

μ

i,k depend on the group to which
they belong and on a common hitherto arbitrary value for v0.

We follow the procedure described in Ref. [32], building
a lattice by adding as many groups as necessary to fulfill
Eq. (51). For example, considering quadratures giving a
second-order approximation, the system of Eq. (47) has six
linearly independent components, so one needs to build a
stencil with (at least) six different groups. Likewise, at third
order there are 11 independent components, so we need
11 groups. Yet higher-order approximations would require
stencils with even larger numbers of groups.

Equation (47) is a linear system in the unknowns wj , whose
coefficients in principle depend on m/TR , on the chosen set of
groups and on v0. We look for solutions in which wj � 0 for all
js, as this improves numerical stability and is consistent with
a (pseudo-)particle interpretation of the RLBM. In practice,
one (i) assigns a value for m/TR; (ii) selects a large enough set
of particle groups; and then (iii) solves Eq. (47) for arbitrary
values of v0.

Let us see with an example at second order the result
of this procedure; we take m̄ = 5 and consider the stencil
formed by the union of the first six groups in Table I in
Appendix: G = (G1, G2, G3, G4, G5, G6). With this stencil, the
longest displacement is given by G6 having length 1/

√
5, so

v0 ∈ [0,1/
√

5 ≈ 0.447) as pseudoparticles cannot travel faster
than light shows the values of the wj s that solve Eq. (51)
as a function of v0. We see that their values wildly oscillate
between large positive and negative values; we can, however,
identify a range of v0 values [v0 ∈ (0.3966,0.3984)], for which
all weights are positive, providing acceptable solutions to the
problem.

Taking, for example, v0 = 0.398, the corresponding
weights for the quadrature are

w1 = 0.0993921725 . . . w2 = 0.0404025909 . . .

w3 = 0.0043631818 . . . w4 = 0.0640885469 . . .

w5 = 0.0081185158 . . . w6 = 0.0018506095 . . .

Particularly useful values of v0 are those located at the
boundaries of the interval since, as easily seen in Fig. 4, in
this case some weights become zero thus pruning certain
lattice velocities. In our example, one can reduce the set
of 57 velocities to 51 by setting w2 to zero (taking v0 =
0.3965826549 . . . ), or to 45 by setting w3 to zero (v0 =
0.3984063950 . . . ). More examples, and accurate values for
the weights, are provided in the Supplemental Material [18].

In general, many different solutions to the quadrature prob-
lem exist. Indeed, one first has the freedom to arbitrarily choose
the particle groups [that in turn define the corresponding set of
momentum four-vectors per Eq. (48)] and the reference value
for m̄ and then one has to pick up a particular value for v0.
From an algebraic point of view, Eq. (51) leads to a linear
system of equations, parametric on v0:

A(v0)w = b. (52)

Here A is a l × k matrix (l being the number of possible
combinations of the orthogonal polynomials, k the number of
groups forming the stencil), b is a known binary vector, and
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FIG. 4. Parametric solution of the system of equations given by
Eq. (47) using the stencil G = (G1, G2, G3, G4, G5, G6) with m̄ = 5.
In this case we can identify a region for which wi(v0) � 0∀i (orange
coloured interval), giving a set of solutions that can be used to build
a numerically stable quadrature.

w is the vector of unknowns. Since the Gaussian quadrature
requires strictly positive weights in order to guarantee numer-
ical stability, we need to select values of v0 (if they exist) such
that wi > 0∀i. For low-order approximations it is possible to
compute an analytic solution, writing each weight wi as an
explicit function of the free parameter v0, but this become
quickly very hard and, already at the second-order, numerical
solutions are necessary. A possible formulation of the problem
is as follows:

x = [wv0]T ,

R(x) = ‖A(v0)w − b‖,
min
x∈Re

1
2R(x)T R(x),

s.t.R(x) = 0,

0 < v0 � vmax,

wi � 0∀i.

(53)

We have performed a detailed exploration of the available
phase-space, implementing a solver for Eq. (53) based on the
LAPACK library with several instances running in parallel on
a cluster of CPUs. The solver takes as input a stencil G and
tries to find a solution for Eq. (53) by scanning several values
of v0 with a simple steepest-descent method. This fast method
allows us to scan several stencils at different values of m/TR;
on the other hand, more robust techniques are desirable in order
to perform a more systematic exploration of the phase-space.

Typically, for a given value of m̄ several different stencils
are possible; however, each stencil works correctly only
in a certain range of m̄. Still, a reasonably small sets of
stencils allows us to treat m̄ � 0.35 at the second order and
m̄ � 1.5 at the third order, offering a possibility to cover a
very large kinematic regime, from almost ultrarelativistic to
nonrelativistic. A graphical view of (a subset) of all stencils

10−1 100 101 102

m/TR

G1, G7, G32, G40, G59, G65 (127)
G1, G2, G20, G33, G39, G47 ( 87)
G1, G3, G32, G40, G59, G34 (109)
G1, G5, G14, G18, G21, G26 ( 81)
G1, G2, G12, G14, G18, G26 ( 91)
G1, G5, G11, G14, G22, G26 ( 73)
G1, G3, G10, G14, G18, G22 ( 81)
G1, G3, G10, G16, G18, G21 ( 93)

G1, G6, G7, G8, G9, G11 ( 91)
G1, G2, G9, G11, G13, G15 ( 85)

G1, G8, G9, G12, G13, G15 (121)
G1, G4, G5, G7, G10, G11 ( 41)

G1, G2, G3, G4, G5, G6 ( 57)

10−1 100 101 102

m/TR

G1, G2, G21, G22, G25, G31, G33, G37, G39, G43, G47 (241)
G1, G18, G20, G25, G26, G29, G31, G39, G40, G42, G47 (261)

G1, G8, G18, G25, G26, G28, G31, G33, G39, G43, G47 (301)
G1, G8, G18, G26, G28, G31, G32, G43, G44, G47, G57 (319)
G1, G4, G10, G11, G14, G17, G18, G21, G22, G23, G26 (161)

G1, G2, G5, G8, G10, G11, G14, G16, G17, G18, G22 (177)
G1, G2, G3, G8, G10, G11, G14, G16, G17, G18, G22 (183)

G1, G4, G5, G7, G8, G9, G10, G11, G12, G13, G15 (161)
G1, G2, G4, G5, G7, G8, G9, G10, G11, G13, G15 (143)
G1, G2, G3, G4, G5, G8, G9, G12, G10, G13, G15 (161)

G1, G4, G7, G10, G11, G14, G20, G21, G25, G36, G57 ( 85)
G1, G2, G3, G4, G5, G8, G7, G9, G10, G11, G15 (131)
G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11 (131)

FIG. 5. Stencils used to construct a numerically stable quadrature
for different value of m̄. Top, stencils with six velocity groups, for a
second-order approximation. Bottom, stencils with 11 velocity vector
groups, for a third-order approximation. Horizontal bars represent the
working range of values m/TR for each quadrature. In parentheses,
the number of components of each stencil.

that we have identified, including the corresponding number of
populations, is shown in Fig. 5 for both second and third order.

In general, the process of finding working quadratures
becomes harder and harder as m̄ takes smaller and smaller
values. The reason for this, from a strictly mathematical
point of view, is that for small values of m̄ the condition
number of the system matrix in Eq. (53) takes large values,
therefore requiring more advanced linear algebra techniques.
From a physical point of view the reason why this is a
difficult problem, and in particular one cannot expect to find
solutions for m̄ = 0, is that we require that different groups of
particles travel in one time step at different distances hopping
from a point of the grid to another point of the grid. In
the close-to-ultrarelativistic regime this requires us to restrict
to stencils whose elements sit at the intersection between a
Cartesian grid and a sphere of given radius. In this case, the
trick used by Mendoza et al. [17], of using several energy
shells, possible in the ultrarelativistic regime as velocity does
not depend on energy, cannot be used if m̄ �= 0. Work is in
progress to further clarify the best mathematical approach to
finding the largest set of available solutions.

We have developed a plain C program that implements
our algorithm at second and third order. The code is flexible
enough to adapt to any of the possible quadratures and
corresponding stencils. The expressions for the polynomials
and the equilibrium distribution, obtained using Mathematica
software, are almost automatically translated into correspond-
ing C code lines. The overall structure of the code follows
the typical implementation of almost all LBM algorithms
and shares the same opportunities for massive parallelization.
The number of floating point instructions per lattice site for
one iteration of the collide kernel, at third order, is 83 000
when employing a quadrature with 207 populations; this
figure reduces down to 55 000 using a 131-point stencil. Note
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that, consistently with the use of BGK-like collision operator,
the instruction count scales approximately linearly with the
number of discrete speeds and not quadratically as for the
actual Boltzmann collision operator. To put these numbers
in perspective, the ultrarelativistic code in Ref. [17] using a
stencil with 128 velocities requires about 52 000 instructions;
the slight difference can be accounted to the computation of
the more complex equation of state and equilibrium function.

IV. NUMERICAL VALIDATION

In this section, we present a validation of the model by
solving the Riemann problem for a quark-gluon plasma. Such
a choice is made in order to directly compare against previous
RLBM formulations and other relativistic hydrodynamics
solvers dealing with the relativistic Boltzmann equation. It
should be noted that previous works have focused on the
ultrarelativistic regime, which we can only approximate using
small values of m/TR . As discussed in Sec. III C the minimum
value of m/TR that can be used in simulations depends on
whether we can find a stencil allowing us to implement a
quadrature for a given value of the rest mass.

In the following we compare different simulations for
the 1D shock-wave problem, showing that decreasing
the value of m/T our simulations tends to the results
of the ultrarelativistic regime, as computed by well-known
codes, such as ECHO-QGP [33], the Boltzmann approach
multiparton scattering (BAMPS) [34], and the ultrarelativistic
RLBM described in Ref. [17].

The initial conditions of the simulation, which follow a
benchmark performed by BAMPS, are defined by a pressure
step having, in physical units, P0 = 5.43 GeV/fm3 and P1 =
0.339 GeV/fm3, with corresponding initial temperatures T0 =
400 MeV and T1 = 200 MeV.

To make contact with real-life physics, it is necessary to
convert from physical units to lattice units. In our simulations
we set the following values for the initial temperature
T0 = 1,T1 = 0.5 (this means that we set the scale of our
reference temperature TR = 400 MeV), and the values
n0 = 1, n1 = 0.124 for the initial density, which correctly
reproduce the ratio P1/P0. To relate physical space and
time units with the corresponding lattice units, one starts by
assigning the physical length δx corresponding to one lattice
spacing; one arbitrary population group in the simulation
stencil, having velocity ||nk||v0, travels a distance of ||nk||
lattice spacings in one time unit; then, if we call dt the
physical time unit corresponding to one discrete time step,
||nk||v0δt = ||nk||δx, so we finally obtain δt = δx/v0.

Another quantity that one must properly scale in order to
use consistently different quadratures is the relaxation time τ .
In the numerical setup τ is expressed in lattice time units, so
it naturally follows from the discussion on the discrete time
steps δt that τ can be written as τ = τf v0/δx, and τf is related
to the transport coefficients of the system that one wants to
study.

The accurate link between the transport coefficients and
τf in the relativistic regime is still debated in the literature.
The approaches based on Grad’s method of moments and on
the Chapman-Enskog theory give slightly diverging results in
the relativistic regime (even if they agree in the nonrelativistic
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FIG. 6. Comparison of the time-evolution of the solution of the
Riemann problem obtained with BAMPS (blue lines) and with a
second-order RLBM solver using m/TR = 0.36 (green lines). We
show the energy (top left), density (top right), pressure (bottom left),
and velocity of the shock wave (bottom right), at t = 0 fm/c, t =
1.6 fm/c, and t = 3.2 fm/c. We make use of a 133 velocities stencil
given by G = G1, G14, G49, G51, G60, G70.

limit); see Ref. [23]. Attempts to clarify this situation have been
made by Israel and Stewart [29] and more recently in a series
of papers by Denicol et al. [30,35]. In our tests, we use Grad’s
method (also adopted in Ref. [17]), expecting only limited
inaccuracies, of the order of �10–15%. Therefore, at this stage
we are not including contributions from massive particles in
the transport coefficients, thus relating the relaxation time τ to
the shear viscosity η through η = (2/3)P (τ − δt/2); work is
in progress in order to improve and generalize this definition
for our RLBM formulation.

We perform our first tests on a lattice with 1 × 1 × 6400
cells, half of which represents our domain defined in the
interval (−3.2 fm, 3.2 fm), and the other half forming a mirror
which allows us to use periodic boundary conditions. It follows
that on our grid 6.4 fm corresponds to 3200 grid points, that is
δx = 0.002 fm; the value of δt for any given quadrature can be
derived as explained in the previous paragraph. Figure 6 shows
a typical result of this test, where we compare the energy,
density, velocity, and pressure profiles of BAMPS with η/s =
0.1 against our model. Here s is the entropy density, calculated
according to the relation s = 4n − n ln (n/neq), where neq

comes from the equilibrium function, neq = dGT 3/π2, with
dG = 16 the degeneracy of the gluons. The profiles show the
evolution of the system from t = 0 fm/c to t = 3.2 fm/c; Fig. 6
shows that the results obtained simulating for m/TR = 0.36
are in very good agreement with BAMPS; one may relate this
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P
P0

v
c

FIG. 7. Pressure and velocity profiles (at t = 3.2 fm/c) of the
same 1D Riemann problem of Fig. 6, obtained via a 2D simulation.
Results agree with those of the 1D simulation to machine precision.

nice and (possibly) unexpected behavior to the mild differences
between the EOS of the two systems in this regime (see again
Fig. 1).

Although for validation purposes we consider only one
dimensional simulations, our model readily extends to two
and three spatial dimensions. Figure 7 shows a 2D example
where we solve the same Riemann problem on a 2D grid of
1 × 800 × 800 sites; we have checked that 1D and 2D results
agree almost to machine precision.

A further validation of our model is offered by the
consistency among simulations of the same physical setup,
performed with different quadratures. In principle, one expects
the same results, after appropriately rescaling the space and
time units as discussed above; in practice, small differences
may appear, as different quadratures provide slightly different
approximations to the distribution moments.

This is shown in Fig. 8, where we compare results obtained
by simulating the same problem with different quadratures at
the second and third order. We see a close to perfect agreement
at third order. On the other hand, as one would expect,
the results are slightly divergent when using second-order
quadratures since the moments related to the viscosity terms
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FIG. 8. Comparison of the time-evolution of the Riemann prob-
lem obtained with a RLBM solver using different quadratures, at the
second and third order (m/TR = 5). Quadrature A (second order): G
= G1, G4, G5, G7, G10, G11. v0 = 0.2600738. Quadrature B (second
order): G = G1, G2, G3, G4, G5, G6. v0 = 0.3609900. Quadrature
C (third order): G = G1, G2, G3, G4, G6, G7, G9, G10, G11, G13,
G15. v0 = 0.2722674. Quadrature D (third order): G = G1, G8, G18,
G26, G28, G31, G32, G43, G44, G47, G57. v0 = 0.1571087.
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FIG. 9. Relative L2-distance of our simulated solution at second
order (left) and third order (right) with respect to BAMPS and with
respect to the ultrarelativistic LBM (URLB), as a function of the
m/TR ratio. Each point is obtained making use of the stencil having
the smallest number of velocities.

are not fully recovered and different quadratures introduce
different errors in their approximation.

We conclude this section with a more general validation
test, presented in Fig. 9, where we show that our solutions
becomes closer and closer to the ultrarelativistic ones, as we
reduce the m/T ratio; this shows that the present algorithm
is a good candidate to bridge the gap between ultrarelativistic
and nonrelativistic regimes.

V. RESULTS AND PROSPECTIVE APPLICATIONS

The RLBM scheme presented in this paper allows us
to explore many different physics regimes, from a nearly
ultrarelativistic behavior, down to mildly relativistic ones.
While we leave physics applications to future works, here
we wish to offer just a few preliminary examples, conveying
a sense of prospective physics applications of the present
method.

In Fig. 10 we show the behavior of a fluid undergoing a
Riemann-like shock, for a fixed value of η/s, and for different
values of m/T placing ourselves at different relativistic
regimes. One easily appreciates the changes in the system
evolution as one moves from a strongly relativistic to an
almost classic regime: the evolution from the same initial
temperature and pressure gradients becomes slower as m/T

becomes larger.
We conclude by testing the stability of our algorithm when

considering fully two-dimensional simulations. Once again,
the reader should be aware that the aim here is not a detailed
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FIG. 10. Comparison of different relativistic hydrodynamics
solvers. Dashed lines represent the results obtained using our RLBM
solver implementing a second- and a third-order approximation for
different values of m̄. (Left) Pressure profile at t = 3.2 fm/c. (Right)
Velocity profile at t = 3.2 fm/c.

(a)

(b)

FIG. 11. Evolution of a Lorentz contracted circular domains
having a radial initial density moving with a initial velocity v = 0.5c.
Starting from t = 0 we present nine frames, taken at six time steps
apart, showing the profiles of (a) particle density and (b) velocity
magnitude.

study of a real physical application but rather to give a taste
of what the model allows us to do. We also like to point
out that while the examples presented in the following have
been performed also in three dimensions, we report here only
two-dimensional profiles for the sake of visualization.

In Fig. 11, we present a relativistic analog of the Taylor-
dispersion process [36], simulating the dynamics of a circular
domain of radius R with an initial radial density n(r) =
n0(1 − r/R), and an initial velocity v = ( c

2 ,0). Figure 11
outlines the evolution of the density and velocity magnitude
profiles at eight different time steps; the pictures show a sub-
stantial mixing of the fast-moving fluid with the environment,
qualitatively similar to the one exhibited by its low-speed
analog.

The simulation presented in Fig. 12 points in the direction
of quark-gluon plasma phenomenology, as we consider two
domains with the same initial density as before, traveling in
opposite directions at speed v ∼ c

2 . The pressure profile and
the velocity magnitude are shown at eight different time steps.

(a)

(b)

FIG. 12. Evolution of the collision between two Lorentz con-
tracted circular domains having a radial initial density moving with a
initial velocity v = 0.5c. Starting from t = 0 we present nine frames,
taken at six time steps apart, showing the profiles of (a) pressure and
(b) velocity magnitude.
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In order to apply our model to realistic simulations in
quark-gluon plasma, one would need to consider further
extensions, as for instance suitable EOS and appropriate initial
and boundary conditions. Still, the picture capture features of a
hydrodynamic evolution of fluid following the initial collision
among nuclei, as long as the temperature remains larger than
the freeze-out threshold [37]. Our simulation method might
also permit us to apply the fluid-dynamic approach across
the deconfinement transition point, in the very interesting
region where the fluid speed of “sound” (c2

s = ∂p/∂ε) changes
abruptly (decreasing down to the so-called “softest point” and
then increasing again) and in which the role of the hadronic
degrees of freedom will start to play a significant dynamic
role [38,39]. We expect the range 1 < m/T < 5 to be relevant
in this case, as they correspond to the ratio of the mass of
the low-lying hadrons (e.g., pion, ρ-meson, nucleon) to the
deconfinement temperature.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have developed a new class of relativistic
lattice Boltzmann methods, which provides a wider degree
of generality and flexibility with respect to previous models,
while still preserving all features of conceptual simplicity and
computational efficiency of lattice Boltzmann methods. The
main results of this work are summarized as follows:

(1) We have explicitly built a new class of RLBM based
on massive pseudoparticles, able to recover the moments of
the relativistic equilibrium distribution up to third order.

(2) The use of massive pseudoparticles translates into the
possibility to tailor the detailed features of the method to fit a
specific relativistic range of velocities of the simulated system,
ranging from strongly relativistic to almost classical.

(3) We have established a methodology capable of quickly
deriving many different variants of the present RLBM,
allowing to use different sets of pseudoparticles and to adjust
the value of m/T .

(4) The algorithmic structure of the present RLBM is very
similar to that of other established lattice Boltzmann methods
and the computational complexity is not much higher. This
algorithm retains the same computational advantages, offering
high amenability to parallelization, that can be exploited to
write efficient high-performance computing codes.

(5) Initial tests have shown that our algorithms are com-
putationally stable and robust over a wide range of physical
parameters.

To the best of our knowledge, this is the first RLBM imple-
menting exact streaming on a Cartesian lattice without losing
spatial resolution and still recovering higher order moments
of the equilibrium distribution. The flexibility of this RLBM
should make it an appealing computational tool to study several
relevant relativistic physics problems, including for instance
astrophysical contexts [1] or quark-gluon plasma dynamics
[4], or the transport properties of electronic pseudo-particles
in 2D or 3D solid-state systems [2,3]. From the algorithmic
point of view, we plan to work on further optimizations of the
method, by studying, for instance, the physics accuracy and
the computational efficiency of different stencil options.

We also plan to look at the low-velocity limit of our
algorithms, with the goal of fully bridging the gap between
relativistic and nonrelativistic LBMs. Work along these lines
is in progress.
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APPENDIX A: SECOND-ORDER RELATIVISTIC
ORTHONORMAL POLYNOMIALS

This and the following appendices provide several mathe-
matical details relevant in our calculations. As mathematical
complexity quickly becomes very large, many very complex
expressions are available as Supplemental Material [18].
In this section, we provide the analytic expressions of the
orthonormal polynomials, up to the second order, as a function
of p̄μ = pμ/TR .

J (0) = 1,

J
(1)
0 = 1

A

[
p̄0 − m̄K2(m̄)

K1(m̄)

]
,

J (1)
x = 1

B
p̄x,

J (1)
y = 1

B
p̄y,

J (1)
z = 1

B
p̄z,

J
(2)
00 = 1√

3 C

{
p̄2

0 + p̄0

[
3

− m̄K1(m̄)
K2(m̄) + m̄K2(m̄)

K1(m̄) − 3
− 3

]

+ 3K1(m̄)[m̄K1(m̄) + 3K2(m̄)]

m̄K1(m̄)2 + 3K2(m̄)K1(m̄) − m̄K2(m̄)2
− m̄2 − 3

}
,

J
(2)
0x = 1

D
p̄x

[
p̄0 − m̄K3(m̄)

K2(m̄)

]
,

J
(2)
0y = 1

D
p̄y

[
p̄0 − m̄K3(m̄)

K2(m̄)

]
,

J
(2)
0z = 1

D
p̄z

[
p̄0 − m̄K3(m̄)

K2(m̄)

]
,

J (2)
xx = 1

E

(
p̄2

y

2
− p̄2

z

2

)
,

J (2)
yy = 1

2
√

3E

(−2p̄2
x + p̄2

y + p̄2
z

)
,

J (2)
xz = 1

E
p̄xp̄z,

J (2)
yz = 1

E
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J (2)
xy = 1

E
p̄xp̄y,
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with:

A =
√

m̄

{
m̄ + K2(m̄)[3K1(m̄) − m̄K2(m̄)]

K1(m̄)2

}
,

B =
√

m̄K2(m̄)

K1(m̄)
,

C =
√

2m̄2 + 5m̄K2(m̄)

K1(m̄)
− 3K1(m̄)[m̄K1(m̄) + 3K2(m̄)]

m̄K1(m̄)2 + 3K2(m̄)K1(m̄) − m̄K2(m̄)2
+ 3,

D =
√

m̄2[m̄K2(m̄)2 + 5K3(m̄)K2(m̄) − m̄K3(m̄)2]

K1(m̄)K2(m̄)
,

E =
√

m̄2K3(m̄)

K1(m̄)
.

APPENDIX B: SECOND-ORDER ORTHOGONAL PROJECTIONS

In this appendix we will provide the analytic expressions of the orthogonal projections a(k), up to the second order, written as

a(k) = 1

TR

b(k), b(0) = 1

m̄
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(
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)
K2

(
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)
,

b
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APPENDIX C: STENCILS FOR THREE-DIMENSIONAL
LATTICES

TABLE I. Groups of velocity vectors used to generate three-
dimensional Cartesian lattices. For each group, we give the vectors
forming the set (FS stands for full-symmetric), the cardinality of the
group, and the length of the vectors belonging to the group.

Group Vectors No. of Vectors Length

1 (0,0,0)FS 1 0 (=0.)
2 (±1,0,0)FS 6 1 (=1.)
3 (±1,±1,0)FS 12

√
2 (=1.41421)

4 (±1,±1,±1)FS 8
√

3 (=1.73205)
5 (±2,0,0)FS 6 2 (=2.)
6 (±2,±1,0)FS 24

√
5 (=2.23607)

7 (±2,±2,0)FS 12 2
√

2 (=2.82843)
8 (±2,±1,±1)FS 24

√
6 (=2.44949)

9 (±2,±2,±1)FS 24 3 (=3.)
10 (±2,±2,±2)FS 8 2

√
3 (=3.4641)

11 (±3,0,0)FS 6 3 (=3.)
12 (±3,±1,0)FS 24

√
10 (=3.16228)

13 (±3,±2,0)FS 24
√

13 (=3.60555)
14 (±3,±3,0)FS 12 3

√
2 (=4.24264)

15 (±3,±1,±1)FS 24
√

11 (=3.31662)
16 (±3,±2,±1)FS 48

√
14 (=3.74166)

17 (±3,±2,±2)FS 24
√

19 (=4.3589)
18 (±3,±3,±1)FS 24

√
17 (=4.12311)

19 (±3,±3,±2)FS 24
√

22 (=4.69042)
20 (±3,±3,±3)FS 8 3

√
3 (=5.19615)

21 (±4,0,0)FS 6 4 (=4.)
22 (±4,±1,0)FS 24

√
17 (=4.12311)

23 (±4,±2,0)FS 24 2
√

5 (=4.47214)
24 (±4,±3,0)FS 24 5 (=5.)
25 (±4,±4,0)FS 12 4

√
2 (=5.65685)

26 (±4,±1,±1)FS 24 3
√

2 (=4.24264)
27 (±4,±2,±1)FS 48

√
21 (=4.58258)

28 (±4,±3,±1)FS 48
√

26 (=5.09902)
29 (±4,±4,±1)FS 24

√
33 (=5.74456)

30 (±4,±2,±2)FS 24 2
√

6 (=4.89898)
31 (±4,±3,±2)FS 48

√
29 (=5.38516)

32 (±4,±4,±2)FS 24 6 (=6.)
33 (±4,±3,±3)FS 24

√
34 (=5.83095)

34 (±4,±4,±3)FS 24
√

41 (=6.40312)
35 (±4,±4,±4)FS 8 4

√
3 (=6.9282)

36 (±5,0,0)FS 6 5 (=5.)
37 (±5,±1,0)FS 24

√
26 (=5.09902)

38 (±5,±2,0)FS 24
√

29 (=5.38516)
39 (±5,±3,0)FS 24

√
34 (=5.83095)

TABLE I. (Continued).

Group Vectors No. of Vectors Length

40 (±5,±4,0)FS 24
√

41 (=6.40312)
41 (±5,±5,0)FS 12 5

√
2 (=7.07107)

42 (±5,±1,±1)FS 24 3
√

3 (=5.19615)
43 (±5,±2,±1)FS 48

√
30 (=5.47723)

44 (±5,±3,±1)FS 48
√

35 (=5.91608)
45 (±5,±4,±1)FS 48

√
42 (=6.48074)

46 (±5,±5,±1)FS 24
√

51 (=7.14143)
47 (±5,±2,±2)FS 24

√
33 (=5.74456)

48 (±5,±3,±2)FS 48
√

38 (=6.16441)
49 (±5,±4,±2)FS 48 3

√
5 (=6.7082)

50 (±5,±5,±2)FS 24 3
√

6 (=7.34847)
51 (±5,±3,±3)FS 24

√
43 (=6.55744)

52 (±5,±4,±3)FS 48 5
√

2 (=7.07107)
53 (±5,±5,±3)FS 24

√
59 (=7.68115)

54 (±5,±4,±4)FS 24
√

57 (=7.54983)
55 (±5,±5,±4)FS 24

√
66 (=8.12404)

56 (±5,±5,±5)FS 8 5
√

3 (=8.66025)
57 (±6,0,0)FS 6 6 (=6.)
58 (±6,±1,0)FS 24

√
37 (=6.08276)

59 (±6,±2,0)FS 24 2
√

10 (=6.32456)
60 (±6,±3,0)FS 24 3

√
5 (=6.7082)

61 (±6,±4,0)FS 24 2
√

13 (=7.2111)
62 (±6,±5,0)FS 24

√
61 (=7.81025)

63 (±6,±6,0)FS 12 6
√

2 (=8.48528)
64 (±6,±1,±1)FS 24

√
38 (=6.16441)

65 (±6,±2,±1)FS 48
√

41 (=6.40312)
66 (±6,±3,±1)FS 48

√
46 (=6.78233)

67 (±6,±4,±1)FS 48
√

53 (=7.28011)
68 (±6,±5,±1)FS 48

√
62 (=7.87401)

69 (±6,±6,±1)FS 24
√

73 (=8.544)
70 (±6,±2,±2)FS 24 2

√
11 (=6.63325)

71 (±6,±3,±2)FS 48 7 (=7.)
72 (±6,±4,±2)FS 48 2

√
14 (=7.48331)

73 (±6,±5,±2)FS 48
√

65 (=8.06226)
74 (±6,±6,±2)FS 24 2

√
19 (=8.7178)

75 (±6,±3,±3)FS 24 3
√

6 (=7.34847)
76 (±6,±4,±3)FS 48

√
61 (=7.81025)

77 (±6,±5,±3)FS 48
√

70 (=8.3666)
78 (±6,±6,±3)FS 24 9 (=9.)
79 (±6,±4,±4)FS 24 2

√
17 (=8.24621)

80 (±6,±5,±4)FS 48
√

77 (=8.77496)
81 (±6,±6,±4)FS 24 2

√
22 (=9.38083)

82 (±6,±5,±5)FS 24
√

86 (=9.27362)
83 (±6,±6,±5)FS 24

√
97 (=9.84886)

84 (±6,±6,±6)FS 8 6
√

3 (=10.3923)
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