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Grain coarsening in two-dimensional phase-field models with an orientation field
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In the literature, contradictory results have been published regarding the form of the limiting (long-time)
grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-
two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple
dynamical density functional theory) indicate a log-normal distribution, other works including theoretical studies
based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF)
and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown
that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that
seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of
OF models [R. Kobayashi, J. A. Warren, and W. C. Carter, Physica D 140, 141 (2000); H. Henry, J. Mellenthin,
and M. Plapp, Phys. Rev. B 86, 054117 (2012)] that an insufficient resolution of the small angle grain boundaries
leads to a log-normal distribution close to those seen in the experiments and the molecular scale PFC simulations.
Our paper indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process,
and raises the possibility that the differences among the LGSD results from different sources may originate from
differences in the detection of small angle grain boundaries.
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I. INTRODUCTION

The majority of the solid matter we use appears in a
polycrystalline form (including technical alloys, concrete,
polymers, minerals, drugs, sugar, salt, cholesterol, peptides,
etc.); i.e., they are composed of a large number of small
crystallites. The properties of such materials depend on the
size, composition, and shape distributions of the crystal-
lites they consist of. This also appears to be the case for
polycrystalline thin metal films, where the properties of the
grain size distribution may, e.g., influence the quality of
metallization of semiconductors in electronics industry (by
influencing the current-carrying capability via the resistance to
electromigration [1,2]). The distributions that characterize the
polycrystalline structure can be influenced by the conditions of
preparation (e.g., solidification, electrodeposition, or sputter-
ing) and subsequent processing, including heat treatments. As
a result, the understanding of the grain coarsening process
and the ability to predict the associated properties of the
polycrystalline matter are of high technological importance,
and have been the subject of intensive experimental and
theoretical research.

Grain coarsening is mostly due to the motion of grain
boundaries and triple junctions in a way that leads to the
reduction of the excess free energy associated with the grain
boundary network. While this process is fairly simple, the
complexity of the geometry makes it difficult to predict the
limiting grain size distribution (LGSD). Theory, experiments,
and simulations agree that there exists a (time invariant)
limiting grain size distribution, which evolves in a self-similar
way, and the time dependence of the average grain size can
be expressed as 〈R〉 = ktn, where n is the growth exponent
[1,3]. Despite long-standing efforts, no convincing theoretical

derivation of the LGSD has been proposed yet. Moreover, other
phenomena such as grain rotation, elasticity, and anisotropy
may affect the LGSD, adding to the difficulty of the task.

Herein, we concentrate on grain coarsening in two-
dimensional (2D) systems. The present results are expected to
be relevant to 2D multigrain structures, including thin metallic
or ceramic films, colloidal aggregates, and plasma crystals. In
the following paragraphs we briefly review the 2D results from
experiment, theory, and simulation. This is a huge area indeed,
and we can only summarize the main results here. Although
the relevant process has been studied for some time, this brief
review will show that the results are not without contradiction
and that no clear understanding of the discrepancies among
them has been reached yet.

A recent detailed experimental study that summarizes
results on 27 sputter deposited Al and Cu films [1] indicates a
log-normal LGSD with σ = 0.5 and μ = −0.12 (Fig. 1), and
n ≈ 1/2 for the growth exponent. The log-normal distribution,

p(x) = 1

xσ
√

2π
exp

{
− [ln(x) − μ]2

2σ 2

}
, (1)

where x is the linear size of the grains evaluated from their area,
was found to be fairly robust. It remains an accurate description
under a broad range of experimental conditions, including
purity of the sputtering target, type of substrate, film thickness,
temperature of deposition, actual and homologous annealing
temperatures, the time of annealing, the grain size, and the
twin density within the grains [1]. This result is in agreement
with some previous experimental results on thin films [4,5],
while other works indicate deviations from the log-normal
distribution [6]. It is also worth noting that significantly smaller
n values have also been reported in other works [7,8]. The
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FIG. 1. The limiting grain size distributions theoretically pre-
dicted for two dimensions. Hillert’s distribution (dashed line) is free
from adjustable parameters. Parameters of the other distributions
were fitted to experimental results shown in Fig. A1 of Barmak
et al. [1]. Solid line, log-normal distribution (σ = 0.5,μ = −0.12
[1]); dotted line, Rayleigh distribution (proposed by Louat) with
fitted parameters α = 1.030 and β = 2; dash-dotted line, Weibull
distribution with fitted parameters α = 1.001 and β = 2.367. The
log-normal distribution gives a nearly exact representation of the
experimental data for Al and Cu films (see Fig. A1 of Ref. [1]). Here,
R is the equivalent radius computed from the grain area, whereas 〈R〉
is its arithmetic average over all grains.

main cause for grain coarsening is the excess free energy of
the grain boundary network, which relaxes via curvature driven
migration of the grain boundaries [9]. The velocity of the latter
is often sought in the form v = κM , where κ is the curvature
and M is the grain boundary mobility. It is expected that other
phenomena, such as grain rotation, elasticity, anisotropy, etc.,
may also contribute to the dynamics of grain coarsening [10].

There appears to be no consensus regarding the theoretical
form of LGSD in two dimensions: Kolmogorov [11] has shown
that starting from a single grain of known volume, repeated
crushing will lead to a log-normal distribution of particle
volumes. In Feltham’s early work [4] a log-normal distribution
was postulated. In a more sophisticated theoretical treatment,
that follows the route of Lifshitz and Slyozov [12] and Wagner
[13] used in addressing Ostwald ripening, Hillert [14] derived
the distribution function for two-dimensional isotropic growth
in multigrain structures:

p(x) = (2e)2 2x

(2 − x)4
exp

{
− 4

2 − x

}
. (2)

Regarding grain growth as a statistical phenomenon taking
place via the growth of faces, Louat [15] derived a Rayleigh
type grain size distribution. A statistical extension of Feltham’s
approach by Kurtz and Carpay, in turn, supports the log-normal
form [16]. The empirical Weibull distribution, corresponding
to

p(x) = β

α

(x

α

)(β−1)
exp
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−

(x

α

)β
}

(3)

and its special case the Rayleigh distribution (β = 2) were
also used to approximate the experimentally observed LGSDs
[17]. While the use of Weibull distribution is empirical in this
context, the Rayleigh distribution was derived by Louat [15].
Relying on the Neumann-Mullins growth law, in more recent
works Pande and Cooper [18,19] deduce a Fokker-Planck

equation for the grain size distribution, which yields a self-
similar asymptotic solution that can be reached from arbitrary
initial state. They propose an approximate analytical solution
for LGSD, that can be tuned by varying a single parameter
between the Rayleigh distribution (where all curvature effects
are neglected) and Hillert’s model (where the drift velocity
due to curvature is the only driving force) [19]. Seeking a
flexible empirical LGSD distribution, Rickman et al. quantify
the deviation from the log-normal distribution in terms of a
cumulant expansion tailored to the log-normal distribution
[20].

The models discussed above predict n = 1/2. A compari-
son of the predicted LGSDs with parameters taken from fitting
to recent experimental data of [1] is presented in Fig. 1. In
agreement with previous work [1,5,19], these distributions
appear to be less satisfactory than the log-normal form.

Computer simulations have also been used extensively
to investigate grain coarsening. The results appear again
somewhat contradictory. For example early results on Monte
Carlo simulations for the Q = 32 2D Potts model [21] indicate
a fair agreement with Hillert’s mean field model, yet a later
Q = 72 Potts study reports a substantially different LGSD
[22]. The other 2D models predict rather similar limiting grain
size distributions. This includes a grain boundary migration
based numerical approach by Moldovan et al. [10], three
different versions of the multi-phase-field theory (MPF1 [22],
MPF2 [23], MPF3 [24]), and two orientation field based
models: one by Kobayashi, Warren, and Carter (KWC) [25]
and another by Henry, Mellenthin, and Plapp (HMP) [26].
LGSDs for the OF models were reported in Ref. [27]. Another
approach that led to similar results employed a numerical
surface solver to relax the interface energy [28]. The predicted
distributions are fairly similar (with some scattering), although
different models and methods are compared. This finding
might originate from the fact that these models all tend to
reduce the free energy associated with the grain boundary
network. Apparently, LGSD from these 2D simulations fit rea-

FIG. 2. The limiting grain size distributions from computer
simulations in two dimensions. Diamonds: Potts model [22]. Circles,
triangles pointing downward, and squares: Multi-phase-field models
[22–24], respectively. Solid line: Experiment Fig. A1 from Ref. [1].
Upward pointing triangles: Surface solver [28]. Stars: Grain boundary
migration model by Moldovan et al. [10]. Full squares and circles:
Orientation field models from Refs. [25,26], respectively. Note the
similarity of the LGSDs from different types of simulations, implying
a Mullins-type [9] generic numerical solution (full diamonds, taken
from Ref. [1]).
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FIG. 3. The limiting grain size distributions from computer
simulations in two dimensions: solid line, experiment [1]; full
circles, phase-field crystal (PFC) simulation [29]; dashed line, grain
coarsening via pure rotation [10]. Note the excellent agreement
between the PFC predictions and the experiments.

sonably well to the Weibull type probability density. Although
the investigated 2D simulations are consistent with each other
(Fig. 2), and follow the behavior obtained using the model of
Mullins [9] in Ref. [1], yet they significantly differ from the
log-normal distribution representing recent experimental data
[1]. These findings are consistent with earlier results of Pande
and Cooper [18,19]. Interestingly, simulations performed
using a dramatically different process for coarsening, i.e.,
grain rotation, yield a log-normal distribution [10], yet much
different from experiments (see Fig. 3).

Remarkably, the only simulation results for LGSDs that
agree with the experiments are from the phase-field crystal
(PFC) model, an approach that works on the molecular scale
[29] (see Fig. 3). The PFC model developed by Elder et al.
[30] can be regarded as a simple dynamical density functional
theory that incorporates the crystal structure, anisotropies,
elasticity, and dislocations automatically (for a review on
PFC see Ref. [31]). As such, it contains a much richer
physics that the previous models, including automatically
elasticity, dislocation dynamics, grain rotation, molecular scale
description of grain boundaries, etc. A possibility is that this
richness of phenomena is responsible for the accurate LGSD it
predicts. Herein, we raise a different possibility, which might
explain at least partly the observed differences between LGSDs
from simulations and experiments.

We use the orientation field models HMP and KWC to
demonstrate that the limiting grain size distribution is critically
sensitive to details of the evaluation of the number of the
grains, especially to the resolution of the small angle grain
boundaries. Variation of the misorientation, below which a
grain boundary is not detected any more, yields a continuous
transition between the log-normal distribution that can be
observed for poorly resolved low angle grain boundaries (only
a fraction of them are found), and the general behavior from
2D simulations shown in Fig. 2, obtained when the low angle
grain boundaries are well resolved (the majority of them was
found). This finding raises the possibility that improving the
resolution of low angle grain boundaries in the experiments
(and maybe in PFC simulations) might yield LGSDs falling
closer to the results provided by the 2D simulations.

The present paper is structured as follows. In Sec. II,
we briefly recapitulate the essence of the orientation field

theories HMP and KWC, while Sec. III specifies the materials
properties and other conditions used in the simulations.
Section IV describes the details of the evaluation methods
employed for determining the LGSD, with a detailed analysis
of different factors that influence the limiting distribution, and
discusses the consequences. Finally, in Sec. V, we summarize
the main results and offer a few concluding remarks.

II. ORIENTATION FIELD MODELS

We employ here two phase-field models that describe
polycrystalline solidification and grain coarsening on equal
footing: the KWC and HMP models described in Refs. [25]
and [26], respectively. In these models the transition between
the liquid and crystalline phases is monitored by a structural
order parameter, the phase field φ(r,t), whereas the local
crystallographic orientation is specified by a scalar orientation
field θ (r,t), normalized so that θ ∈ [0,1], considering the
crystal symmetry. For k-fold symmetry, the orientation angle
ϑ can vary between zero and 2π/k. Owing to the k-fold
symmetry, ϑ angles outside this region are equivalent to a
specific orientation angle inside the [0,2π/k] regime. (Then
θ = ϑ/(2π/k) ∈ [0,1] describes all orientations.) Being an
angular variable θ = 0 and 1 are equivalent, and the magnitude
of the orientation field difference is limited: |
θ | � 1

2 . This
should be considered, e.g., when evaluating the differential
operators acting on the orientation field. For the sake of
simplicity, isotropic systems will be considered, yet the grain
boundary energy depends naturally on the misorientation in
these models, as will be displayed in Fig. 4(a) below.

A. Free energy functional

The free energy of the respective system is a functional
of the fields φ(r,t) and θ (r,t), which can be written in the
following form for both orientation field approaches we use
here:

F =
∫

dr
{

ε2T

2
(∇φ)2 + WTg(φ)

+ fbulk(φ) + fori(φ,∇θ )

}
, (4)

where the model parameters ε2 and W are expressible in terms
of the free energy and thickness of the equilibrium solid-liquid
interface, and T is the temperature. fbulk switches between
the free energy densities of the bulk solid and liquid phases
according to the interpolating function p(φ) as follows:

fbulk(φ) = p(φ)fs(T ) + [1 − p(φ)]fl(T ), (5)

p(φ) = φ3(10 − 15φ + 6φ2), (6)

where the free energy densities of the bulk solid and liquid
phases, fs(T ) and fl(T ), respectively, can be taken from
thermodynamic databases.

The two orientation field based models we use differ in
the form of the orientational contribution to the free energy,
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FIG. 4. Properties of the grain boundaries predicted by the
orientation field models (the heavy lines are for the HMP model,
whereas the thin lines are for the KWC): (a) grain boundary energy
vs misorientation; (b) interface thickness vs misorientation (solid
lines, phase field; dotted lines, orientation field; dφ denotes the half
width of the depression, whereas dθ stands for the 10–90% interface
thickness); (c) and (d) cross-interfacial phase and orientation field
profiles at 
θ = 0.1 and 0.5, respectively. x is a dimensionless length.

fori(φ,∇θ ):

f KWC
ori (φ,∇θ ) = r(φ)T {H1|∇θ | + H2(∇θ )2}, (7)

f HMP
ori (φ,∇θ ) = q(φ)T H (∇θ )2, (8)

where r(φ) = φ4 and q(φ) = 7φ3−6φ4

(1−φ)3 . These functions differ
slightly from the original formulations [32]. Parameters H ,
H1, and H2 tune the strength of the respective gradient terms,
and scale the grain boundary energy.

B. Equations of motion

The time evolution of the system is assumed to follow
standard variational dynamics of nonconserved fields:

∂φ

∂t
= −Mφ

δF

δφ
+ ζφ, (9)

∂θ

∂t
= −Mθ

δF

δθ
+ ζθ , (10)

where Mφ(= const) and Mθ are the respective mobili-
ties, Mθ = Mθ,S + (Mθ,L + Mθ,S)p(φ), whereas ζφ and ζθ

are noise terms that represent the fluctuations of the re-
spective fields. Their correlators are 〈ζi(r,t),ζi(r′,t ′)〉 =
ωij 2kT Mij δ(r − r′)δ(t − t ′), where ωij is the noise strength
coefficient for the ith field in the j th phase (i = φ,θ and
j = L,S). For further details of equations of motion (EOMs)
and their dimensionless forms see Appendix A.

We found that in the orientation field models topological
defects appear that resemble the disclinations observed in
2D atomistic models using the hexatic order parameter [33],
which may influence the motion of grain boundaries and
trijunctions. This phenomenon has already been detected by
Warren and coworkers [25]. The properties of these defects
and possible ways to remove them via a complex orientation
field, a three-component orientation field, and other means
will be addressed elsewhere [34]. Herein, we use ωφ,S,L = 0,

ωθ,S = 0, and ωθ,L = 0.1, to remove the pinning effect of these
topological defects in the orientation field.

C. Numerics

The dimensionless forms of Eqs. (9) and (10) were solved
numerically on rectangular grids of different sizes, using finite
difference discretization combined with explicit forward Euler
time stepping, while prescribing periodic boundary conditions.
Parallel codes were developed for a CPU cluster and GPU
cards. The computations were performed on GPU cards of
various types.

III. MATERIALS PROPERTIES AND OTHER CONDITIONS

In the simulations, we used the physical properties of
pure Ni. The volumetric free energy difference between the
liquid and the solid was estimated using Turnbull’s linear
approximation: 
f = 
Hf (Tf − T )/Tf [35], where 
Hf =
2.61 × 109 J/m3 and Tf = 1728 K are the volumetric heat of
fusion and the melting point, respectively. The thickness of
the equilibrium solid-liquid interface was taken as d = 2 nm,
which is of the order of magnitude of results from molecular
dynamics simulations [36]. The free energy of the solid-liquid
interface, γSL = 0.364 J/m2, was taken from the compilation
[37], whereas a molar volume Vm = 6.59 × 10−6 m3/mol
was employed. Isothermal computations were performed at
T = 974 K. The diffusion coefficient and the characteristic
length applied in making the EOMs dimensionless (see
Appendix A) were DL = 10−9 m2/s and ξ = 40 nm, re-
spectively. If not stated otherwise, the dimensionless spatial
and time steps were chosen as 
x̃ = 3.125 × 10−3 and 
t̃ =
1.4844 × 10−8, which ensured the numerical stability of the
solution. The dimensionless phase-field mobility was taken as
M̃HMP

φ = M̃KWC
φ = 0.9.

A. Synchronizing the HMP and KWC models

Herein, we synchronize the HMP and KWC models so that
they display similar properties (grain boundary energy and
time scale for grain rotation) under the same circumstances;
i.e., they can be viewed as models describing polycrystalline
solidification or grain coarsening in the same matter.

To match the properties of the solid-solid interface, we
have first chosen the dimensionless parameters (see the
Appendices) α2 = 1.0, M̃HMP

θ,S = 28.8, and M̃HMP
θ,L = 92.68,

and then varied the parameters of the KWC model until
similar grain boundary energies, interface profiles, and time
scales were obtained. This is realized by the following set of
dimensionless parameters: α1 = 10.64, α2 = 30.0, M̃KWC

θ,S =
7.2 × 10−4, and M̃KWC

θ,L = 1080. These data ensure that in the

053303-4



GRAIN COARSENING IN TWO-DIMENSIONAL PHASE- . . . PHYSICAL REVIEW E 95, 053303 (2017)

FIG. 5. Phase-field minimum at the grain boundary vs misorien-
tation for the HMP (heavy dashed line) and KWC (light continuous
line) models.

bulk crystal (φ = 1) the orientation mobility is negligible in
both cases.

The respective grain boundary energies and interfacial
profiles are shown in Fig. 4. The two models provide indeed
fairly coherent predictions. One of the important features
is the depression of the phase field at the grain boundary,
which indicates that the crystalline order is disturbed within
the grain boundary. For high misorientations the phase field
may get as low as φ ∼ 0.3 here, but may reach φ = 0 at the
melting point that implies the presence of a highly disordered
structure at the grain boundary, a behavior similar to the
one observed in molecular dynamics simulations [38]. The
relationships between the depth of the phase-field depression
and the misorientation are shown for the two models in Fig. 5.

Next, we compare grain growth in the models. With the
present choice of mobilities, the growth rates of the two models
are of comparable magnitude (see Fig. 6). The simulation
data were fitted by the formula 〈R〉 = A(t − t0)n, where t0
is the hypothetical starting point of growth corresponding to
〈R〉 = 0. The fitting was performed so that only data beyond
the end of an apparent initial transient period (8 × 105 and
106 time steps for the HMP and KWC models, respectively)
were considered. This procedure yielded growth exponents
comparable to those from other models (HMP, n = 0.45 ±
0.01; KWC, n = 0.51 ± 0.01).

FIG. 6. Grain growths predicted by the two models are compared.
With the present choice of parameters the growth rates of the HMP
and KWC models are of comparable magnitude.

B. Evaluation of LGSD

In determining the LGSD, we used typically eight 40962

simulations performed with different initializations of the
random number generator. We used one of the following
methods to generate the initial grain size distribution:

(i) We added noise to the equation of motion of the phase
field to initiate nucleation and growth.

(ii) We placed randomly oriented particles of 30-pixel
radius randomly in the simulation box and let them grow.

(iii) We also explored the case when the randomly oriented
particles were placed on a square grid. The respective
simulations yielded similar LGSDs, indicating that the long
time behavior is not sensitive to the initial conditions.

Unless stated otherwise, the grains were identified by the
watershed algorithm of MATLAB [39]. The watershed algorithm
finds “catchment basins” and “watershed ridge lines” in an
image by treating it as a surface, where light pixels represent
high elevations and dark pixels represent low elevations. It has
been applied to evaluate the grain size distribution from the
(1 − φ) maps. In this case, the catchment basins correspond
to the grains and the watershed ridge lines are the grain
boundaries.

We have found that even merging eight 40962 simulations
(that contained initially ∼17 200 randomly oriented grains)
the grain size histograms show some visible scattering that
makes difficult the comparison of LGSDs not very far from
each other. It was, however, detected that at late stages of
the evolution of the grain boundary network (in which we
are interested anyway), fitting an appropriate analytic formula
to the histograms (log normal or Weibull), the results are
essentially indistinguishable (i.e., they match to several states
of the grain boundary network with a similar accuracy). In
the case of such states of the system, it makes sense to
merge the reduced distributions, to reduce the scattering of
the histograms. One needs to be careful, however, since this
is possible only at the end of the relaxation process, where
the limiting size distribution is established. We have employed
this technique for the evaluation of all LGSDs shown. For the
details see Appendix B.

We have also evaluated the probability distribution of the
misorientations along the grain boundaries identified by the
watershed algorithm. For the details see Appendix C.

IV. RESULTS AND DISCUSSION

The aim of the present investigation is to clarify whether
differences in the accuracy of the evaluations can significantly
influence the results for the LGSD. This was motivated by the
fact that seemingly small changes in our evaluation procedures
for the LGSD could yield significantly different distributions
starting from the same raw data. Here, we pinpoint the reasons
for this behavior and show that it is generic for orientation-
field models. More precisely, the shape of the LGSD critically
depends on the detection of small angle grain boundaries.
Beyond the models treated here, this observation raises several
questions that will be discussed below.

A. Methods for distinguishing the grains

There are different possibilities to evaluate the grain size
distribution from the phase and orientation fields. Since
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the orientation field varies continuously across the grain
boundaries and thus the same orientations may occur in a
grain and at grain boundaries elsewhere, the recognition of
grains is more complicated from the orientation field. Thus, in
a previous work [27], we have opted for the identification
of the grains via the depression of the phase field at the
grain boundary, and used the watershed algorithm to locate
them, yielding the red curves in Fig. 2. Herein we introduce a
different approach that is also based on the phase-field map,
yet relies on a threshold value in recognizing where the grain
boundaries lie, allowing thus for a continuous tuning of the
fraction of small angle grain boundaries considered in the
evaluation.

B. Tunable approach to distinguish grains

As demonstrated by Figs. 4 and 5, the depth and width of
the phase-field depression at the grain boundary depend on the
misorientation. As a result, recognition of the small angle grain
boundaries becomes more difficult, as they become less visible
for 
θ → 0. The evaluation procedure is illustrated in Fig. 7.
Figures 7(a) and 7(b) show the original orientation field and
phase-field distributions. Here, we use a discretized grayscale
representation of the phase field that has 256 shades. We use
the watershed algorithm of MATLAB [39] to determine the grain
boundary network. This discretization of the gray hue removes
a minor (∼10−4) scattering of the phase field in the vicinity of
the grain boundaries that originate from the fluctuations of the
orientation field in the liquid phase. (This scattering would
otherwise produce very small grain sizes, when applying
the watershed algorithm.) This procedure results in well
discernible grain boundaries even in the case of small angle
grain boundaries, where the phase-field depression is small
[see Fig. 7(b)]. One expects that in the experiments recognition
of small angle grain boundaries is more difficult. A similar
situation occurs here, as the phase-field depression varies with
misorientation. In order to understand how the LGSD depends
on the recognition of the small angle grain boundaries, we
have processed the grayscale image further by converting it to
black and white using a threshold value for phase field, φth. If
φ � φth the actual pixel is considered as belonging to a grain
boundary, and is painted black, and the rest is colored white.
Increasing φth, an increasing number of pixels are recognized
as belonging to grain boundaries, and an increasing fraction
of the shallower depressions representing the small angle
grain boundaries are detected [see Figs. 7(c)–7(f)]. Evidently,
with increasing φth an increasing fraction of the simulation
box becomes black. The theoretical upper limit to detect any
difference using this method is φth > 1 − 1/256. Once the
grain boundary network was computed, the grains are defined
as simply connected white areas (i.e., pixels of the white area
can all be visited from its other pixels without crossing a
grain boundary, obtained by the watershed algorithm). The
grains identified so are then divided into size categories,
and presented in the form of histograms approximating the
respective probability density distribution.

1. Varying the threshold

As one may expect on the basis of Fig. 5, the LGSD
depends on the choice of the threshold φth. The LGSDs

FIG. 7. Finding the grains on the basis of the phase-field depres-
sion at the grain boundaries in the HMP model (only a small fraction
of a large simulation is shown). Original (a) orientation and (b) the
grayscale version of the phase field. (c)–(f) Black and white maps
obtained by applying thresholds φth = 0.79,0.89,0.98, and 0.99. If
φ � φth the pixel is painted black, and the rest is colored white.
Note that recognition of the small angle grain boundaries happens to
different degrees in these images. Accordingly, the respective grain
counts and the corresponding size distributions differ.

obtained using the threshold values applied in Figs. 7(c)–7(f)
are compared with each other and the experimental distribution
in Fig. 8. We have also evaluated the probability distribution
of the misorientations at the grain boundaries (see Fig. 9). A
comparison of the distributions corresponding to φth = 0.79
and 0.99 clearly indicate that the major difference between the
respective misorientation distributions is indeed a lack of small
angle misorientations in the former case. It appears that with
increasing φth, we see a transition from a distribution falling
close to the experimental log-normal distribution towards the
generic Mullins-type LGSD the majority of the 2D simulations
predict (cf. LGSD colored blue and red in Fig. 2). The
distributions obtained using φth = 0.99 are in fact very close
to those obtained from the grayscale image of the phase-field
map using the watershed algorithm (see Fig. 10), implying
that with this threshold the majority of the low angle grain
boundaries was found.

These results indicate that the LGSD is critically sensitive to
the resolution of the small angle grain boundaries, and raise the
possibility that this sensitivity may at least partly be responsi-
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FIG. 8. Limiting grain size distributions for the evaluations of the
HMP simulation shown in Figs. 7(c), 7(d), and 7(f), obtained using
the following threshold values: (a) φth = 0.79, (b) 0.89, and (c) 0.99.
Note the similarity between the experimental distribution and the
one obtained with the lowest value of the threshold φth. Comparable
results were obtained with the KWC model.

ble for the deviation between the results of the (fairly coherent)
2D simulations shown in Fig. 2 and other methods that lead to
different LGSDs. We note in this respect that, with the excep-
tion of approaches based on the OF concept, the simulations
shown in Fig. 2 are immune to such errors; e.g., the multi-
phase-field models use an individual phase field for each ori-
entation, so in these models grains can always be distinguished.

2. Discrete orientations

The MPF simulations are performed usually with a rel-
atively large but finite number of discrete orientations (in
early studies about 30 equidistant orientations were regarded
as a satisfactory approximation in two dimensions [40];
however, recently ∼100 orientations are considered more
appropriate [23]). We have tried a similar approach in the
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FIG. 9. Comparison of the histograms characterizing misorien-
tation distributions for thresholds φth = 0.79 (blue) and φth = 0.99
(orange) in the case of the HMP simulation at 4 × 106 time steps.
In constructing the histograms 25 equal size misorientation ranges
were used. Note the reduced amount of small misorientations in the
distribution obtained with φth = 0.79.

orientation field models: we started simulations with initial
grains of 30 equidistant orientations of equal probability. Apart
from the effect of establishing a continuous transition at the
grain boundaries, the initial orientations remained dominant
during the process of grain coarsening. This results in grain
boundaries with misorientations that are integer multiples of
the minimal misorientation 
θmin = 1/30. Accordingly, when
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FIG. 10. Limiting grain size distributions for (a) the HMP and
(b) KWC simulations. Note the closeness of the results evaluated
using φth = 0.99 and those evaluated from the grayscale image of the
phase-field map using the watershed algorithm. It is also remarkable
that with the low threshold φth = 0.79 log-normal type distributions
close to the experimental one were obtained.
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FIG. 11. Limiting grain size distributions for KWC simulations
with 30 equidistant orientations, obtained using the threshold values:
φth = 0.79 0.85, 0.86, and 0.99. Note that the transition between
the log-normal and the Mullins type distributions happens abruptly
between φth = 0.85 and 0.86. Comparable results were obtained with
the HMP model.

varying φth, the change of the LGSD happens stepwise between
φth = 0.85 and 0.86 for the KWC model (see Fig. 11), and
between φth = 0.81 and 0.82 in the case of the HMP model.
This stepwise behavior is also visible, when plotting the
number of detected grains as a function of the misorientation

θ that corresponds to the threshold φth used in the evaluation
process (Fig. 12). For grain orientations varying continuously,
the number of grains also varies continuously, whereas for
equidistant discrete orientations the number of grains varies
stepwise. The respective misorientation distributions reflect
these [see Fig. 13(a)]. Furthermore, in the case of the
lower threshold (φth = 0.85), the first peak and part of the
second are missing from the misorientation distribution, which
explains the abrupt change of the LGSD, and shows again the
importance of the amount of small angle grain boundaries in
shaping the LGSD [see Fig. 13(b)].

FIG. 12. The number of grains detected as a function of the
misorientation threshold in the KWC simulations. Results obtained
with continuous (triangles) and discrete (circles) initial orientations
of the seeds are shown. Note that in the discrete case the jumps
correspond to multiples of the minimum misorientation 
θmin =
1/30 defined by the initial set of orientations.

3. A few additional remarks

It is worth mentioning that although in the OF models
the grain boundary energy is misorientation dependent, still
it does not depend on the inclination of the interface, whereas
the dependence on inclination is evidently present in the
experiments and the PFC simulations. Also, all the simula-
tions considered herein are strictly two dimensional. Yet, in
principle, it cannot be excluded that as the real experiments are
quasi-two-dimensional (the thickness is not fully negligible),
they have to be modeled as thin but three-dimensional cases,
when addressing the LGSD. Such studies are, however, out of
the scope of the present paper.

We note furthermore that the present results may have
implications regarding the controversy between the log-normal
LGSD from experiment and PFC simulations, and the distribu-
tion that appears to be a generic (Mullins-type) solution from
other 2D simulations.

(a) It might be possible that the population of the small
angle grain boundaries is indeed lower in the experiments
and the PFC model than in the simulations shown in Fig. 2.
If so, evaluation of the misorientation distribution may be a
useful tool for a more complete characterization of the grain
coarsening process.

(b) Another theoretical possibility is that the resolution of
the small angle grain boundaries is less satisfactory in the cases
of experiments and PFC simulations.

While the TEM experiments (the results of which are
shown as reference in Figs. 1–3) are expected to resolve all
grain boundaries no matter what the misorientation is [41],
other methods may be less successful in detecting the small
angle grain boundaries. Concerning the PFC simulations, our
experience in analyzing polycrystalline patterns in terms of
the complex hexatic order parameter seems to indicate that
the evaluation of the numbers of grains may be subject to
uncertainties especially when the small angle grain boundaries
are defined by only a few dislocations [42]. Work is underway
to clarify these issues further.

Finally, we wish to stress the point that grain coarsening is a
complex process, which depends on several factors. Our paper
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FIG. 13. Histograms showing the distribution of the misorienta-
tions in the KWC simulations at 2 × 106 time steps. (a) Histogram
obtained for φth = 0.86 using 90 bins that shows the discrete nature
of the orientations. (b) Comparison of histograms obtained for
thresholds φth = 0.85 and 0.86, corresponding to positions slightly
below and above the jump at 
θ = 1/30 in Fig. 12. (Here 15 bins
were used in constructing the histogram.) Note the lack of small angle
misorientations in the case of the lower threshold.

shows that minor changes in the detection of low angle grain
boundaries can lead to completely different LGSDs, which
may hide the effect of other factors. Although our paper is
limited to the OF models, it indicates that extreme care needs
to be taken to ensure the accuracy of the grain size distribution.

V. SUMMARY

Using orientation field based phase-field models we have
investigated how the detection of small angle grain boundaries
influences the limiting grain size distribution, towards which
the grain boundary network relaxes at long times. We make
the following concluding remarks:

(i) It appears that the 2D computer simulations relying on
the orientation field based phase-field models predict LGSDs
that are consistent with LGSDs from the Q = 72 state Potts
model, Mullins model, three versions of the multi-phase-field
theory, and results from a numerical surface solver. These
distributions, however, differ significantly from the log-normal
LGSD emerging from the experiments and the 2D phase-field
crystal model.

(ii) In the orientation field models we have observed that
the LGSD is critically sensitive to the detection of the small

angle grain boundaries: We introduced an evaluation method
in which the variation of a threshold changed the fraction of
small angle grain boundaries detected. It has been shown then
that, considering an increasing fraction of the small angle grain
boundaries, the LGSD varies from a log-normal distribution
falling close to those emerging from the experiments and the
phase-field-crystal model, to a Mullins type LGSD the other
2D computer simulations predict. The respective changes in
the amount of small angle grain boundaries are clearly seen
in the misorientation distribution along the grain boundary
network.

(iii) Further work is needed to clarify whether in the experi-
ments and phase-field-crystal simulation the population of the
small angle grain boundaries is indeed smaller than in other
computer simulations, or perhaps other effects are responsible
for the observed deviations in the respective LGSDs.
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APPENDIX A: DIMENSIONLESS FORM OF THE
ORIENTATION FIELD MODELS

1. Kobayashi-Warren-Carter-model

a. The free energy functional

F =
∫

dr
{

ε2T

2
(∇φ)2 + WTg(φ) + [1 − p(φ)]
f +

+ φ4[H1T |∇θ | + H2T (∇θ )2]

}
, (A1)

where

ε2 = 6
√

2γSLδ

Tm

, W = 6
√

2γSL

δTm

, 
f = 
Hf

Vm

(
1 − T

Tm

)
,

H1 = α1
4γSL

Tm

,H2 = α2
8γSLδ

Tm

.

b. EOM for the phase field

φ̇ = Mφ{ε2T (∇2φ) − WTg′(φ) + p′(φ)
f

− 4φ3[H1T |∇θ | + H2T (∇θ )2]}. (A2)

Measuring the length and time in units ξ and τ = ξ 2/DL,
respectively, one obtains the following dimensionless equation
of motion:

˙̃φ = M̃φ{∇̃2φ − W̃g′(φ) + 
̃f p′(φ)

− 4φ3[H̃1|∇̃θ | + H̃2(∇̃θ )2]}, (A3)
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where

M̃φ = Mφε2T

DL

,

W̃ = Wξ 2

ε2
= 6

√
2γSL

δTm

ξ 2 Tm

6
√

2γSLδ
= ξ 2

δ2
,


̃f = 
f ξ 2

ε2T
= 
Hf

Vm

(
1 − T

Tm

)
ξ 2

ε2T
,

H̃1 = H1ξ

ε2
= α1

4γSL

Tm

ξTm

6
√

2γSLδ
= α1

√
2

3

ξ

δ
,

H̃2 = H2

ε2
= α2

8γSLδ

Tm

Tm

6
√

2γSLδ
= α2

2
√

2

3
.

c. EOM for the orientation field

θ̇ = Mθ∇
{
φ4

[
H1T

∇θ

|∇θ | + 2H2T (∇θ )

]}
(A4)

or in dimensionless form

˜̇θ = M̃θ ∇̃
{
φ4

[ ∇̃θ

|∇̃θ | + 2H̃ θ
2 ∇̃θ

]}
, (A5)

where M̃KWC
θ = MθξH1T/DL and H̃ θ

2 = H̃2

H̃1
= α2

α1

2δ
ξ

.

2. The Henry-Mellenthin-Plapp model

a. Free energy functional

F =
∫

dr
{

ε2T

2
(∇φ)2 + WTg(φ) − p(φ)
f +

+ q(φ)HT (∇θ )2

}
, (A6)

where H = α2
8γSLδ

Tm
, whereas ε2, W , and 
f are the same as

for the KWC model.

b. EOM for the phase field

φ̇ = Mφ{ε2T (∇2φ) − WTg′(φ) + p′(φ)
f −
− q ′(φ)HT (∇θ )2}, (A7)

yielding the following dimensionless equation of motion:

˜̇φ = M̃φ{∇̃2φ − W̃g′(φ) + 
̃f p′(φ) − q ′(φ)H̃ (∇̃θ )2},
(A8)

where H̃ = H
ε2 = α2

8γSLδ

Tm

Tm

6
√

2γSLδ
= α2

2
√

2
3 .

c. EOM for the orientation field

θ̇ = Mθ∇{HT q(φ)(∇θ )}, (A9)

FIG. 14. Raw distributions obtained for φth = 0.79 at times t1 =
2 × 106
t and 4 × 106
t for the HMP and KWC models.

and in dimensionless form

˜̇θ = M̃θ ∇̃{q(φ)(∇̃θ )}, (A10)

while M̃HMP
θ = MθHT/DL.

APPENDIX B: REDUCING THE SCATTERING OF LGSD

Under the conditions used herein, practically steady state
distribution was achieved at dimensionless time of about
t̃1 = 2 × 106
t̃ for both the HMP and KWC models. The
data representing the state of the system were saved after

FIG. 15. Reduced grain size distributions (symbols) and the fitted
log-normal distributions (lines) evaluated at t1 (solid line) and t2
(dashed line) from (a) the HMP and (b) the KWC simulations using
the threshold φth = 0.79 in determining the grain size distribution.
For the respective 〈R〉 data see the text.
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FIG. 16. The LGSDs obtained by merging 21 reduced distribu-
tions evaluated at equidistant instances from t1 and t2 while using a
threshold of φth = 0.79. Note that the orientation field models HMP
(filled circles) and KWC (open squares) yield rather similar LGSDs.

every 105 time steps until reaching dimensionless time of
t̃2 = 4 × 106
t̃ . The raw distributions corresponding to t̃1 and
t̃2 are shown in Fig. 14. In this period the average size varied
from 〈R〉/
x = 61.0 to 100.7 for HMP and from 〈R〉/
x =
57.1 to 96.0 for KWC. The reduced distributions and the
respective fitted (log-normal) distributions are presented in
Figs. 15(a) and 15(b) for the HMP and KWC models.
The difference of the distributions fitted at the two limiting
cases is characterized by the total variational difference
δT = 1

2

∫ ∞
0 |pt1 (x) − pt2 (x)|dx, yielding δT = 0.020 for HMP

and 0.011 for KWC, respectively. The LGSDs obtained by
merging the respective 21 reduced distributions are reasonably
smooth (see Fig. 16), and enable the detection of small
differences between LGSDs that would be hardly perceptible
otherwise due to statistical scattering. Here φth = 0.79 was
used. Somewhat larger differences were observed in the case
of Weibull fits to the data from the watershed algorithm
(δT = 0.020 for HMP and 0.031 for KWC), as there the
applied Weibull functions approximate the distributions less
accurately.

FIG. 17. Watershed map corresponding to the phase-field map
shown in Fig. 7(b). The watershed ridges are white, whereas the
catchment basins are colored randomly. Note the extra grain detected
relative to Fig. 7(f), which is hardly visible in the grayscale image.

APPENDIX C: EVALUATION OF THE MISORIENTATION
DISTRIBUTION

In order to characterize the grain boundary network, we have
evaluated the distribution of the misorientations weighted
with the number of pixels occurring in the watershed map
(Fig. 17). Pixels assigned to the catchment basins found by
the watershed method were associated with the orientations
of the respective areas. The number of the pixels in the
watershed ridge lines were used to represent the frequency
of the local misorientation. A histogram was made of the
latter, an approximation of the probability density distribution
of misorientations along the grain boundary network. The
misorientation distribution defined so converges towards a
limiting distribution at about the same time as the LGSD.
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