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Macroscopically constrained Wang-Landau method for systems with multiple order parameters
and its application to drawing complex phase diagrams
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A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed
to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks
a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk
processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of
the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of
fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a
simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly
calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states
to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a
model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The
fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
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I. INTRODUCTION

Classical spin models have found wide application to a
vast array of problems in many branches of physics and
other sciences. This is due to the relative simplicity of such
models and the fact that the different spin states can be given
many interpretations besides that of magnetic spins, including
different kinds of atoms or molecules (“lattice-gas models”),
opinions, biological species in an ecosystem, etc. A few
examples of these diverse applications are magnetic materials
[1], high-energy physics [2], astrophysics [3], electrochemistry
[4], polymer science [5], network reliability problems [6],
and economics [7]. The archetypal member of this class of
models is the S = 1/2 ferromagnetic Ising model of binary
spin variables placed at the sites of a lattice or a more
general network and interacting via a simple Hamiltonian.
Since its introduction for a one-dimensional system almost
a century ago [8], this model has been joined by many
antiferromagnetic or ferromagnetic generalizations to higher
spatial dimensions, multiple local states, and/or multidimen-
sional order-parameter spaces, such as the S = 1 or three-state
Blume-Capel [9,10] and Blume-Emery-Griffiths models [11].
Although the order parameter for the S = 1/2 square-lattice
Ising model in zero field has been obtained exactly [12,13],
solution of this class of models under general conditions,
including in nonzero field, is known to be NP hard [14]. As
a consequence, much effort has been applied to developing
accurate approximate and numerical solutions, including
mean-field approximations [15–17], series expansions [18],
numerical transfer-matrix calculations [19], and a variety of
Monte Carlo (MC) methods [20]. Although many ingenious
algorithms have been introduced, development of improved
numerical methods to study equilibrium and nonequilibrium
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aspects of classical spin systems remains an active research
area.

In this paper we present a generalization of the Wang-
Landau (WL) MC method for calculating densities of states
(DOS) [21,22] to systems with multiple order parameters.
Development of the method was inspired by applications to a
class of molecular crystals known as spin-crossover materials
[23], some of which can have competing antiferromagneticlike
short-range and ferromagneticlike long-range interactions. A
discrete-spin model of such a system was recently studied for
a few values of two fieldlike model parameters (an effective
external field and the strength of the long-range interaction) by
a computationally intensive Metropolis importance-sampling
MC method [24]. In order to obtain results for a wide
range of model parameters with a manageable computational
effort, a simulation method is needed that can produce
three-dimensional DOS, g(E,M,Ms), where E is the total
system energy, M can be interpreted as a total system
magnetization, and Ms as a staggered magnetization [25]. The
method can also in principle deal with higher-dimensional
order-parameter spaces. The original time-consuming WL
random-walk simulation in multiple-dimensional phase space
is broken down into many stages. In each stage, many
independent WL simulations perform one-dimensional walks,
each with different constrained macroscopic parameters. For
the lattice model we consider in this paper, exact combinatorial
calculations can be applied to simplify the process, so that only
one stage of simulation in E is required. As the simulations are
run independently, no special skills in parallel programming
are required. From the one-dimensional random-walk WL
simulations in E, performed separately over a grid in the order-
parameter space at one single set of model parameters, the
method can produce DOS for any value of model parameters
and temperatures, using a simple transformation of the total
system energy. This contrasts with both importance-sampling
and the original WL MC methods, in which separate simula-
tions must be performed for each set of model parameters of
interest. From the resulting multidimensional DOS, properties
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such as phase diagrams, free-energy landscapes, and joint
and marginal order-parameter distributions can be simply
obtained.

Another advantage of this method is the ability to use
symmetries in the order-parameter space to reduce the number
of simulations needed. (For instance, in the case of the spin-
crossover model, such symmetry considerations lead to an
additional eightfold reduction in the computational work.) For
concreteness, the details of the method will be demonstrated
here in the context of the model spin-crossover material of
Ref. [24]. Further results for several sets of model parameters
of experimental interest will be described in forthcoming
papers [26,27].

The remainder of this paper is organized as follows.
In Sec. II we introduce the model spin-crossover material
Hamiltonian that inspired the method, and which we will
use to illustrate the application of our algorithm. In Sec. III
we first summarize the relevant basics of the WL algorithm,
and then we discuss several ways of finding the joint DOS,
g(E,M), previously introduced in the literature, pointing
out their weaknesses when applied to the situation studied
here. In Sec. IV we discuss the macroscopically constrained
WL algorithm in detail. Some calculations and symmetry
considerations are discussed in Appendices A and B, and
the detailed implementation of the method is described in
Appendix C. In Sec. V we give numerical results for the
model spin-crossover material, and we demonstrate how to
use g(E,M,Ms) to draw and investigate its phase diagram. A
discussion of methods to extend the system size is given in
Sec. VI, and conclusions and a brief discussion of future work
are given in Sec. VII.

II. TWO-DIMENSIONAL ISING MODEL WITH
ANTIFERROMAGNETIC SHORT-RANGE AND

FERROMAGNETIC LONG-RANGE INTERACTIONS (2D
ISING-ASFL MODEL)

To demonstrate the details and performance of the proposed
method, and for its comparison with other methods, we will use
a pseudospin model of a spin-crossover material with short-
range antiferromagneticlike and long-range ferromagneticlike
interactions, which was previously introduced and studied by
Metropolis importance-sampling MC in Refs. [24,28]. It is
defined by the Hamiltonian

H = J
∑
〈i,j〉

sisj − A

2N
M2 − HM. (1)

The local variables are si = ±1, and M = ∑
i si is the

corresponding global “magnetization.” The explicit sum runs
over all nearest-neighbor pairs on an N = L × L square lattice
with periodic boundary conditions, and J > 0 makes the local
interactions antiferromagnetic. The second term models long-
range, mean-field-like ferromagnetic interactions of strength
A � 0. In the third term, H is the applied field (actually an
effective field in the spin-crossover model [24,29–31]), which
breaks the symmetry between positive and negative M . A and
H are the model’s two fieldlike parameters. Throughout this
paper, we will use the notation E to represent the total energy
obtained through this Hamiltonian, including the contributions

from the terms proportional to A and H . E, A, and H will be
given in units of J , and temperatures in units of J/kB with kB

being Boltzmann’s constant.
While this Hamiltonian includes only the ferromagnetic

order parameter M , we note that both linear and nonlinear
terms (in this case M2) are included. Linear and/or nonlinear
terms in the staggered magnetization Ms (see below) could
also be added as needed to model other particular systems.
However, the form given here is sufficient to demonstrate and
validate the algorithm.

III. BASIC WANG-LANDAU AND CURRENT METHODS
TO FIND JOINT DENSITIES OF STATES

In this section, we review some relevant basics of the WL
method, followed by some current methods to obtain joint
DOS, and we explain why these methods are not appropriate to
obtain g(E,M,Ms) for the system defined by the Hamiltonian
(1). These are mostly WL based methods.

A. Basic Wang-Landau Monte Carlo method

The WL method is a restricted random-walk method for
finding the DOS of a system. Its idea is based on the
observation that if one imposes an acceptance probability
for proposed energy transitions in the random walk which
is proportional to the reciprocal of the DOS, then the
system will spend roughly equal times in all different energy
states. If a histogram H (E) is used to record the number
of times that the walker visits each energy state, a “flat”
histogram will eventually be generated. The whole random
walk process is divided into many sweeps. In each sweep,
the estimated DOS is multiplied by a modification factor,
f > 1. The sweep is finished when a flat histogram is obtained.
Then, the next sweep starts with a smaller value of f . The
whole process ends when ln f < 10−8. To speed up the
simulation, a wide energy spectrum may be divided into
separate energy windows, with separate simulations performed
in each window. The partitioned windows may be uniform
[21,22] or nonuniform [32]. As errors are generated near the
window boundaries [22,33] whenever proposed moves outside
the window are rejected, neighboring energy windows should
overlap by a certain fraction, and the estimated g(E) obtained
in neighboring windows should be joined at the point where
their slopes with respect to E are closest, so that a smooth
g(E) over the whole energy spectrum can be obtained. In
complex systems with rugged energy landscapes, states that
lie in the same energy window may sometimes be connected
only by paths that go via a different window. Therefore, the
replica exchange Wang-Landau (REWL) scheme [34–36] was
proposed to ensure that all microstates are visited. The scheme
allows two walkers that both have energies within the overlap
region of adjacent windows to exchange their microstates
with a certain probability, so that ergodicity is preserved.
REWL is performed in parallel [37]. Errors and convergence
of WL have also been studied [38–43]. It was found that the
statistical errors in ln g(E) are proportional to

√
ln f [38], and

the fluctuations in the histogram are proportional to 1/
√

ln f

[39]. The accuracy of g(E) may be increased by using the
1/t algorithm [40,41,44]. A mathematical generalization of
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the WL algorithm is the stochastic approximation Monte
Carlo (SAMC) algorithm [45,46], which has also involved the
concept used in the 1/t algorithm. Recently, Junghans et al.
have demonstrated that WL, statistical temperature molecular
dynamics, and metadynamics are equivalent under consistent
initial conditions and update rules [47].

B. Wang-Landau with multidimensional random walk
in phase space

The basic WL method for finding the joint DOS of a system,
g(E,V1), is to perform a two-dimensional random walk in the
(E,V1) space [22,48–51]. However, this approach is quite slow.
To speed up the simulation, the system could be divided into
multiple energy windows, with each window containing all
the compatible V1, using replica exchange to ensure that all
the microstates are accessible in each energy window [51].
However, if the joint DOS contains one more variable, like
the g(E,M,Ms) we want to obtain here, the simulation will
again become slow. Here we performed several crude tests on
the antiferromagnetic Ising model with different system sizes
using this method.

We first adopt a strict “flatness” criterion similar to the
original WL papers [21,22], which considers a histogram flat
if for every state, the deviation in the histogram H (E,M,Ms)
is less than 20% from the average histogram. Using parallel
programming with the energy spectrum divided into five
energy windows, with each window assigned five random
walkers and one core, a 6 × 6 Ising system takes 23 min
to finish the simulation, while an 8 × 8 Ising system takes
972 min (∼16 h). This approach obviously does not scale well
with system size.

A relaxed flatness criterion [52] considers a histogram flat
if the root-mean-square of the deviation from the average
histogram is less then 20%, i.e.,√∑

E,M,Ms
|H (E,M,Ms) − Haverage|2

NE,M,Ms

< 20%, (2)

where NE,M,Ms
is the number of accessible (E,M,Ms) in

the window. Using this criterion significantly improves the
convergence times, but it does not improve the scaling behavior
of this approach (see Table I). A very rough estimate for
the time it would take for a 32 × 32 system to finish is
20 000 s × 510 ∼ 6000 yr.

C. Two-stage method

Another method to obtain a joint DOS breaks the simulation
into two stages of random walk [53–55]. In the first stage, a
normal WL process is carried out and g(E) is obtained. Then, a
second stage of random walk is performed with an acceptance
probability of 1/g(E), but only H (E,M,Ms) is updated, i.e.,
g(E) remains unchanged. The joint DOS is then obtained from

g(E,M,Ms) = H (E,M,Ms)∑
M,Ms

H (E,M,Ms)
g(E). (3)

We partition the first-stage WL process into five energy win-
dows with replica exchange. Each window has five walkers,
and a separate core is assigned to each window. The strict
flatness criterion requiring that every state (E,M,Ms) does

TABLE I. Crude tests for the computational time to obtain
g(E,M,Ms), using WL with multidimensional random walk in
phase space, with energy spectrum partitioned into windows plus
replica exchange [51]. Parallel programming was performed with
each window assigned one core and five walkers. The histogram is
considered flat if all the walkers satisfy the root-mean-square flatness
criterion [52] [Eq. (2)]. The time recorded includes the time for
initializing the systems. The asterisks mark the cases in which too
many windows were used for a small system. In general, changing the
system size from L to L + 2 causes the simulation time to increase
by a factor of 6 to 10.

L × L 3 windows 5 windows 7 windows

6 × 6 38 s 33 s *56 s
8 × 8 636 s 430 s *1128 s
10 × 10 6572 s 4541 s 2720 s
12 × 12 52 728 s 29 312 s 22 052 s

not deviate more than 20% from the average histogram is
adopted [21,22]. In the second stage of random walk, each
core is assigned a random walker in a random initial state,
which can walk through the whole phase space. We set the
number of time steps spent on stage 2 to be ten times that
spent on stage 1. This method is much faster than the previous
method: an 8 × 8 system can be finished in a few seconds, and
even 12 × 12 can be finished in 170 s if the walkers do not get
stuck [37,56,57].

However, this apparently reasonable approach does not
yield the correct DOS for the two-dimensional Ising-ASFL
model. The joint DOS g(M,Ms) should be independent of H

and A. Figures 1(b)–1(d) show that the results obtained by this
method change significantly when H and A change, and all
of them are quite different from the result obtained by exact
combinatorial calculation in (a).

The reason for the differences can be explained as follows.
Consider applying the two-stage method to get the DOS in
terms of only two macroscopic variables, (E,V1). In the second
stage of the process, suppose a walker is trying to move from
a phase point (E,Va) to a point (E,Vb), and then to a point
(E,Vc). As these three points have the same energy, the moves
will have the same acceptance probabilities, 1/g(E). In this
sense, these moves will be similar to an unbiased random walk
confined to an energy E, and with the histogram corresponding
to V1 being recorded. Thus, if the change in g(E,V1) along V1

for a given value of E is not too large, the method should
give good results. However, if g(E,V1) changes significantly
when V1 changes, the method may not give correct statistics.
Unbiased sampling works for extremely small systems where
the differences in g(E) are small, but the WL method is
required if the differences are significant.

The method can in principle be improved by doing a
separate WL simulation for each energy E to find the
statistics corresponding to V1, if ergodicity is not broken. This
observation leads to the basic principle of our macroscopically
constrained WL method. To preserve ergodicity and obtain
g(E,M,Ms) for our system, we can simplify the process to
just perform simulations in the energy space for fixed M and
Ms . We discuss the method in detail in the following sections.
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FIG. 1. The two-dimensional joint DOS, g(M,Ms), for L = 12,
obtained by (a) exact combinatorial calculation as described in
Appendix A, and by the two-stage method, using different values of H

and A, (b) (H,A) = (0,0), (c) (H,A) = (3,0), and (d) (H,A) = (0,7).
The g(M,Ms) should be independent of H and A. The deviations from
(a) of the results shown in (b)–(d) imply that the two-stage method
does not give correct results for the Ising-ASFL model, even for this
small system size.

D. Other methods

A different WL method to obtain g(E,M) was proposed by
Zhou et al. [58]. A kernel function is applied when one tries
to update the histogram. The method appears to save time, but
it is quite complicated and tuning of kernel functions seems to
be required for different systems.

Very recently, Zablotskiy et al. [59] used the stochastic
approximation MC method to obtain the joint DOS, g(V2,V1),
of a polymer model, and then used it to deduce the g(E) of the
system. The way they obtain g(V2,V1) is similar to the method
in Sec. III B but including the 1/t algorithm, and only small
ln g(V1,V2) were considered.

Two papers have recently been published that use methods
similar to, but less general than the one presented here.
Lourenço and Dickman [60] obtained the two-dimensional
joint DOS for the square-lattice Ising antiferromagnet g(E,M)
at a single phase point, using the tomographic entropic
sampling method [61,62]. The method employs many random
walkers, each starting in a different energy state, and their
results are combined to get g(E,M). From this, they obtained
the critical line and canonical averages of the order parameter
Ms . However, as pointed out in [61], the tomographic entropic
sampling method cannot give correct results when the system
size is large. In a study motivated by a network reliability
problem, Ren, Eubank, and Nath presented a method to
obtain the joint DOS for the square-lattice Ising ferromagnet,
g(E,M), using parallel WL simulations at fixed M [6]. While
conceptually similar to the method we present here, we note
that they do not discuss generalizations to higher-dimensional

order-parameter spaces. Moreover, we will here discuss several
methods to simplify the computational process.

IV. MACROSCOPICALLY CONSTRAINED
WANG-LANDAU

A. Basic idea

Suppose one wants to obtain the joint DOS for a system
with K macroscopic variables, g(VK, . . . ,V2,V1). Instead of
letting the random walker travel in a K-dimensional phase
space (VK, . . . ,V2, V1), which would require a very long
time to obtain a flat histogram, the simulation can be broken
into many simulations performed in smaller phase spaces as
follows. First, obtain g(V1) through normal WL simulation
or direct calculation. Then, break the large phase space into
smaller phase spaces, each with a different fixed value of V1.
For each value of V1, a separate WL simulation is performed to
obtain the DOS with respect to only one macroscopic variable
V2, denoted as g(V2|V1). Next, each phase space is broken
into smaller phase spaces, each with a different fixed value of
(V2,V1). Again, separate simulations for different fixed values
of (V2,V1) are performed to obtain DOS with respect to only
one macroscopic variable V3, denoted as g(V3|V2,V1). Iterating
the process, the joint DOS with K variables, g(VK, . . . ,V2,V1),
can be obtained as

g(V2,V1) = g(V2|V1)∑
V2

g(V2|V1)
g(V1), (4)

g(V3,V2,V1) = g(V3|V2,V1)∑
V3

g(V3|V2,V1)
g(V2,V1), (5)

...

g(VK, . . . ,V1) = g(VK |VK−1, . . . ,V1)∑
VK

g(VK |VK−1, . . . ,V1)
g(VK−1, . . . ,V1).

(6)

In general, the macroscopic variables should be arranged such
that the more fundamental building blocks of g(VK, . . . ,V1),
like g(V1), g(V2,V1), and g(V3,V2,V1), can be obtained in
the most accurate manner. Therefore, if the joint DOS for
two macroscopic variables can be obtained directly by exact
calculation, they should be chosen as V1 and V2, so that the
joint DOS g(VK, . . . ,V1) involves an exact factor, g(V2,V1).
However, when partitioning the simulations into different
stages, one must be careful that in each stage, a simple method
can be found to let the walker walk through the whole confined
phase space, such that ergodicity is not broken.

Each time the walker performs a WL process with only
one free macroscopic variable, the constrained DOS, e.g.,
g(V4|V3,V2,V1), can be partitioned into different windows of
V4, and then joined together smoothly through choosing the
contact point with the most similar slopes with respect to V4

as in REWL [34,35].
Breaking down the single WL processes into many inde-

pendent processes like this works fast and is more accurate
compared to the methods discussed in Sec. III. Furthermore,
the algorithm itself is very suitable for parallelization on many
independent processors.
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B. g(E,M,Ms) for the Ising-ASFL model

To obtain the joint DOS, g(E,M,Ms), for the Ising-ASFL
model, we choose V1 = Ms , V2 = M , and V3 = E. This is
convenient because we can calculate g(M,Ms) exactly through
direct combinatorial calculation as shown in Appendix A.
Therefore, we can directly arrive at Eq. (5) and write

g(E,M,Ms) = g(E|M,Ms)∑
E g(E|M,Ms)

g(M,Ms). (7)

Separate independent WL simulations will be performed for
different fixed values of (M,Ms), each obtaining a DOS in
terms of one macroscopic variable (E), g(E|M,Ms).

Any square lattice can be simply broken down into two
sublattices, A and B. Every alternate site belongs to the same
sublattice. The magnetization (M) and the staggered magne-
tization (Ms) can be written in terms of the magnetizations of
these two sublattices, MA and MB , as

M = MA + MB, (8)

Ms = MA − MB. (9)

Exchanging spins (Kawasaki dynamics) independently on
each sublattice will preserve MA and MB , and thus also
preserves the values of M and Ms . Moreover, it will allow
the walker to walk through all the possible configurations and
energies corresponding to each (M,Ms), and thus preserve
ergodicity. This is the method used here to perform the random
walk in microstates.

C. Advantages of obtaining g(E,M,Ms)

If we want to know the DOS g(E) under different
conditions, say for different external magnetic fields H , and
different long-range interaction strengths A, using the simple
WL method or importance sampling MC, we would have to
perform separate runs every time these conditions are changed.
However, if we can obtain g(E,M,Ms), we only have to do WL
for a single set of H and A. For simplicity we choose zero field
and zero long-range interaction, i.e., H = A = 0. The results
for other parameter values can be obtained by simply shifting
the result obtained for H = A = 0. This happens because all
the microstates are equally shifted in energy when a fieldlike
model parameter changes, as the field is coupled to a global
property, such as M , according to Eq. (1). Therefore, we can
shift the DOS result from H = A = 0 to the DOS for arbitrary
H and A through the transformation

g(E,M,Ms) → g

(
E − HM − AM2

2N
,M,Ms

)
. (10)

This shifting approach saves a very large amount of work.

D. Simplification through symmetry considerations

Through the use of the shifting approach described in
Sec. IV C, we only have to consider H = A = 0. This en-
ables further simplification through symmetry considerations.
Consider a spin configuration (microstate) that belongs to the
macrostate (M,Ms) lying in region 0 of Fig. 2. For H = A = 0,
if we flip all the spins on sublattice A, E and MA of the
system will be reversed. From Eqs. (8) and (9), M and Ms

of this new microstate are related to the original MA and MB

FIG. 2. Uniform sampling of (M,Ms) pairs is performed in region
0. Some data points are illustrated as black crosses in the figure. After
the sampling in region 0 is finished, symmetries are used to obtain
data for all the other seven regions.

through

M = −MA + MB, (11)

Ms = −MA − MB. (12)

Therefore, we have

g(E,M,Ms) = g(−E,−MA + MB,−MA − MB). (13)

This means that if we have obtained g(E,M,Ms) at one
sampling point (M,Ms) in region 0, we can directly obtain
g(E,M,Ms) at another point in region 1. There are seven
similar symmetry considerations, which correspond to regions
1–7 in Fig. 2. It is important to note that g(E,M,Ms) must
not be double counted along the four symmetry axes in Fig. 2
when combining the results. These symmetry considerations
reduce the computational work by roughly a factor of 8. In
Appendix B, we show explicitly how to map from region 0 to
the other seven regions.

E. Simplification through uniform sampling

In region 0 of Fig. 2, after we have chosen a data point at
(M,Ms) = (0,0), the next possible pairs are (0,2) and (2,0),
i.e., the smallest increment is Mconst = 2. For a big system,
the number of possible (M,Ms) pairs is very large. To get
the DOS for every pair of (M,Ms) would require a huge
amount of computational resources. Therefore, data points
in the (M,Ms) space are chosen with a constant increment
Mconst. Here, choosing Mconst = 32 gives good results for a
system size of L = 32. Proper values for Mconst for different
system sizes will be further discussed in Sec. VI A.

F. Simulations in practice

With the simplifications introduced in the previous sections,
WL processes can be carried out for separate (M,Ms). Here, we
just list a few points adopted in our simulations. The detailed
implementation is described in Appendix C.

First, every (M,Ms) pair has a different accessible range of
energies, and it is known that the extreme energy states have
spins aligned close to either a strip or a droplet shape [63]
(Fig. 3). We first estimate the extreme energies and then decide
how many energy windows shall be used for each (M,Ms) pair.
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FIG. 3. Energy states that are close to the extreme energy states.
The spins are aligned close to either a strip or a droplet shape [63].

Second, starting from the extreme energy states, artificial
spin exchange processes are carried out in the initialization
stage, so that we can find more accessible energy states at the
beginning of the simulation.

Third, the root-mean-square flatness criterion [52] is used,
such that a histogram is regarded as flat according to the root-
mean-square deviation criterion,√∑

E |H (E) − Haverage|2
NE

< 20%, (14)

where NE is the number of accessible energy levels in that
energy window, and the summation runs over these energy
levels. This relaxation of the flatness criterion can make
simulations finish much earlier, as already demonstrated in
Sec. III B.

Fourth, the small statistical fluctuations in the DOS found
at H = A = 0 may be magnified near a critical point, causing
difficulties in locating it accurately. Here we reduce the
statistical fluctuations by obtaining ten different g(E,M,Ms)
through independent simulations, and taking the ensemble
average.

G. Simulation time

For L = 32, which is the largest system size we have
considered, we have kept around 125 energy levels in edge
windows and around 200 energy levels in nonedge windows.
Most nonedge windows can finish simulations in a few
minutes, but the edge windows, which contain energy levels
with low density of states, may take 20 min to more than one
hour to finish. Therefore, most pairs of (M,Ms) considered
can finish the simulation within a few minutes to a few hours.
However, some edge windows may get “stuck” at energy levels
with low DOS [37,56,57] and do not converge after several
days, especially when the sampling points include Ms = 0.
Therefore, we reject a simulation that does not finish in two
days and restart the run. Some sampling points may have to be
rejected and restarted several times. With around two hundred
computing cores, all the simulations for the L = 32 system
(including data for ten different ensembles) could be finished
within one week, with most of the time devoted to these stuck
sampling points. If one intends to take the ensemble average
of ten different g(E) as we do here, one may submit more than
ten identical jobs for the sampling points with Ms = 0 at the

FIG. 4. ln g(E,M,Ms) vs E/4, M/2, and Ms/2 for (a) (H,A) =
(0,0), and (b) (H,A) = (3,7), both using L = 6 for improved
visibility. The results for larger systems are similar. g(E,M,Ms) at
(H,A) = (3,7) is obtained by shifting the g(E,M,Ms) at H = A = 0
through Eq. (10). The color of the data points shows the relative
magnitude of the natural logarithm of the DOS, ranging from red
(smallest) to magenta (largest). Only results for Ms � 0 are shown as
there is reflection symmetry about the Ms = 0 plane.

beginning, and reject all the runs for the remaining jobs after
ten of them have finished. This can make the simulation finish
earlier. The stuck problem is further discussed in Sec. VI B.

V. APPLICATION OF g(E,M,Ms)

A. Density of states for arbitrary H and A

Figure 4(a) shows the joint DOS g(E,M,Ms) for H = A =
0 obtained from our simulation for the Ising-ASFL model
(Sec. II). By shifting the energy as stated in Sec. IV C, we
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FIG. 5. ln g(E,M) vs E/4 and M/2 for (a) (H,A) = (0,0), and
(c) (H,A) = (3,7). ln g(E,Ms) vs E/4 and Ms/2 for (b) (H,A) =
(0,0), and (d) (H,A) = (3,7). All using L = 12. All the data are
obtained by summing over the contribution of different directions in
g(E,M,Ms). g(E,M,Ms) at (H,A) = (3,7) is obtained by shifting
the g(E,M,Ms) at H = A = 0 through Eq. (10), i.e., all data are
obtained from g(E,M,Ms) at H = A = 0.

obtain g(E,M,Ms) for (H,A) = (3,7) as shown in Fig. 4(b).
Figure 5 shows that by summing over one component of
g(E,M,Ms), we can obtain g(E,M) and g(E,Ms), which give
very smooth results. Indeed, g(E,M,Ms), g(E,M), g(E,Ms),
and g(E) for arbitrary H and A can be obtained in this
way.

B. Drawing phase diagrams

We introduce the normalized magnetization and staggered
magnetization as m = M/L2 and ms = Ms/L

2 respectively,
which are the order parameters of our system. After obtaining
g(E,M,Ms) at H = A = 0 through the simulations, we can
use Eq. (10) to get g(E,M,Ms) at arbitrary points in the phase
diagram and calculate different quantities as follows.

We can define the constrained partition function of any
macrostate (m,ms) as

Zm,ms
=

∑
E

g(E,m,ms)e
−E/T . (15)

The overall partition function of the system is then

Zall =
∑
m,ms

Zm,ms
. (16)

The joint probability of finding the system in a macrostate
(m,ms) is

P (m,ms)�m�ms = Zm,ms

Zall
, (17)

where �m, �ms are the step sizes, both chosen to be
the same value, Mconst/L

2. The free energy of macrostate

FIG. 6. Critical line for an antiferromagnetic Ising system. The
blue critical line is obtained by increasing H from 0 in steps of 0.01
or 0.02, then performing a temperature (T ) scan, choosing �T to be
0.001 to 0.005, and locating the critical line by choosing the point
that gives the cumulant value [Eq. (21) with p = ms] closest to 0.61
[68]. Data points on the negative H side are obtained by reflection.
The analytically approximated critical line (red), obtained by the
method of Ref. [69], is also plotted. The two results coincide at this
resolution. The inset shows the free-energy contour diagram at the
critical temperature for H = 0 [refer to Eq. (18)].

(m,ms) is

F (m,ms) = −T ln Zm,ms
. (18)

As (mA,mB) has a one-to-one relation with (m,ms), we may
express these quantities in terms of (mA,mB), as well. The inset
in Fig. 6 shows a free-energy contour diagram F (mA,mB) close
to the critical temperature for H = A = 0.

We can sum over the contributions of the joint probability
[Eq. (17)] in one direction, obtaining the marginal probability
density as

P (m)�m =
∑

ms
Zm,ms

Zall
, (19)

P (ms)�ms =
∑

m Zm,ms

Zall
. (20)

With these distributions, we can calculate the expectation
values of the order parameters and other quantities. In a
complicated phase diagram that involves metastable phase
regions, the stable phase will be the phase that has the larger
total area in the marginal probability density, rather than the
phase that shows the higher peak.

To locate and classify the critical points or lines be-
tween ordered and disordered phases in phase diagrams, the
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fourth-order Binder cumulant is often used [20,31,64–67],

up = 1 − 〈(p − 〈p〉)4〉
3〈(p − 〈p〉)2〉2

, (21)

where p is the order parameter of the system. As an illustration,
we consider A = 0 in the Ising-ASFL model, which is just a
purely antiferromagnetic Ising model. It is commonly accepted
that this critical line is in the Ising universality class, which
(assuming isotropy and periodic boundary conditions) has a
cumulant value near 0.61 [68]. Therefore, using Eqs. (20) and
(21) with p = ms , we locate the critical line by finding the
phase point with cumulant closest to 0.61. The results are
shown in Fig. 6, using L = 32. The critical line obtained with
our method is smooth, and the excellent agreement with the Wu
and Wu analytic approximation [69] and the simulation results
of Lourenço and Dickman [60] indicate that our procedure of
restarting stuck simulation runs (see Secs. IV G and VI B) does
not lead to significant numerical inaccuracies.

Another common boundary line that separates different
phases in the phase diagram is a first-order phase transition
(coexistence) line. We locate it by looking at the order-
parameter variance, which is proportional to the susceptibility
times the temperature,

var(p) = χpT = L2(〈p2〉 − 〈p〉2). (22)

This quantity has a local maximum value when evaluated at a
point on the coexistence line, which serves as an accurate tool
to determine this line. The line that becomes straight vertical
for low T in Fig. 7 is a coexistence line obtained by using
Eqs. (19) and (22), with p = m in the Ising-ASFL model with
A = 1.

FIG. 7. The low-temperature portion of the phase diagram for
A = 1, near where the critical line ends at a tricritical point, using
L = 32. Metastable phases appear, leading to the appearance of a
coexistence line flanked by spinodal lines. The critical line is located
by the cumulant method [Eq. (21)] in the same way as in Fig. 6 with
p = ms . The coexistence line is located by finding the maximum
susceptibility [Eq. (22)] with p = m when H is changed at constant
T . Spinodal lines are located by finding the value of H where the
free energy F (m) [Eq. (23)] changes from having two local minima
to only one local minimum. The positions of the lines at T = 0 agree
with exact ground-state calculations [24].
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1900
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FIG. 8. (a) Free energy F (m) [Eq. (23)] for A = 1 and T = 0.11,
when the system is in the metastable region with two local minima
at H = 3.689 (red dashed), at the spinodal point at H = 3.789
(black solid), and outside the metastable region at H = 3.889 (blue
dotted). (b) Three different phases are shown in this free-energy
diagram at (H,T ,A) = (2.267,0.033,8). The system is lying on
the coexistence line between the phases in the middle and on the
right-hand side. When locating the coexistence line through the
susceptibility [Eq. (22)], one has to remove all the contributions from
the metastable phase on the left-hand side of the black point.

The metastable phase regions in this phase diagram are
bounded by the spinodal lines. We can express the free energy
in terms of one order parameter as

F (m) = −T ln
∑
ms

Zm,ms
, (23)

F (ms) = −T ln
∑
m

Zm,ms
, (24)

and the spinodal lines can be located by finding the points
where the free energy changes from having two local minima
to one local minimum. Figure 7 illustrates two spinodal lines,
and Fig. 8(a) shows the shape of the free energy at constant T

when the system is at and near a spinodal line.
It may happen that a coexistence line or a critical line

between two different phases lies in the metastable regions of
other phases. In those cases, we have to remove contributions
from these nonrelevant phases. Figure 8(b) illustrates one
example.

C. Probability densities and free energies at
selected phase points

As we can shift g(E,M,Ms) to obtain different quantities
for any point in the phase diagram, we can analyze the free
energy and probability density at any selected phase point in
detail.

Figure 9 shows what happens when moving along the
temperature axis at H = 0 and crossing the critical line
in the antiferromagnetic Ising model, i.e., A = 0. At low
T , the joint probability density P (mA,mB) has peaks only in
the two antiferromagnetic (AFM) phases in the two opposite
corners of the (mA,mB) plane, ms = ±1. Then, the two peaks
connect weakly at the critical temperature. Above the critical
temperature, the two peaks join, corresponding to a disordered
phase. The free-energy contour diagram for the critical point
at H = 0 is shown as an inset in Fig. 6.

Similarly, Fig. 10 demonstrates what happens when H is
increased at constant, low T to cross the critical line. The
joint probability density P (mA,mB) changes from two AFM
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FIG. 9. (a)–(d) Joint probability density P (mA,mB ) [Eq. (17)
with a change of variables]; (e)–(h) corresponding free energy F (ms)
[Eq. (24)] when the system (L = 32) is moved from a low temperature
to a high temperature, crossing the critical line at H = 0. (a),(e)
T = 2 < Tc, where system is in one of the AFM phases with equal
probability. (b),(f) T = 2.275 = Tc for this system size, where the two
peaks are connected by a “bridge” and the cumulant is approximately
equal to 0.61. (c),(g) T = 2.4 > Tc, where system is in the disordered
phase with large AFM fluctuations. (d),(h) T = 4 � Tc, where the
AFM fluctuations are much less pronounced. Note the different scales
in the free-energy plots (e), (f), (g), (h).
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FIG. 11. (a) Marginal probability density [Eq. (20)] PL(ms) vs
ms for L = 6 (green), 12 (red), and 32 (blue) at H = 0, and at their
corresponding critical temperatures as determined from the cumulant
value. (b) Shows the scaled plot, i.e., L−β/νPL(ms) vs Lβ/νms . The
excellent data collapse indicates that even these small systems are
fully in the asymptotic scaling regime, at least in this region of the
phase diagram. It also indicates that any errors that might be caused
by our procedure of restarting stuck simulation runs (see Secs. IV G
and VI B) are insignificant.

phase peaks when the system is inside the critical line, to
two peaks weakly connected at the critical line, and to a single
ferromagnetic peak when the system is outside the critical line.
The ferromagnetic peak moves toward the (m,ms) = (1,0)
corner and becomes more symmetric as H further increases.

VI. GENERALIZING THE SCHEME
TO BIGGER SYSTEMS

A. Scaling effect in choosing Mconst

If the system size is large, in regions where phase transitions
occur, the probability densities usually only show peaks in
a small region of the order-parameter space. Therefore, the
resolution Mconst must be small enough to observe these
peaks. From finite-size scaling theory, plotting L−β/νPL(ms)
vs Lβ/νms for different system sizes L will give curves that
coincide (Fig. 11). That means that if we can get a perfect
result with a small system size Ls , when we consider a bigger
system Lb, the increment has to be chosen such that Mconst,b �
Mconst,s × (Lb/Ls)2−β/ν , where β and ν are critical exponents.
For critical points that belong to the Ising universality class,
β/ν = 1/8, whereas for the mean-field class, β/ν = 1/2.

As the number of (M,Ms) pairs that must be sampled is
L4/M2

const, the minimum number of (M,Ms) pairs required for
a big system is proportional to (Lb/Ls)2β/ν . In this sense, as the
Ising-ASFL model contains mean-field critical points for large
values of A [24], when the system size is doubled, the number

FIG. 10. Joint probability density P (mA,mB ) [Eq. (17) with a change of variables] when the system (L = 32) is moved parallel to the H

axis at a low temperature, T = 0.06, and crosses the critical line. (a) H = 3.95 < Hc, where system is close to the critical line but still in the
AFM phases. (b) H = 3.96 = Hc for this system size and temperature, where the two peaks are connected by a bridge and the cumulant is
approximately equal to 0.61. (c) H = 3.97 > Hc, where system is in the FM+ phase. (d) H = 4 > Hc, where the FM+ phase peak is more
symmetric and closer to the corner at m = 1.
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of (M,Ms) pairs must also be doubled. If one is working with
a purely short-range ferromagnetic or antiferromagnetic Ising
model, all critical points will be in the Ising class, so that the
required number of (M,Ms) pairs one has to consider will be
nearly unchanged (×1.189) if L is doubled.

B. Other problems for large systems, flatness criteria, and
possible solutions

The occurrence of stuck simulation runs has also been ob-
served in other WL based algorithms [37,56,57], particularly
in phase regions of extreme energy and/or very low DOS. It is
thus not a specific consequence of the macroscopic constraints
in the present method.

In the work presented here, simulation runs for larger
systems sometimes get stuck, particularly at phase points with
Ms ≈ 0. These points indeed correspond to extreme energy
configurations arranged as perfect strips or droplets (Fig. 3).
These states, or states that have similar energies, are also very
rare and thus have a very low g(E|M,Ms). Many of them are
found in the initialization process, but they are very hard to
reach during the subsequent simulation run. For L = 32, this
problem can still be solved by rejecting and restarting the run
without causing significant sampling error. (See the numerical
results in Secs. V and VI A.) However, further increase in
system size to L = 64 causes more simulations to get stuck.

Using a “strict” flatness criterion as in [21,22], i.e., requiring
the histogram of every energy level to not deviate too much
from the average histogram, simulations may have great
difficulty finishing. Although the presence of these extreme
states is known through the initialization process, they are
very hard to reach in the random walk process, so that the
flat histogram may not be attainable. Significant improvement
is obtained by using the relaxed flatness criterion [52] as in
Eq. (14), by which the histogram is accepted as flat, even
though it deviates significantly from the average for these few
energy levels. Even without partitioning the energy spectrum
into windows, runs that cannot finish in several weeks with the
strict flatness criterion can finish in a few days with the relaxed
criterion.

However, this method also brings another problem. If a
few energy levels are very difficult to reach and are not
reached within the first few times a flat histogram is accepted,
then, if one of these states is reached later, it will have
ln g(E|M,Ms) = 0 while other states that previously were
visited can have ln g(E|M,Ms) of the order of 107. The
large difference between the two neighboring states causes
the walker to stay in this state to increase its ln g(E) until it
reaches the order of 107. However, every time a flat histogram
is obtained, the increment, ln f is reduced by a factor of 2,
so that in this run, the increment step size may have already
dropped to a very small value, like 10−6. Then it will take
a very long time to raise ln g(E|M,Ms) to the order of 107,
and the program will get stuck. As the difference between two
neighboring states [or slope of g(E|M,Ms) vs E] increases
with the system size, a simulation under these conditions may
easily get stuck for large L.

To generalize the method to larger systems, one promising
solution is dividing the edge windows into smaller windows
and applying REWL [34–36] in these windows, so that each

walker is confined to a smaller energy range. This forces it to
sample all these energy levels with low density of states, and
at the same time the replica can sample through all possible
states in the edge windows. Yet another way that may also
alleviate the problem is to let the walker occasionally jump to
a previous state stored in a configuration database [70].

VII. CONCLUSION

A macroscopically constrained WL method is proposed,
which may be useful in finding DOS with more than one vari-
able, and in obtaining complex phase diagrams. The method
converts a multidimensional random-walk process into many
one-dimensional random walks, with each walker constrained
to fixed values of certain macroscopic order parameters. The
method is demonstrated and validated on a two-dimensional
antiferromagnetic Ising model with ferromagnetic long-range
interaction. We obtained the joint DOS g(E,M,Ms), through
simulations at H = A = 0. The DOS for arbitrary values
of (H,A) then follow by a simple transformation of the
total system energy, and all the thermodynamic quantities
for any point in the phase diagram can then be found. We
demonstrate how to use the DOS obtained to efficiently draw
phase diagrams and free-energy landscapes for the Ising-ASFL
model.

The detailed physics of the Ising-ASFL (spin-crossover
material) model, including complex phase diagrams for several
values of A, will be described in forthcoming papers [26,27].
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APPENDIX: A

The exact combinatorial calculation of g(M,Ms) for the
Ising-AFSL model is described below.

Let NA be the number of sites on sublattice A that have spin
up, and NB be the number of sites on sublattice B that have spin
up. Then, the magnetization (M) and staggered magnetization
(Ms) in Eqs. (8) and (9) can be rewritten as

M = 2(NA + NB) − N, (A1)

Ms = 2(NA − NB). (A2)

As the joint DOS g(M,Ms) is defined as the total number
of spin configurations (microstates) that have certain (M,Ms)
values, g(M,Ms) can be visualized as the total number of
ways to allocate NA up spins on sublattice A and NB up spins
on sublattice B. This can be expressed as the product of two
binomial factors,

g(M,Ms) = C
N/2
NA

C
N/2
NB

(A3)

= (N/2)!

NA!(N/2 − NA)!

(N/2)!

NB!(N/2 − NB)!
, (A4)
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where N/2 = L × L/2 is the total number of sites on each
sublattice. The general binomial recursive formula,

Cn
k = Cn−1

k−1 + Cn−1
k , 1 � k � n − 1, (A5)

with boundary values

Cn
0 = Cn

n = 1 (A6)

is used to speed up the calculation. Overflow problems will
be present if the value of n! is too large, so Stirling’s
approximation is employed when ln g(M,Ms) is greater than
700:

ln n! ≈ n ln n − n. (A7)

APPENDIX: B

The symmetry considerations used to map the DOS from
region 0 to regions 1–7 in Fig. 2 are described below.

Region 1. MA → −MA and E → −E.
This is reflection about the MB axis, which means that, if

we change MA to −MA by flipping all the spins on sublattice
A, the energy changes from E to −E, and the new M and Ms

are related to the original MA and MB through

M → −MA + MB, (B1)

Ms → −MA − MB. (B2)

Thus,

g(E,M,Ms) = g(−E,−MA + MB,−MA − MB). (B3)

Region 2. MB → −MB and E → −E.
This is reflection about the MA axis, which means flipping

all the spins on sublattice B. Thus,

g(E,M,Ms) = g(−E,MA − MB,MA + MB). (B4)

Region 3. MA → −MA and MB → −MB and E → E.
This is a combination of reflection about the MA axis and

MB axis, which means flipping all the spins on both sublattices.
This preserves the energy, and we have

g(E,M,Ms) = g(E,−MA − MB,−MA + MB). (B5)

Region 4. MA ↔ MB and E → E.
This is reflection about the M axis, which means exchang-

ing all the spins between the two sublattices. This preserves
the energy, and we have

g(E,M,Ms) = g(E,MB + MA,MB − MA). (B6)

Region 5. MA → MB and MB → −MA and E → −E.
This is a combination of reflection about both the Ms and

MA axes, which means replacing spins on sublattice A by spins
on sublattice B, and spins on sublattice B by the flipped spins
on sublattice A. This reverses the energy, and we have

g(E,M,Ms) = g(−E,MB − MA,MB + MA). (B7)

Region 6. MA → −MB and MB → MA and E → −E.
This is a combination of reflection about the Ms and MB

axes, which means replacing spins on sublattice A by flipped
spins on sublattice B, and spins on sublattice B by the spins
on sublattice A. This reverses the energy, and we have

g(E,M,Ms) = g(−E,−MB + MA,−MB − MA). (B8)

Region 7. MA → −MB and MB → −MA and E → E.
This is reflection about the Ms axis, which means replacing

spins on sublattice A by flipped spins on sublattice B, and
spins on sublattice B by the flipped spins on sublattice A. This
preserves the energy, and we have

g(E,M,Ms) = g(E,−MB − MA,−MB + MA). (B9)

APPENDIX: C

Details of the implementation scheme for not too large
systems are given below.

Step 1. Determine the desired combination of M and Ms .
While L = 6 and 12 were simulated with all possible (M,Ms)
pairs (i.e., step size Mconst = 2), L = 32 was simulated
with Mconst = 32, which gives good results. The symmetries
described in Sec. IV D and Appendix B ensure that we only
have to choose data points within one octant of the (M,Ms)
space.

Step 2. Each chosen pair of (M,Ms) is submitted as a
parameter to identical, independent WL programs running on
separate processing cores (or sequentially on one core). For
each WL process, the values of M and Ms are conserved in
every time step. Note that fixing an (M,Ms) pair is the same as
fixing an (MA,MB) pair [refer to Eqs. (8) and (9) and Fig. 2].

Step 3. Find the maximum and minimum energies of the
system for each chosen (M,Ms) pair. For each (M,Ms) pair,
divide the energy spectrum into windows if the number of
energy levels is large. We keep around 200 energy levels in
each window (around 125 energy levels in the edge windows),
using 50% overlap between neighboring windows.

For a fixed (M , Ms) pair, macrostates that have energies
close to the extreme energies are in general either arranged in
a configuration close to a strip or a nearly square droplet [63]
(Fig. 3). We first prepare all the spins pointing up (purely
ferromagnetic state), and then flip the spins separately on
the two sublattices sequentially one by one until we get a
configuration (microstate) that satisfies the chosen (MA,MB)
pair. This locates the highest energy microstate that is arranged
close to a strip shape. To locate the highest energy states that are
close to a droplet form, we again prepare all the spins pointing
up (purely ferromagnetic state), and calculate the approximate
size of the droplet if a group of down spins are arranged in
a nearly droplet shape. Then we again flip the spins on each
sublattice separately until MA and MB are satisfied. To locate
the lowest energy states, we first prepare all spins arranged
alternately up and down (purely antiferromagnetic), and then
we perform similar flips to get states close to antiferromagnetic
strip and droplet shapes.

Step 4. List as many energy levels as possible that satisfy this
(M,Ms) pair and initialize ln g(E|M,Ms) = 0 for each energy
level found. Using the microstates found in step 3, which
have near-extreme energies and already satisfy the (M,Ms)
constraint, we randomly perform spin exchange separately
on the two sublattices many times to arrive at most of the
energy levels that satisfy the same MA and MB . For each
energy window, we store one spin configuration as the initial
configuration of that energy window. If some energy levels are
still missing in this step, they will be visited later during the
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random walk process. Each newly found state is immediately
initialized to ln g(E|M,Ms) = 0.

Step 5. Randomly choose the energy window to start with,
and load the spin configuration stored during the initialization
stage to use as the starting configuration. Set the histogram
H (E|M,Ms) = 0 for all the energies E in that energy
window.

Step 6. Propose a move in microstates by doing spin ex-
change (Kawasaki dynamics) between two sites with different
spins on the same sublattice, and decide whether the move is
accepted according to

p(E1 → E2) = min

[
g(E1)

g(E2)
,1

]
. (C1)

Step 7. Update the DOS g(E|M,Ms) for each (M,Ms)
pair as ln g(E|M,Ms) → ln g(E|M,Ms) + ln f whenever the
energy level E is visited. At the same time, its histogram is
updated as H (E|M,Ms) → H (E|M,Ms) + 1.

Step 8. Using the root-mean-square flatness criterion in
Eq. (14), check whether a flat histogram H (E|M,Ms) is
obtained for each (M,Ms) pair after every 100 × L2 time steps,
and reduce the modification factor f to its square root value
whenever a flat histogram is reached.

When the code is found to be stuck and cannot finish after
a sufficiently long time for a particular (M,Ms) pair, we reject
that run and restart the simulation for that (M,Ms) pair. This
reject and rerun process may have to be performed a few times
on one (M,Ms) pair in order to obtain a final converged result.
Further discussion of the convergence is given in Secs. IV G
and VI B.

ln g(E|M,Ms) is shifted to a small value every time we
get a flat histogram, so that we can avoid ln g(E|M,Ms) ac-
cumulating to very large values that cause overflow problems.
Restart the run at one of the configurations that has nearly
minimum histogram in the last run. Repeat the random walk
process until the modification factor is less than 10−8.

Step 9. Join the ln g(E|M,Ms) curves obtained in dif-
ferent windows for each (M,Ms) pair at the energy where
ln g(E|M,Ms) in the two adjacent windows have the closest
slopes with respect to E. Use formula (A3) to obtain the exact
number of microstates for each pair of (M,Ms). The overall
DOS, g(E,M,Ms) or ln g(E,M,Ms), can then be obtained for
the whole system through Eq. (7).

Step 10. The g(E,M,Ms) obtained still has numerical
error. To average out the error, ten different g(E,M,Ms) were
obtained, and their ensemble average was used as g(E,M,Ms).
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