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Using the field theoretic renormalization group technique and the operator product expansion, the systematic
investigation of the influence of the spatial parity violation on the anomalous scaling behavior of correlation
functions of the weak passive magnetic field in the framework of the compressible Kazantsev-Kraichnan
model with the presence of a large-scale anisotropy is performed up to the second order of the perturbation
theory (two-loop approximation). The renormalization group analysis of the model is done and the two-loop
explicit expressions for the anomalous and critical dimensions of the leading composite operators are found
as functions of the helicity and compressibility parameters and their anisotropic hierarchies are discussed.
It is shown that for arbitrary values of the helicity parameter and for physically acceptable (small enough)
values of the compressibility parameter, the main role is played by the composite operators near the isotropic
shell in accordance with the Kolmogorov’s local isotropy restoration hypothesis. The anomalous dimensions
of the relevant composite operators are then compared with the anomalous dimensions of the corresponding
leading composite operators in the Kraichnan model of passively advected scalar field. The significant difference
between these two sets of anomalous dimensions is discussed. The two-loop inertial-range scaling exponents
of the single-time two-point correlation functions of the magnetic field are found and their dependence on the
helicity and compressibility parameters is studied in detail. It is shown that while the presence of the helicity
leads to more pronounced anomalous scaling for correlation functions of arbitrary order, the compressibility,
in general, makes the anomalous scaling more pronounced in comparison to the incompressible case only for
low-order correlation functions. The persistence of the anisotropy deep inside the inertial interval is investigated
using the appropriate odd ratios of the correlation functions. It is shown that, in general, the persistence of the
anisotropy is much more pronounced in the helical systems, while in the compressible turbulent environments
this is true only for low-order odd ratios of the correlation functions.
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I. INTRODUCTION

During the few last decades, a great interest has been
devoted to the theoretical investigation of the possible devia-
tions from the classical Kolmogorov-Obukhov (KO) theory [1]
suggested by both natural and numerical experiments (see, e.g.,
Refs. [2–5] and references cited therein). It means that the aim
of the theory is to verify the validity of the basic principles of
the KO phenomenological theory in the framework of a well-
defined microscopic model and to identify and understand
possible deviations from its predictions. According to the
basic conclusions of the KO theory [1–4,6–8], which are
standardly formulated in the form of the famous first and
second Kolmogorov hypotheses, the statistical properties of
various random fields deep inside the inertial interval l �
r � L of a given turbulent environment are independent of
the integral scale L (a typical scale of the energy pumping into
the system) as well as of the viscous scale l (a typical scale
on which the energy begins to dissipate intensively). Under
these assumptions, a simple dimensional analysis immediately
leads to the prediction of the scaling behavior of correlation
functions of the model with exactly defined scaling exponents.

To be more concrete, let us apply the KO theory to the
inertial-range behavior of typical correlation functions of the
velocity field v which are usually measured and analyzed in
experiments, namely, to the so-called single-time structure
functions of the velocity field defined as follows:

SN (r) = 〈[vr (t,x) − vr (t,x′)]N 〉, r = |x − x′| (1)

where vr denotes the component of the velocity field directed
along the vector r = x − x′ and N is an arbitrary natural
number. In this case, the corresponding dimensional analysis
together with the assumption of validity of the first and second
Kolmogorov hypotheses predict the following scale-invariant
inertial-range form of the structure functions (1):

SN (r) = const × (ε̄r)N/3, (2)

where ε̄ is the mean dissipation rate.
However, as was already mentioned, both natural experi-

ments and computational simulations, but also pure theoretical
investigations, show the existence of deviations from the
predictions of the KO theory which manifest themselves
in the significant dependence of the correlation functions
on the integral scale L even deep inside the inertial inter-
val in contradiction with the first Kolmogorov hypothesis
[2,4,5,9,10]. The existence of such deviations, which are
usually referred as anomalous or nondimensional scaling,
mean that the corresponding correlation functions must be
singular functions of the ratio of the distance r and the integral
scale L in the asymptotic inertial-range limit r/L → 0 and, as
a consequence, for example the simple scaling representation
for the single-time structure functions given in Eq. (2) must be
replaced by the following one:

SN (r) = (ε̄r)N/3RN (r/L), (3)

where RN are unknown scaling functions. The assumption that
they have a powerlike asymptotic behavior in the region r � L
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in the form

RN (r/L) ∼ (r/L)qN , (4)

with singular dependence on L in the limit L → ∞ and
nonlinearity of the exponents qN as functions of N , is called
“anomalous scaling” and is usually explained by the existence
of strong developed fluctuations of the dissipative rate known
as intermittency (see, e.g., Refs. [2–5,9]).

It is necessary to stress that a complete theoretical under-
standing of the intermittency and anomalous scaling in the
fully developed turbulence on the fundamental microscopic
level does not exist yet. At the same time, a significant progress
has been achieved in the understanding of the problem of
the anomalous scaling in the framework of the investigation
of the scaling properties of various single-time correlation
functions of passively advected scalar (e.g., the temperature
field or an impurity field) or vector (e.g., the magnetic field)
fields especially in the models with a Gaussian statistics of the
velocity field. There are at least two reasons why such kind
of models were and still are so attractive for theoretical study.
First of all, it is the fact that the investigation of the scaling
properties of correlation functions of passively advected scalar
or vector fields (including their anomalous scaling) is usually
considerably easier than the genuine problem of the scaling
behavior of the velocity field in the framework of the Navier-
Stokes turbulence. It is worth mentioning that this is usually
true even in the case when the corresponding passive field
is advected by the velocity field driven by the stochastic
Navier-Stokes equation. The second reason for their intensive
investigation is the fact that the anomalous scaling, i.e., the
deviations from the predictions of the KO theory, is even more
strongly pronounced for various passively advected quantities
than for the velocity field itself (see, e.g., Refs. [5,8,9,11–19]
and references cited therein). In this respect, the central
role was and still is played by the well-known Kraichnan
rapid change model of a passive scalar field advected by a
self-similar Gaussian δ-correlated in time velocity field [20] as
well as by the corresponding Kazantsev-Kraichnan kinematic
model of a passive magnetic field in a conductive turbulent
environment [21] and by a number of their extensions. Here,
it is also worth to mention that even very simplified models of
passive advection based on a Gaussian statistics of the velocity
field lead to the anomalous scaling behavior of correlation
functions which describe many features of the real turbulent
advection (see, e.g., Refs. [11,22–27] as well as survey papers
[8,9]). Namely, in the framework of the Kraichnan model the
systematic theoretical analysis of the anomalous exponents
was performed for the first time on the microscopic level by
using the so-called zero-mode technique where the anomalous
exponents are found from the homogeneous solutions (zero
modes) of closed equations for the single-time correlations
[22–24] (see also survey [9] and references cited therein).

There exists, however, another powerful method which
allows one a systematic investigation of the self-similar scaling
behavior, namely, the renormalization group (RG) technique,
especially in the field theoretic approach [28–30], which can
also be applied for analysis of fully developed turbulence
[31,32], of the passive scalar admixture in turbulent environ-
ment [33], of the magnetohydrodynamic (MHD) turbulence
[34], and many others [7,30].

During the last two decades, the field theoretic RG
technique together with the operator product expansion (OPE)
was also intensively used for investigation of the problem of
anomalous scaling in turbulent systems. In this respect, in
Refs. [35,36] the anomalous scaling of a passive scalar field
in the framework of the Kraichnan model was investigated
in the second and the third orders of approximation of
the corresponding perturbative expansion, respectively. Note
that, in the field theoretic RG approach, the anomalous
scaling is related to the existence of composite operators in
the studied model with negative critical dimensions (such
operators are usually called “dangerous” operators) in the OPE
(see, e.g., Refs. [7,8,30] for details). Thereafter, various (more
realistic) generalizations of the simple Kraichnan model with
finite time correlations of the Gaussian velocity field [37],
compressibility [38], small-scale anisotropy [39], spatial parity
violation (helicity) [40,41], and their various combinations
[42,43] were investigated in the first-order approximation
(the one-loop approximation in the field theory language) as
well as in the second-order (two-loop) approximation (except
for models with the presence of the small-scale anisotropy
where only one-loop calculations exist). The most important
general conclusion of all these investigations is the fact that the
anomalous scaling behavior which is present in the Kraichnan
model remains the basic feature of all generalized models.
Note that a few studies were also devoted to the problem of the
anomalous scaling of a passive scalar field in the Navier-Stokes
turbulence [44].

Thus, it means that the scaling properties of passive scalar
fields advected by various turbulent environments are quite
well known. On the other hand, the systematic field theoretic
RG investigation of the problem of the anomalous scaling
of various vector fields (e.g., the weak magnetic field) in
developed turbulent systems is still only in beginnings, al-
though some nontrivial results were obtained in the framework
of the kinematic Kazantsev-Kraichnan model, an analog of
the Kraichnan rapid change model for the passive magnetic
field [21]. For a long period, using the field theoretic RG
technique and OPE, the scaling properties of the vector fields
in various turbulent environments with Gaussian statistics of
the velocity field or even in the Navier-Stokes turbulence were
investigated only at the lowest order of approximation (the
one-loop approximation) [16–18,45,46] which is, however,
usually insufficient for complete understanding of the role
which is played by the internal tensor structure of the advected
field as well as for the understanding of the role of the violation
of various symmetries of the corresponding turbulent system
for scaling properties of a studied model. In this respect, a
typical example is the spatial parity violation (helicity) of
turbulent environments, the effects of which on the anomalous
scaling of various quantities can be studied starting only from
the two-loop approximation [40,41]. Only quite recently a few
papers have appeared which are devoted to the systematic
two-loop field theoretic RG investigation of the anomalous
scaling of the passive vector fields in turbulent environments
[47–50]. Although all of them are devoted to the investigation
of the anomalous scaling of the passive magnetic field in
the framework of the simple kinematic Kazantsev-Kraichnan
rapid-change model, the obtained results are, however, very
interesting.

053210-2



SIMULTANEOUS INFLUENCE OF HELICITY AND . . . PHYSICAL REVIEW E 95, 053210 (2017)

First of all, in Refs. [47,48] it was shown that the two-
loop corrections to the anomalous scaling in the Kazantsev-
Kraichnan model are much more important and lead to the
significantly more pronounced anomalous scaling than in
the Kraichnan model of a passively advected scalar field.
It means that the intermittency and the anomalous scaling
of the fluctuations of the magnetic field in the conductive
turbulent environments, i.e., in the magnetohydrodynamic
(MHD) turbulent environments, are sufficiently more strongly
pronounced than in the ordinary fluid turbulence. Note that this
pure theoretical result is in agreement with real measurements,
numerical experiments, as well as various phenomenological
models (see, e.g., Refs. [51] and references cited therein).
At the same time, in the subsequent brief studies [49,50], the
serious impact of the compressibility [49] and the spatial parity
violation [50] of the corresponding turbulent environments on
the critical dimensions of the relevant composite operators,
which drive the scaling properties of the magnetic field
correlation functions, was reported but without a detailed
analysis. Maybe the most interesting and, at the same time,
important conclusion was obtained in Ref. [50] where it
was shown that the conductive turbulent environment with
the spatial parity violation leads to the significantly more
pronounced anomalous scaling. This result is, on one hand,
qualitatively different from the analogous problem in the
framework of the Kraichnan model where it was shown that
the presence of helicity has no impact on the scaling properties
of passively advected scalar field and, on the other hand,
it is qualitatively in accordance with conclusions of recent
measurements [52].

The aim of this paper is twofold. First, we intend to perform
a detail analysis of the separate influence of the compressibility
and the spatial parity violation on the anomalous scaling of the
correlation functions of the magnetic field in the framework
of the Kazantsev-Kraichnan model and, second, our aim is
also to investigate the simultaneous nontrivial influence of the
compressibility and helicity of the turbulent environment on
the asymptotic scaling properties of the passively advected
weak magnetic field. It is worth to mention that in this
respect, as far as we know, this paper represents the first
such field theoretic study at all and, as we shall see, the
compressibility together with the helicity exhibit nontrivial
impact on the anomalous scaling of the magnetic field as well
as on the persistence of the large-scale anisotropy deep inside
the inertial interval of the model. In this respect, let us note
once more that, as it was shown in Ref. [40] in two-loop
approximation, the presence of the spatial parity violation in
the turbulent environment has no impact on the anomalous
scaling of passively advected scalar field. Finally, let us also
note that, although the results of this paper are obtained in the
framework of the model with a simple Gaussian statistics of
the velocity field, nevertheless, we believe that the obtained
results, at least at the qualitative level, are also relevant for the
real kinematic MHD turbulence with Navier-Stokes velocity
field.

The paper is organized as follows. In Sec. II, the com-
pressible Kazantsev-Kraichnan model with the spatial parity
violation of the passively advected weak magnetic field is
introduced. The field theoretic formulation of the model is
given in Sec. III. The RG analysis of the model is performed

in Sec. IV. In Sec. V, the anomalous dimensions of the
leading composite operators of the model are found as
functions of the compressibility and helicity parameters in the
two-loop approximation and, in Sec. VI, they are compared
with the corresponding anomalous dimensions of the leading
composite operators in the Kraichnan model of passively
advected scalar field. In Sec. VII, the anomalous scaling of
the single-time two-point correlation functions of the magnetic
field in the compressible and helical environment is discussed
in detail. The persistence of the large-scale anisotropy deep
inside in the inertial interval is investigated in Sec. VIII.
Finally, obtained results are briefly reviewed and discussed
in Sec. IX.

II. COMPRESSIBLE KAZANTSEV-KRAICHNAN MODEL
WITH SPATIAL PARITY VIOLATION

As was discussed in the Introduction, in this paper
we shall investigate statistical properties of the solenoidal
magnetic field b ≡ b(t,x) (∂ibi = 0) in the framework of
the so-called Kazantsev-Kraichnan model of the kinematic
MHD turbulence, where the magnetic field is considered as a
vector admixture passively advected by a compressible random
velocity field v(x) ≡ v(t,x) (∂ivi 
= 0) and which is described
by the following stochastic advection-diffusion equation (see,
e.g., Refs. [16–18] for details):

∂tbi = ν0�bi − ∂j (vjbi) + bj∂jvi + fi. (5)

Here, the following standard notation is used: ∂t ≡ ∂/∂t , ∂i ≡
∂/∂xi , � ≡ ∂2 is the Laplace operator, ν0 = c2/(4πσ0) is the
magnetic diffusivity (in what follows, a subscript 0 will denote
bare parameters of the unrenormalized theory), c is the speed
of light, σ0 is the electrical conductivity.

The main role of the random force f(x) = f(t,x) in Eq. (5),
which is also transverse, i.e., we suppose that ∂ifi = 0, is
to maintain the steady state of the system. It represents the
source of the fluctuations of the magnetic field and is taken
in the Gaussian form with zero mean and with the correlation
function

Db
ij (x1; x2) ≡ 〈fi(x1)fj (x2)〉

= δ(t1 − t2)Cij (|x1 − x2|/L). (6)

Here, L is an integral scale related to the corresponding
stirring, and Cij is a function finite in the limit L → ∞. Its
detailed form is unimportant in what follows and the only
condition which must be satisfied by Cij is that it must decrease
rapidly for |x1 − x2| � L. In more realistic formulation, the
noise fi in Eq. (5) can be replaced by the term (Bj∂j )vi , where
B is a constant large-scale magnetic field, the source of the
large-scale anisotropy (see, e.g., Ref. [16] for more details).

In the framework of the Kazantsev-Kraichnan model, the
random velocity field v(x) obeys the Gaussian statistics, δ

correlated in time, with zero mean and with the following pair
correlation function:

Dij (x1; x2) ≡ 〈vi(x1)vj (x2)〉

= δ(t1 − t2)D0

∫
dk

(2π )d
Rij (k)k−d−εeik·(x1−x2),

(7)
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where d denotes the spatial dimension of the system, Rij (k)
describes geometric properties of the velocity correlator (its
explicit form will be specified a little bit later), k is the
momentum (wave number), and D0 > 0 is a positive amplitude
factor. The interval of possible values of parameter ε is 0 <

ε < 2. However, usually the interval 0 < ε � 1 is considered
in the Kazantsev-Kraichnan model, where the existence of a
steady state of the magnetic field (without dynamo effects)
is guaranteed (see, e.g., Ref. [12]). The exponent ε can also
be considered as a kind of Hölder exponent for measuring
of the roughness of the velocity field. For convenience, it
is usually appropriate to introduce the coupling constant
g0 ≡ D0/ν0  	ε, where 	 is a characteristic ultraviolet (UV)
momentum scale related to the inner turbulent length l = 1/	.

As was already mentioned, the geometric properties of
the velocity fluctuations are described by the tensor Rij (k)
in correlator (7). The fact that we intend to investigate
the influence of the compressible stochastic environment on
properties of the model defined in Eqs. (5)–(7) is expressed
explicitly in the form of the second-rank tensor Rij (k), namely,
it is taken in the form of a linear combination of a transverse
projector Tij (k) (its form will be specified below) and the
longitudinal projector Lij (k) = kikj /k2:

Rij (k) = Tij (k) + αkikj /k2, (8)

where α � 0 is the compressibility parameter which charac-
terizes the deviation of the turbulent environment from the
incompressible case. [Strictly speaking, it characterizes the
amount of deviation of the tensor Rij (k) from its transversal-
ity.] Here, the value α = 0 corresponds to the divergence-free
(incompressible) velocity field. Note that although the value
of the parameter α in Eq. (8) is formally unrestricted, i.e.,
from pure mathematical point of view it can be arbitrarily
large, from consistent physical point of view, however, it must
be considered to be close to zero only, i.e., it is necessary to
realize that, in fact, parameter α must be restricted by condition
α � 1 or, at least, α < 1. This pure physical restriction on
the compressibility parameter is related to the fact that our
formulation of the model is suitable for investigation of the
properties of the system only near the incompressible limit,
i.e., in the situation where the system is only slightly deviated
from the incompressible state with small density fluctuations
of the environment.

On the other hand, our aim is also to study the impact of the
spatial parity violation (the presence of the helicity) of the
compressible velocity field on the statistical properties of
the magnetic field. To this end, the transverse part Tij (k) of
the tensor Rij (k) in Eq. (8) is taken in the form of the sum of the
ordinary transverse projector Pij (k) = δij − kikj /k2, which
describes fully symmetric isotropic turbulent environment, and
the helical tensor Hij (k) = iεij lkl/|k| which responds for the
presence of the spatial parity violation in the system:

Tij (k) = δij − kikj /k2 + iρεij lkl/|k|. (9)

Here, εij l is the Levi-Civita’s completely antisymmetric tensor
of rank 3 and the real parameter 0 � |ρ| � 1 determines the
“amount” of the helicity in the system. Setting ρ = 0 means
that no violation of the spatial parity is present in the system.
On the other hand, |ρ| = 1 describes the system with maximal

spatial parity violation. Physically, the nonzero helical part
expresses the existence of nonzero correlations 〈v · rotv〉 in
the turbulent environment.

Thus, in what follows, the final form of the tensor Rij (k) in
correlator (7) is taken to be

Rij (k) = Pij (k) + ρHij (k) + αLij (k)

= δij − kikj /k2 + iρεijlkl/|k| + αkikj /k2, (10)

which describes simultaneously the compressible and helical
turbulent environment.

Finally, note also that the necessary infrared (IR) regu-
larization in integral (7) is given by the cutoff from below
k = kmin ≡ 1/L, where L represents the integral turbulent
scale. This scale is, in general, different from the stirring scale
L introduced in Eq. (6) but, in what follows, this difference is
unimportant.

III. FIELD THEORETIC FORMULATION OF THE MODEL

According to the well-known theorem [53], the stochastic
problem defined by Eqs. (5)–(7) can be rewritten in the form
of the corresponding field theoretic model of the set of three
fields � = {v,b,b′} with the following action functional:

S(�) = −1

2

∫
dx1 dx2 vi(x1)D−1

ij (x1; x2)vj (x2)

+1

2

∫
dx1 dx2 b′

i(x1)Db
ij (x1; x2)b′

j (x2)

+
∫

dx b′
i[−∂tbi + ν0�bi

−∂j (vjbi) + (bj∂j )vi], (11)

where b′ is a solenoidal auxiliary field necessary for the
field theoretic formulation of the problem, Db

ij and Dij are
the correlators (6) and (7), respectively, dx = dt dx, and
the required summation over dummy indices is assumed.
Note that the second and the third lines in Eq. (11) represent the
DeDominicis-Janssen action of the studied stochastic problem
at fixed velocity field v and the first line represents the Gaussian
averaging over the velocity field v.

The free (i.e., quadratic in fields) part of the action
functional (11) defines the set of all nonzero bare propagators
of the model in the framework of the Feynman diagrammatic
technique of the perturbation theory, namely (in the frequency-
momentum representation),

〈b′
ibj 〉0 = 〈bib

′
j 〉∗0 = Pij (k)

iωk + ν0k2
, (12)

〈bibj 〉0 = Cij (k)

(−iωk + ν0k2)(iωk + ν0k2)
, (13)

and the bare propagator 〈vivj 〉0 for the velocity field is given
directly by the correlator Dij (x; x ′) in Eq. (7). Function
Cij (k) in Eq. (13) represents the Fourier transform of the
function Cij (|x1 − x2|/L) from Eq. (6). In what follows, only
propagators 〈b′

ibj 〉0 = 〈bib
′
j 〉∗0 and 〈vivj 〉0 are important and

their graphical representation is given explicitly in Fig. 1. On
the other hand, the only interaction vertex of the model has the
form b′

i[−∂j (vjbi) + bj∂jvi] = b′
iVij lbj vl , where the vertex
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bibj 0 =

vivj 0 =

FIG. 1. Graphical representation of the important propagators of
the model. The end with a slash in the propagator 〈b′

ibj 〉0 corresponds
to the field b′ and the end without a slash corresponds to the field b.

factor Vijl in the frequency-momentum representation is given
as follows

Vijl = i(klδij − kj δil). (14)

The graphical representation of the interaction vertex is shown
explicitly in Fig. 2, where the momentum k is flowing into the
vertex via the auxiliary filed b′.

Note that the formulation of the stochastic problem given in
Eqs. (5)–(7) through action functional (11) allows one to use
standard field theoretic means, namely, the field theoretic RG
technique, to analyze the problem. In the framework of the
field theoretic approach, the statistical averages of random
quantities in the stochastic problem are replaced with the
corresponding functional averages with weight exp S(�) (see,
e.g., Ref. [30] for details).

IV. RENORMALIZATION GROUP ANALYSIS
OF THE MODEL

It is not necessary to discuss all details of the RG analysis
of the present model because it can be performed in the similar
manner as, e.g., in Ref. [16]. At the same time, the general RG
analysis of various field theoretic models can be found, e.g.,
in Ref. [30]. Therefore, here it is enough to summarize only
basic facts and results of the corresponding RG analysis which
will be important in what follows.

Standardly, the RG analysis of the field theoretic model de-
fined in Eq. (11) is based on the analysis of the UV divergences
of the 1-irreducible Green’s functions. On the other hand,
the identification of the divergent Green’s functions is based
on the corresponding analysis of the canonical dimensions
of the model. The canonical momentum dk

Q, frequency dω
Q,

and total dQ dimensions of all fundamental quantities Q

(parameters and fields) of the present two-scale model are
summarized in Table I, where also the canonical dimensions
of the renormalized parameters are shown. Thus, it is evident
that the studied model is logarithmic at ε = 0, for which the
coupling constant g0 is dimensionless and the dimensional
analysis shows that the only superficially divergent function
of the model is the 1-irreducible Green’s function 〈b′

ibj 〉1−ir .

Vijl =
bi

bj

vl

FIG. 2. The graphical representation of the interaction vertex of
the model.

TABLE I. Canonical dimensions of the fields and parameters of
the model under consideration.

Q v b b′ m,	,μ ν0,ν g0 g,α,ρ

dk
Q −1 0 d 1 −2 ε 0

dω
Q 1 0 0 0 1 0 0

dQ 1 0 d 1 0 ε 0

This divergence can be removed multiplicatively by the only
counterterm b′

i�bj . At the same time, the renormalization
of the model can be explicitly expressed in the form of
multiplicative renormalization of the bare parameters g0 and
ν0, namely (see, e.g., Ref. [16] for all details),

ν0 = νZν, g0 = gμεZg, Zg = Z−1
ν , (15)

where the dimensionless parameters g and ν are the
renormalized counterparts of the corresponding bare ones,
μ is the renormalization mass (a scale setting parameter), an
artifact of the dimensional regularization, and Zν(g,ε,d,α,ρ)
and Zg(g,ε,d,α,ρ) are the so-called renormalization constants
of the model, where we have written explicitly all parameters
which the renormalization constants can, in principle, depend
on.

Here, it is necessary to stress that, strictly speaking, this
conclusion is completely true only in the nonhelical case
(ρ = 0) of the present kinematic Kazantsev-Kraichnan model,
which represents an approximation of the problem of real
MHD turbulence. It is related to the fact that in the helical
case of the present model with ρ 
= 0, the linear divergences
in the form b′ · rot b can appear in the 1-irreducible Green’s
function 〈b′

ibj 〉1−ir in the same way as in the field theoretic
model of the genuine helical MHD turbulence (see, e.g.,
Refs. [54] for details). A term of this form, however, is not
present in the action (11). In this case, the simplest way to
make the model multiplicatively renormalizable is to modify
the action functional of the model (11) by introducing the
corresponding term and start with the investigation of the
obtained enlarged model. However, the presence of such a
term in the model leads to the instability that causes the
exponential growth in time of the response function 〈b′

ibj 〉.
It means that the direct insertion of such a term into the
action functional does not solve the problem. On the other
hand, in the framework of the field theoretic approach to
the genuine MHD turbulence, the problem of the existence
of the linear divergences is solved through the appearance
of the homogeneous large-scale magnetic field generated by
a kind of the spontaneous symmetry breaking mechanism.
However, the proper realization of this mechanism in the
framework of the genuine MHD turbulence is possible only
due to the presence of the so-called Lorentz force term in the
corresponding enlarged form of the Navier-Stokes equation
[54]. Therefore, it is immediately evident that this technique
cannot be used in the framework of the Kazantsev-Kraichnen
model studied in this paper where the statistics of the velocity
field is given a priori by the explicit form of the correlator
(7). This is the reason why we shall leave the problem of the
linear divergences untouched in this paper knowing that the
existence and stability of the IR scaling regime can be studied
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Σbibj
=

FIG. 3. The only self-energy Feynman diagram which contributes
to the UV renormalization of the model.

without considering the linear divergences. At the same time,
it is necessary to be aware of the fact that the completely
consistent analysis of the problem with the presence of the
helicity can be performed only in the framework of the genuine
MHD turbulence described by the stochastic MHD equations.

Thus, bearing in mind the above discussion, i.e., forgetting
about potential linear divergences, from the third relation in
Eq. (15) it is evident that the model is multiplicatively renor-
malized by only one independent renormalization constant Zν

which, in fact, does not depend on the helicity parameter ρ

and which, in the framework of the minimal subtraction (MS)
scheme [29], has the following exact one-loop form [16,18,49]:

Zν = 1 − Sd

(2π )d
d − 1 + α

2d

g

ε
. (16)

Here, Sd = 2πd/2/�(d/2) denotes the surface of the d-
dimensional unit sphere. Note that the expression (16), given
by the calculation of the only one-loop self-energy Feynman
diagram which is shown explicitly in Fig. 3, is the exact result
of the perturbation expansion, i.e., it has no corrections of
orders gn,n � 2. It is related to the fact that all two- and
higher-loop diagrams contain at least one close loop of retarded
propagators, i.e., all such diagrams vanish (they are identically
equal to zero) [30].

Using the explicit form of the renormalization constant Zν

given in Eq. (16) the RG functions (the β and γ functions) of
the model are immediately obtained, namely,

βg ≡ μ∂μg = g(−ε + γν), (17)

γν ≡ μ∂μ ln Zν, (18)

where the explicit exact expression for function γν is

γν = Sd

(2π )d
d − 1 + α

2d
g. (19)

Then, the inertial-range scaling behavior of various correla-
tions functions of the model is driven by the exact one-loop IR
stable fixed point of the RG equations [16,18,49], namely,

g∗ = (2π )d

Sd

2dε

d − 1 + α
, (20)

which is obtained by the requirement of vanishing of function
βg defined in Eq. (17). This fixed point is IR stable for ε > 0
and corresponds to the so-called kinetic regime in the genuine
MHD turbulence.

Note that while the IR fixed point of the model given in
Eq. (20) depends explicitly on the parameter which controls
the compressibility of the system, namely, the value of g∗
decreases as function of parameter α, it is independent of the
parameter ρ, i.e., at this stage of the RG analysis the model is

absolutely helicity blind (it does not feel the presence of the
parity violation in the given turbulent environment).

Besides, let us also note that the fact that the form of the
βg in Eq. (17) is exact means that the value of the anomalous
dimension γν at the IR fixed point g∗ is also exact, namely,

γ ∗
ν = ε. (21)

In what follows, we will be interested in the scaling behavior
of the single-time two-point correlation functions built solely
of the magnetic field (see, e.g., Refs. [16,48]), namely,

BN−m,m(r) ≡ 〈
bN−m

r (t,x)bm
r (t,x′)

〉
, r = |x − x′| (22)

where br denotes the component of the magnetic field
directed along the vector r = x − x′.1 It is an example of a
general multiplicatively renormalizable single-time two-point
correlation function G(r) which has the following general IR
asymptotic scaling form for r/ l � 1 and any fixed r/L:

G(r)  ν
dω

G

0 l−dG (r/ l)−�GR(r/L), (23)

which is given by the existence of the IR stable fixed point of
the RG equations (20). Here, dω

G and dG are the corresponding
canonical dimensions of the function G, which can be obtained
easily using the basic canonical dimensions of the model
given in Table I, l = 1/	, L = 1/kmin, and �G is the critical
dimension defined as follows:

�G = dk
G + �ωdω

G + γ ∗
G. (24)

Here, γ ∗
G is the fixed point value of the anomalous dimension

γG ≡ μ∂μ ln ZG, where ZG is the renormalization constant
of the multiplicatively renormalizable quantity G, i.e., G =
ZGGR [30], and �ω = 2 − γ ∗

ν is the critical dimension of the
frequency with γ ∗

ν given in Eq. (19) taken at the fixed point,
i.e., γ ∗

ν = ε exactly. It means that the critical dimension of
frequency is also known exactly, namely, �ω = 2 − ε, as well
as the critical dimensions of the fields:

�v = 1 − ε, �b = 0, �b′ = d. (25)

Finally, the function R(r/L) in Eq. (23) is the so-called scaling
function, which cannot be determined by the RG equations
(see, e.g., Ref. [30] for all details).

1For completeness, let us note that from the experimental point of
view more convenient are the equal-time structure functions of the
magnetic field SN (r) = 〈[br (t,x) − br (t,x′)]N 〉, which are important
in the analysis of inertial-range properties of the MHD turbulence.
Nevertheless, from the theoretical point of view it is enough to study
much simpler quantities, namely, the equal-time two-point correlation
functions BN−m,m(r) defined in Eq. (22). The reason is twofold:
first of all, the above defined structure functions are given by linear
combinations of the correlation functions (22), hence, the scaling
behavior of the structure functions is immediately given by the scaling
behavior of the correlation functions (22). At the same time, there is
no special need to investigate the structure functions, which are more
complex quantities, instead of their building blocks, the correlation
functions (22), as a result of the fact that contrary to the passive scalar
advection by the velocity field the stochastic equation for the vector
field b is not invariant under the shift b → b + b0, where b0 is a
constant vector.
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Thus, applying the general scaling representation for the
equal-time two-point quantity G(r) given in Eq. (23) to the
correlation functions (22) one obtains

BN−m,m(r)  ν
−N/2
0 (r/ l)−γ ∗

N−m−γ ∗
mRN,m(r/L), (26)

where γ ∗
N−m and γ ∗

m are the anomalous dimensions of the
composite operators bN−m

r and bm
r taken at the fixed point

value g∗ and the corresponding scaling functions RN,m(r/L)
are unknown in the framework of the standard RG analysis.

On the other hand, the systematic investigation of the
asymptotic behavior of the scaling functions RN,m(r/L) deep
inside the inertial interval, i.e., in the limit r/L → 0, can be
performed by using the OPE technique (see, e.g., Ref. [29]), in
the framework of which it is assumed that the scaling functions
have the following form:

RN,m(r/L) =
∑

i

CFi
(r/L)(r/L)�Fi , r/L → 0. (27)

Here, the summation is performed over all possible renormal-
ized composite operators Fi allowed by the symmetry of the
problem with critical dimensions �Fi

and the corresponding
coefficient functions CFi

(r/L) are regular in r/L. Note that
the very existence of the nontrivial anomalous scaling in the
model is related to the existence of the so-called “dangerous”
composite operators with negative critical dimensions which
give singular contributions to the OPE (27) in the limit r/L→0
(see, e.g., Ref. [16] for details). The leading contribution to the
expansion (27) is given by the composite operators with the
smallest critical dimensions and, in our case, is given by the
operators constructed solely from the magnetic field b(x) in
the following form [39,46,48]:

FN,p = [n · b]p(b · b)l , N = 2l + p (28)

which is also suitable for taking into account of the uniaxial
anisotropy effects represented here by introducing the constant
unit vector n (e.g., n = B/|B|, where B is a large-scale
magnetic field discussed in Sec. II).

First of all, consider the simplest case when it is supposed
that the system is fully isotropic. In this case, there is no specific
direction and the set of all composite operators of the form (28)
is reduced to the only one composite operator, namely,

FN,0 = (b · b)N/2. (29)

Now, using the explicit expression for the critical dimensions
given in Eq. (24), one obtains the final asymptotic inertial-
range behavior of the correlation functions (22), namely,

BN−m,m(r)  ν
−N/2
0 (r/ l)−γ ∗

N−m−γ ∗
m (r/L)γ

∗
N

∼ r−γ ∗
N−m−γ ∗

m+γ ∗
N , (30)

where γ ∗
M (M = N,m,N − m) are the anomalous dimensions

of the composite operators FM,0 given in Eq. (29) which will
be discussed in detail in the next section.

Note that in the strictly isotropic case N and m must be even
natural numbers and one immediately finds that for m = 0 or
m = N the correlation functions BN−m,m(r) are reduced to a
constant, namely,

BN,0 ≡ B0,N  ν
−N/2
0 . (31)

On the other hand, in the anisotropic case, the situation
is usually more complicated due to the fact that in this
case, the asymptotic inertial-range behavior of the correlation
functions (22) is determined by the set of critical dimensions
which correspond to the composite operators which are mixed
during the renormalization. The leading contribution to the
asymptotic behavior of the correlation functions is then given
by the corresponding smallest critical dimension. In the next
section, we shall investigate this issue in more detail in
the case when the large-scale anisotropy is present in the
model in the framework of the two-loop approximation. Our
aim is to find the explicit form of the critical dimensions
for needed composite operators (28) which is necessary for
determining the explicit form of the inertial-range behavior
of the single-time correlation functions BN−m,m defined in
Eq. (22) in the compressible case with the presence of the
spatial parity violation in the given turbulent system.

V. CRITICAL DIMENSIONS OF THE COMPOSITE
OPERATORS FN, p: TWO-LOOP APPROXIMATION

Thus, to be able to discuss the scaling behavior of the single-
time two-point correlation functions of the magnetic field
defined in Eq. (22) it is necessary to perform the corresponding
RG analysis of the composite operators (28) at a given level
of the perturbation approximation to obtain needed explicit
expressions for their anomalous and critical dimensions. In
this paper, we shall find their explicit dependence on the
parameters which characterize the compressibility of the
stochastic environment as well as its spatial parity violation
in the two-loop approximation.

Detailed RG analysis of the composite operators in the
framework of the Kazantsev-Kraichnan model can be found,
e.g., in Refs. [16,48], therefore, it is not necessary to repeat
it here. Instead of that, here we shall discuss only basic
conclusions of this analysis which are important in what
follows.

Analysis of the composite operators defined in Eq. (28)
shows that the composite operators with different values of N

are not mixed in the process of renormalization. In addition, in
our case, when only the presence of the large-scale anisotropy
is considered in the system, the matrix of the renormalization
constants for given value of N , Z[N,p][N,p′], is in fact triangular,
therefore the anomalous dimensions of the basic operators (28)
are directly given by the diagonal elements of the matrix of
the renormalization constants ZN,p ≡ Z[N,p][N,p], namely,

γN,p = μ∂μ ln ZN,p. (32)

Besides, their critical dimensions defined by the general
expression (24) are

�N,p = dk
FN,p

+ �ωdω
FN,p

+ γ ∗
N,p . (33)

Now, using the fact that dk
b = 0 and dω

b = 0 (see Table I) one
immediately obtains that

�N,p = γ ∗
N,p, (34)

i.e., the critical dimensions of the composite operators (28) are
equal to their anomalous dimensions taken at the fixed point
given in Eq. (20).
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Γ
(1)
N,p =

Γ
(2)
N,p = +

+ +

FIG. 4. The Feynman diagrams for the function �N,p(x; b) in
the two-loop approximation. The Feynman rules are the same as in
Sec. II. The black circle denotes the vertex of the composite operator
FN,p.

Thus, to proceed further it is necessary to calculate the
renormalization constants ZN,p defined through the following
relation between the unrenormalized and the corresponding
renormalized composite operators

FN,p = ZN,pFR
N,p (35)

and, as it is discussed in detail, e.g., in Ref. [16], to find
the explicit form of the renormalization constants ZN,p it is
necessary to analyze the N th-order term with respect to the
magnetic field b of the expansion of the generating functional
of one-irreducible Green’s functions with one composite
operator FN,p and any number of fields b. This term has the
following form [16]:

�N,p(x; b) = 1

n!

∫
dx1 . . .

∫
dxn bi1 (x1) . . . biN (xN )

×〈
FN,p(x) bi1 (x1) . . . biN (xN )

〉
1−ir

(36)

and in the framework of the two-loop approximation it can be
written as follows:

�N,p = FN,p + �
(1)
N,p + �

(2)
N,p, (37)

where terms �
(1)
N,p and �

(2)
N,p represent the corresponding one-

and two-loop contributions, respectively. In the framework of
the standard Feynman diagrammatic technique they are given
graphically by diagrams shown in Fig. 4, where the black
circle on the top of each diagram is the vertex related to the
composite operator FN,p which is defined as follows:

Vi1,...,ik (x; x1, . . . ,xk) = δkFN,p

δbi1 (x1) . . . δbik (xk)
, (38)

where k denotes the number of attached lines. It represents the
only additional Feynman rule needed for analytic investigation

of the diagrams in Fig. 4. All the other Feynman rules were
already defined in Sec. III.

Finally, the analysis of the UV divergences of the diagrams
in Fig. 4 gives the anomalous dimensions γ ∗

N,p [as well as the
critical dimensions �N,p given in Eq. (34)] in the the second-
order approximation (the two-loop approximation) which can
be written as follows (all technical details can be found, e.g.,
in Ref. [48] and in references cited therein):

γ ∗
N,p = γ

∗(1)
N,p ε + γ

∗(2)
N,p ε2 + O(ε3), (39)

where γ
∗(1)
N,p represents the one-loop contribution to the anoma-

lous dimension γ ∗
N,p and γ

∗(2)
N,p is the corresponding two-loop

correction.
The one-loop contribution γ

∗(1)
N,p does not depend on the

helicity (see also Ref. [50]) and its dependence on the
parameter of compressibility α has the following explicit form
(see also Refs. [17,18] for details):

γ
∗(1)
N,p = −{(N − p)(d + N + p − 2)(d + 1 + α)

+ N (N − 1)[d2α − 2(1 + α)]}/
[2(d + 2)(d − 1 + α)]. (40)

Note that in the incompressible case, i.e., for α = 0, one
comes to the one-loop result obtained, e.g., in Ref. [16],
namely,

γ
∗(1)
N,p = − (N − p)(d + N + p − 2)(d + 1) − 2N (N − 1)

2(d + 2)(d − 1)
.

(41)

On the other hand, the two-loop contribution γ
∗(2)
N,p depends

explicitly on the helicity parameter ρ as well as on the
compressibility parameter α and has the following form:

γ
∗(2)
N,p = −Sd−1

Sd

d

(d − 1)(d + 2)(d − 1 + α)2

×
∫ 1

0
dx(1 − x2)

d−3
2 {

√
1 − x2

× [(d − 2)C1(W1Y1 + 2ρ2δ3dY3) + C2W2Y1]

− 2(C3W3 + C4W4)Y2/(d + 4)}, (42)

where

C1 = (d + 1)(N − p)(d + N + p − 2) − 2N (N − 1), (43)

C2 = −(N − p)(d + N + p − 2) + dN(N − 1), (44)

C3 = (N − 2)C1, (45)

C4 = (N − 2)[−3(N − p)(d + N + p − 2)

+ (d + 2)N (N − 1)] (46)

and

W1 = 2 + α − α2, (47)

W2 = 2(1 − x2) + α[d(d − 3) + 4x2]

− α2[d(d − 1) − 2(1 − x2)], (48)
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W3 = (1 − x2)(9 − 5d + 4x2)

+α[9(1 − 2x2) + x2(d2 + 8x2) + 5d(1 − x2)]

−α2(10 − 3d − 11x2 + 4x4), (49)

W4 = −2(1 − x2)2 + 4α(1 − x2)(d − x2)

+ α2[d2(d + 1 − x2) − 2(1 − x2)2

+ d(2x2 − 3)]. (50)

In addition,

Y1 = x

[
arctan

(
1 + x√
1 − x2

)
− arctan

(
1 − x√
1 − x2

)]
, (51)

Y2 =
x
[

arctan
(

2+x√
4−x2

) − arctan
(

2−x√
4−x2

)]
√

4 − x2
, (52)

and

Y3 = π − arctan

(
1 + x√
1 − x2

)
− arctan

(
1 − x√
1 − x2

)
. (53)

Note that the presence of the Kronecker delta δ3d in the helical
term in Eq. (42), i.e., in the term proportional to ρ2, means
that it plays role (it has sense) only for the spatial dimension
d = 3.

It is now an easy task to show that in the incompressible
and nonhelical case, i.e., when α = 0 as well as ρ = 0, one
has

γ
∗(2)
N,p = −Sd−1

Sd

2d

(d − 1)3(d + 2)

∫ 1

0
dx(1 − x2)

d−1
2

×
{[

(d − 2)C1√
1 − x2

+
√

1 − x2C2

]
Y1

− [(9 − 5d + 4x2)C3 − 2(1 − x2)C4]Y2

d + 4

}
, (54)

which is equivalent to the result obtained in Ref. [48] [see
Eq. (86) in Ref. [48]].

Let us also note that in the framework of the so-called
zero-mode approach [9], the critical dimensions for N = 2,
i.e, �2,0 and �2,2 are known exactly in the incompressible
nonhelical case [12–14]. Their expansion up to the second
order in ε is

�2,0 = −ε − 2(d − 2)

d(d − 1)
ε2 + O(ε3), (55)

�2,2 = 2

(d − 1)(d + 2)
ε

+2(d + 4)(d2 − d − 4)

d(d − 1)2(d + 2)3
ε2 + O(ε3), (56)

and for d = 3 one has

�2,0 = −ε − ε2

3
+ O(ε3), (57)

�2,2 = ε

5
+ 7ε2

375
+ O(ε3). (58)

It is an easy task to show that these zero-mode results are in full
agreement with results given in Eqs. (41) and (54) for N = 2
(see also Refs. [47,48]).

Before we shall proceed in the general investigation of the
simultaneous influence of the compressibility and helicity on
the anomalous scaling in the framework of the Kazantsev-
Kraichnan model, let us stress that although, at first sight
[see Eq. (42)], it seems that the effects of compressibility and
helicity on the anomalous dimensions at the two-loop level of
approximation are given by a simple sum of the contributions
of the compressibility and of the helicity the dependence is in
fact more complicated (nonlinear) due to the existence of the
common factor 1/(d − 1 + α)2 in Eq. (42) which is reduced to
1/(2 + α)2 for d = 3 (remind that the spatial parity violation
has sense only in three-dimensional space). It means that there
exists a nontrivial influence of the helicity contribution by the
compressibility, namely, the importance of the contribution
of the helicity decreases when compressibility of the system
increases.

In addition, in the case when the presence of a large-scale
uniaxial anisotropy in the system is assumed, to identify and
investigate the leading contribution to the anomalous scaling
of phenomenologically interesting and important quantities,
e.g., of the single-time two-point correlation functions of the
magnetic field defined in Eq. (22), which are the main object
of interest in this paper, it is necessary first to identify and
analyze various hierarchy relations which are usually valid
among the critical dimensions �N,p with different values of
N and p. In our case, because �N,p = γ ∗

N,p [see Eq. (34)],
the hierarchies among the critical dimensions are directly
given by the corresponding hierarchies among the fixed point
expressions for the anomalous dimensions. In Refs. [47,48],
it was shown that in the incompressible and nonhelical case,
i.e., when α = ρ = 0, the anomalous dimensions γ ∗

N,p in the
two-loop approximation obey the following hierarchies:

γ ∗
N,p < γ ∗

N,p′ , p < p′, (59)

γ ∗
N,0 < γ ∗

N ′,0, N > N ′, (60)

γ ∗
N,1 < γ ∗

N ′,1, N > N ′, (61)

which are valid for arbitrary spatial dimension d � 2 as well
as for all values of ε from the interval 0 < ε < 2. Note
that hierarchy (60) is valid for even values of N and N ′
and (61) is valid for odd values of N and N ′, respectively.
It means that, in the two-loop approximation and, at least,
in the incompressible and nonhelical case, the asymptotic
scaling behavior deep inside the inertial interval (r/L � 1) of
various statistical quantities, e.g., of the single-time two-point
correlation functions of the magnetic field (22), is given by
the anomalous dimensions γ ∗

N,0 for even values of N and
by γ ∗

N,1 for odd values of N . Note also that these properties
of the anisotropic anomalous dimensions are in accordance
with the well-known Kolmogorov’s local isotropy restoration
hypothesis.

The question is whether the hierarchy relations (59)–(61)
remain valid when the studied system is helical and/or
compressible. In this respect, it was shown in Ref. [50] that the
assumption of the spatial parity violation in the incompressible
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FIG. 5. Dependence of the two-loop correction γ
∗(2)
2,0 on the

parameters of compressibility α and helicity ρ for d = 3.

model does not change the anisotropic hierarchies (59)–(61).
It means that even in the helical case the scaling properties
of various quantities are again driven by the anomalous
dimensions γ ∗

N,0 for even values of N and by γ ∗
N,1 for odd

values of N . On the other hand, as was shown in Ref. [49],
the situation in the case when the compressibility of the model
is assumed can be much more complicated. It was shown in
Ref. [49] that in the framework of the two-loop approximation,
the anisotropic hierarchies (59)–(61) are surely fulfilled only
for small enough values of the parameter of compressibility
α. However, as it was discussed in Sec. II, the present model
correctly describes the properties of the compressible system
close enough to its incompressible limit only, i.e., only when
one supposes that α � 1 or at least α < 1. In this respect, we
can consider the violation of anisotropic hierarchies (59)–(61)
in the model with strong enough compressibility as an artifact
of the approach in the framework of which the compressibility
is introduced into the model. Anyway, in what follows, we
shall analyze the properties of the model only in the case with
α < 1 and relatively small values of N (N � 7) for which the
hierarchy relations (59)–(61) are always valid for all values of
ε from physically relevant interval 0 < ε < 2.

In Figs. 5, 7, 9, 11, 13, and 15, the explicit dependence of
the two-loop corrections γ

∗(2)
N,0 for N = 2, 4, and 6 and γ

∗(2)
N,1

for N = 3, 5, and 7 given in Eq. (42) to the corresponding
leading total two-loop anomalous dimensions γ ∗

N,0 and γ ∗
N,1 of

the composite operator FN,0 and FN,1, respectively, which are
defined in Eq. (39), on the parameters of compressibility and
helicity is shown for spatial dimension d = 3. All these figures
show that the two-loop corrections γ

∗(2)
N,0 (for even values

of N ) and γ
∗(2)
N,1 (for odd values of N ), which are negative

in the incompressible nonhelical case (α = ρ = 0), become
even more negative, i.e., they decrease, when the system is
helical. But, on the other hand, they increase significantly
when compressibility of the system is assumed and become
even positive for large enough values of α. This behavior of the
two-loop corrections γ

∗(2)
N,0 (for even values of N ) and γ

∗(2)
N,1 (for

odd values of N ) to the corresponding anomalous dimensions
γ ∗

N,0 and γ ∗
N,1 with respect to the parameter α is valid regardless

of the value of the parameter ρ, i.e, for all |ρ| ∈ [0,1].

FIG. 6. Dependence of the total two-loop anomalous dimension
γ ∗

2,0 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

At the same time, in Figs. 6, 8, 10, 12, 14, and 16, the
corresponding dependence of the total two-loop anomalous
dimensions γ ∗

N,0 for N = 2, 4, and 6 and γ ∗
N,1 for N = 3, 5,

and 7 on the parameters of compressibility and helicity is
shown for d = 3 and ε = 1. As it is evident from all these
figures, there is rather strong dependence of the anomalous di-
mensions on the parameter of helicity ρ, namely, the presence
of helicity in the system leads to the significant decreasing
of the leading total anomalous dimensions toward negative
values and therefore to the more pronounced anomalous
scaling of the correlation functions of the magnetic field (see
Sec. VII). This situation is radically different from the situation
which we have in the framework of the Kraichnan model
of passively advected scalar quantity where the anomalous
dimensions of the corresponding leading composite operators
are helicity blind [41] (see also the next section), i.e., they
do not depend on the helicity parameter at all (at least at
the two-loop level of approximation) which leads to the fact
that the scaling properties of various single-time two-point
correlation functions of the passively advected scalar field are

FIG. 7. Dependence of the two-loop correction γ
∗(2)
3,1 on the

parameters of compressibility α and helicity ρ for d = 3.
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FIG. 8. Dependence of the total two-loop anomalous dimension
γ ∗

3,1 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

also independent of the presence of the spatial parity violation
in the turbulent environment [41].

It is also evident from Figs. 6, 8, 10, 12, 14, and 16
that when the small enough compressibility of the turbulent
system is assumed, i.e., when α � 1, then the leading total
anomalous dimensions γ ∗

N,0 (for even values of N ) and
γ ∗

N,1 (for odd values of N ) also decrease when α increases.
However, this is true only for small and moderate values of
the parameter |ρ|. On the other hand, when the spatial parity
violation is large enough, i.e., when |ρ| ∼ 1, the situation is
opposite, namely, even small compressibility of the system
increases the values of the helical two-loop leading total
anomalous dimensions. It is also important to stress that
while the small compressibility (α � 1) of the system leads
to the decreasing of the leading two-loop total anomalous
dimensions (at least in the nonhelical case ρ = 0 as well
as in the cases when the spatial parity violation is small
enough), the compressibility seriously increases the values
of the total two-loop anomalous dimensions independently of

FIG. 9. Dependence of the two-loop correction γ
∗(2)
4,0 on the

parameters of compressibility α and helicity ρ for d = 3.

FIG. 10. Dependence of the total two-loop anomalous dimension
γ ∗

4,0 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

the value of the helicity parameter starting from N = 4 (see
Figs. 10, 12, 14, and 16). As for the leading total two-loop
anomalous dimensions γ ∗

2,0 and γ ∗
3,1, the situation is a little bit

different (see Figs. 6 and 8), namely, here the compressibility
of the environment decreases the values of these anomalous
dimensions for all values of α from the interval 0 � α � 1 for
small enough absolute values of the parameter ρ.

The simultaneous dependence of the total two-loop anoma-
lous dimensions γ ∗

N,0 (for even values of N = 2, 4, and 6) and
γ ∗

N,1 (for odd values of N = 3, 5, and 7) on the parameter of
compressibility α and on the spatial dimension d � 2 is shown
in Figs. 17–22 for ρ = 0 (let us note once more that the helicity
of the system has sense only for d = 3) and ε = 1. As it follows
from these figures, the leading total two-loop anomalous
dimensions increase with increasing α for N > 2 for spatial
dimension d = 2 (for N = 2 it is a constant, namely, γ ∗

2,0 = −1
for d = 2). As for the three-dimensional case, the situation is
more complicated as was already discussed above, namely, for
small enough values of the parameter of compressibility α all

FIG. 11. Dependence of the two-loop correction γ
∗(2)
5,1 on the

parameters of compressibility α and helicity ρ for d = 3.
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FIG. 12. Dependence of the total two-loop anomalous dimension
γ ∗

5,1 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

leading total two-loop anomalous dimensions decrease when
α increases. However, for given value N � 4 there exists the
value α from the interval 0 < α < 1 starting from which the
corresponding leading total two-loop anomalous dimension
increases. On the other hand, the leading total two-loop
anomalous dimensions decrease with increasing α < 1 for all
spatial dimensions d � 4 (at least up to N = 7).

VI. COMPARISON OF THE KAZANTSEV-KRAICHAN
MODEL WITH THE KRAICHNAN MODEL OF PASSIVELY

ADVECTED SCALAR FIELD

It is also instructive to investigate the properties of the
anomalous dimensions of the composite operators (28) which
play the central role in the investigation of the anomalous
scaling of the correlation functions of the magnetic field in the
framework of the Kazantsev-Kraichnan model studied in the
previous section in comparison to the corresponding two-loop
anomalous dimensions of the important composite operators

FIG. 13. Dependence of the two-loop correction γ
∗(2)
6,0 on the

parameters of compressibility α and helicity ρ for d = 3.

FIG. 14. Dependence of the total two-loop anomalous dimension
γ ∗

6,0 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

in the Kraichnan model of a passively advected scalar quantity
[35,36,43].

In contrast to the Kazantsev-Kraichnan model of the passive
magnetic field in the framework of which the central role in the
investigation of the anomalous scaling properties of the model
is played by the composite operators (28), i.e., by the operators
built directly from the magnetic field, in the framework of
the Kraichnan model of a passively advected scalar field the
crucial role in analysis of the anomalous scaling is played by
the composite operators built solely of the gradients of the
scalar field θ (x) [35], namely,

F ′
N,p = ∂i1θ . . . ∂ip θ (∂θ · ∂θ )l , N = 2l + p. (62)

Note that the anomalous dimensions of these operators are
known up to the three-loop approximation but only in the
incompressible and nonhelical case [36]. It is also known
that the anomalous dimensions of the operators (62) in the
framework of the Kraichnan model do not depend on the
helicity at least up to the two-loop approximation [41]. In

FIG. 15. Dependence of the two-loop correction γ
∗(2)
7,1 on the

parameters of compressibility α and helicity ρ for d = 3.
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FIG. 16. Dependence of the total two-loop anomalous dimension
γ ∗

7,1 on the parameters of compressibility α and helicity ρ for d = 3
and ε = 1.

addition, the dependence of the two-loop anomalous dimen-
sions of the composite operators (62) on the compressibility of
the turbulent environment in the framework of the Kraichnan
model was studied in Ref. [43].

The general two-loop expressions for the anomalous di-
mensions of the operators (62) can be written in analogy with
Eq. (39), namely,

γ ′∗
N,p = γ

′∗(1)
N,p ε + γ

′∗(2)
N,p ε2, (63)

where we have used the prime to denote the fact that the
expressions are related to the composite operators (62) in
the framework of the Kraichnan model describing passive
advection of a scalar quantity. Here, the one-loop contribution
γ

′∗(1)
N,p has the following form (see, e.g., Ref. [43] for details):

γ
′∗(1)
N,p = −{(N − p)(d + N + p − 2)[(d + 1)(d − 1 + α)

− 2α] + 2N (N − 1)(d − 1)(α − 1)}/
[2(d + 2)(d − 1)(d − 1 + α)], (64)

FIG. 17. Dependence of the total two-loop anomalous dimension
γ ∗

2,0 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.

FIG. 18. Dependence of the total two-loop anomalous dimension
γ ∗

3,1 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.

which depends explicitly on the compressibility parameter α.
In the incompressible case α = 0 one obtains

γ
′∗(1)
N,p = −{(N − p)(d + N + p − 2)(d + 1)

− 2N (N − 1)}/[2(d + 2)(d − 1)]. (65)

It is evident that the expression (65) is equal to the
corresponding expression for the one-loop contribution γ

∗(1)
N,p

to the anomalous dimensions γN,p for the composite operators
(28) given in Eq. (41), i.e., we have

γ
∗(1)
N,p = γ

′∗(1)
N,p (66)

for α = 0. However, this equality between the anomalous
dimensions of the two sets of completely different com-
posite operators in the Kraichnan and Kazantsev-Kraichnan
model, respectively, is valid only at the one-loop level of
approximation in the incompressible case. As it was shown in
Refs. [47,48], this “universality” of the anomalous dimensions

FIG. 19. Dependence of the total two-loop anomalous dimension
γ ∗

4,0 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.
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FIG. 20. Dependence of the total two-loop anomalous dimension
γ ∗

5,1 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.

is destroyed starting from the second-order approximation
even in the incompressible case. As was already mentioned, the
two-loop corrections γ

′∗(2)
N,p to the anomalous dimensions of the

composite operators (62) in the framework of the Kraichnan
model with compressibility was found in Ref. [43]. Here, we
present them in a little bit different representation, namely,
in an integral representation, which is suitable for direct
comparison with the corresponding two-loop contributions to
the anomalous dimensions of the composite operators (28) in
the framework of the Kazentsev-Kraichnan model. Thus, in
the integral representation we have

γ
′∗(2)
N,p = −Sd−1

Sd

2d

(d − 1)(d + 2)(d − 1 + α)2

×
∫ 1

0
dx(1 − x2)

d−3
2 {C2W

′
2Y1

+ (C3W
′
3 + 2C4W

′
4)Y2/(d + 4)}, (67)

FIG. 21. Dependence of the total two-loop anomalous dimension
γ ∗

6,0 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.

FIG. 22. Dependence of the total two-loop anomalous dimension
γ ∗

7,1 on the parameter of compressibility α and on the spatial
dimension d for ρ = 0 and ε = 1.

where C2, C3, and C4 are given in Eqs. (44)–(46), Y1 and Y2

are defined in Eqs. (51) and (52), respectively, and

W ′
2 =

√
1 − x2[1 − x2 − α(1 − 2x2) − α2x2], (68)

W ′
3 = (1 − x2)(7 − 3d − 4x2) − α[15 − 26x2 + 8x4

+ d(2 + x2)] − α2(2 + 11x2 − 4x4), (69)

and

W ′
4 = (1 − x2)2 − 2α(1 − x2)(2 − x2)

−α2(2 + 2x2 − x4). (70)

Looking at the expressions given in Eqs. (42) and (67), it is
clear that at the two-loop level of approximation the anomalous
dimensions for composite operators (28) in the framework
of the Kazantsev-Kraichnan model of a passively advected
vector (magnetic) field and the anomalous dimensions of the
composite operators (62) in the framework of the Kraichnan
model of a passively advected scalar field are different even in
the incompressible and nonhelical case as it was discussed in
detail in Ref. [48].

Here, we shall concentrate our attention on the behavior
of the one- and the two-loop expressions for the anomalous
dimensions γ ∗

N,p and γ ′∗
N,p as functions of the compressibility

parameter α. In this respect, in Figs. 23–28 the explicit depen-
dence of the leading one-loop and total two-loop anomalous
dimensions, i.e., γ ∗(1)

N,0 ε, γ
′∗(1)
N,0 ε, γ ∗

N,0, and γ ′∗
N,0 for even values

of N and γ
∗(1)
N,1 ε, γ

′∗(1)
N,1 ε, γ ∗

N,1, and γ ′∗
N,1 for odd values of N , on

the parameter α is shown for d = 3, ρ = 0, and ε = 1 and for
values of N up to N = 7. Let us note also that in the case with
ε = 1, the one-loop anomalous dimensions γ

∗(1)
N,p ε and γ

′∗(1)
N,p ε

are equal directly to γ
∗(1)
N,p and γ

′∗(1)
N,p , respectively, for arbitrary

values of N and p. Therefore, for simplicity, in Figs. 23–28
we have written γ

∗(1)
N,p and γ

′∗(1)
N,p with corresponding N and p

instead of more correct expressions γ
∗(1)
N,p ε and γ

′∗(1)
N,p ε.
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FIG. 23. Dependence of the one-loop anomalous dimensions
γ

∗(1)
2,0 ε and γ

′∗(1)
2,0 ε and total two-loop anomalous dimensions γ ∗

2,0 and
γ ′∗

2,0 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
2,0 ε ≡ γ

∗(1)
2,0 and γ

′∗(1)
2,0 ε ≡ γ

′∗(1)
2,0 .

Now, looking at Figs. 23–28 one can immediately see
rather significant difference between behavior of the leading
anomalous dimensions in the Kraichnan model and in the
Kazantsev-Kraichnan model in the one-loop as well as in the
two-loop level of approximation in the most interesting case
(at least from the physical point of view) with d = 3. First of
all, as it follows from Eq. (66), the leading one-loop anomalous
dimensions γ

∗(1)
N,0 ε for even N and γ

∗(1)
N,1 ε for odd N are equal

to γ
′∗(1)
N,0 ε and γ

′∗(1)
N,1 ε, respectively, in the incompressible case,

i.e., when α = 0. However, the compressibility of the cor-
responding turbulent environments destroys this universality
of the anomalous dimensions even at the one-loop level of
approximation (see the dashed curves in Figs. 23–28) and it is

FIG. 24. Dependence of the one-loop anomalous dimensions
γ

∗(1)
3,1 ε and γ

′∗(1)
3,1 ε and total two-loop anomalous dimensions γ ∗

3,1 and
γ ′∗

3,1 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
3,1 ε ≡ γ

∗(1)
3,1 and γ

′∗(1)
3,1 ε ≡ γ

′∗(1)
3,1 .

FIG. 25. Dependence of the one-loop anomalous dimensions
γ

∗(1)
4,0 ε and γ

′∗(1)
4,0 ε and total two-loop anomalous dimensions γ ∗

4,0 and
γ ′∗

4,0 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
4,0 ε ≡ γ

∗(1)
4,0 and γ

′∗(1)
4,0 ε ≡ γ

′∗(1)
4,0 .

evident that the dependence of the leading one-loop anomalous
dimensions γ

∗(1)
N,0 ε and γ

∗(1)
N,1 ε on the compressibility parameter

α in the framework of the Kazantsev-Kraichnan model is much
more pronounced than in the case of the anomalous dimensions
γ

′∗(1)
N,0 ε and γ

′∗(1)
N,1 ε in the framework of the Kraichnan model

of a scalar admixture. More precisely, the leading one-loop
anomalous dimensions for the Kraichnan model as well as
the corresponding leading one-loop anomalous dimensions
for the Kazantsev-Kraichnan model decrease (they become
more negative) when the parameter of compressibility α

increases [except for the anomalous dimension γ
′∗(1)
2,0 ε which

remains constant (see Fig. 23)], however, the decreasing of the
anomalous dimensions γ

∗(1)
N,0 ε and γ

∗(1)
N,1 ε of the vector model

FIG. 26. Dependence of the one-loop anomalous dimensions
γ

∗(1)
5,1 ε and γ

′∗(1)
5,1 ε and total two-loop anomalous dimensions γ ∗

5,1 and
γ ′∗

5,1 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
5,1 ε ≡ γ

∗(1)
5,1 and γ

′∗(1)
5,1 ε ≡ γ

′∗(1)
5,1 .
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FIG. 27. Dependence of the one-loop anomalous dimensions
γ

∗(1)
6,0 ε and γ

′∗(1)
6,0 ε and total two-loop anomalous dimensions γ ∗

6,0 and
γ ′∗

6,0 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
6,0 ε ≡ γ

∗(1)
6,0 and γ

′∗(1)
6,0 ε ≡ γ

′∗(1)
6,0 .

as function of α is considerably faster than the decreasing of
the anomalous dimensions γ

′∗(1)
N,0 ε and γ

′∗(1)
N,1 ε important in the

case of the scalar admixture.
However, the fundamental difference between the leading

anomalous dimensions of the composite operators (28) and
(62) becomes apparent at the two-loop level of approximation.
As it follows from Figs. 23–28, there is an essential difference
between the leading two-loop anomalous dimensions γ ∗

N,0 and
γ ∗

N,1, which are crucial for the analysis of the Kazantsev-
Kraichnan model, and the corresponding two-loop anomalous
dimensions γ ′∗

N,0 and γ ′∗
N,1, which play the central role in

the analysis of scaling properties in the framework of the
Kraichnan model, even in the incompressible case. At the

FIG. 28. Dependence of the one-loop anomalous dimensions
γ

∗(1)
7,1 ε and γ

′∗(1)
7,1 ε and total two-loop anomalous dimensions γ ∗

7,1 and
γ ′∗

7,1 on the compressibility parameter α for d = 3, ρ = 0, and ε = 1,

i.e., here γ
∗(1)
7,1 ε ≡ γ

∗(1)
7,1 and γ

′∗(1)
7,1 ε ≡ γ

′∗(1)
7,1 .

FIG. 29. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 2 and

p = 0,2 on the compressibility parameter α for d = 3, ρ = 0, and
ε = 1.

same time, when the compressibility of the corresponding
turbulent systems is considered, while the two-loop anomalous
dimensions γ ′∗

N,0 and γ ′∗
N,1 given in Eq. (63) are increasing

functions of α [again except for the two-loop anomalous
dimension γ ′∗

2,0 which remains constant (see Fig. 23) and except
for γ ′∗

3,1 which slightly decreases as the function of α for
small enough values of α] the leading two-loop anomalous
dimensions γ ∗

N,0 and γ ∗
N,1 are decreasing functions of α, at

least for small enough values of α (α � 1), for all values of
N � 2. Note that for given value of N and for large enough
values of α, the two-loop anomalous dimensions γ ∗

N,0 and
γ ∗

N,1 become increasing functions of α as in the case of the
two-loop anomalous dimensions γ ′∗

N,0 and γ ′∗
N,1. However, this

behavior cannot be considered as decisive for us because, as
was discussed in Sec. II, the physically relevant region of the
compressibility parameter is α � 1.

It is also instructive to demonstrate graphically the validity
of the anisotropy hierarchies (59)–(61) among the two-loop
anomalous dimensions (39) of the composite operators (28) in
the compressible case and compare them with the correspond-
ing hierarchies which are valid among the two-loop anomalous
dimensions (63) of the composite operators (62). The validity
of the hierarchies is shown explicitly in Figs. 29–34 for
various values of N up to N = 7. From all these figures it
is evident that the anisotropy hierarchies (59)–(61) discussed
in the previous section are really valid (at least when the
parameter of compressibility is not too large, i.e., α < 1).
It means that the main role in the analysis of the scaling
properties of the correlation functions of the magnetic field
(see the next section) will be really played by the anomalous
dimensions γ ∗

N,0 for even values of N and by γ ∗
N,1 for odd

values of N in accordance with the incompressible case studied
in Refs. [47,48].

Finally, for completeness, let us also show explicitly the
simultaneous dependence of the leading two-loop anomalous
dimensions γ ′∗

N,0 for even N and γ ′∗
N,1 for odd N of the scalar

Kraichnan problem on the spatial dimension d and on the
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FIG. 30. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 3 and

p = 1,3 on the compressibility parameter α for d = 3, ρ = 0, and
ε = 1.

compressibility parameter α (remind that they do not depend
at all on the helicity of the turbulent environment, i.e., on the
parameter ρ) to compare them to the corresponding behavior
of the two-loop anomalous dimensions γ ∗

N,0 and γ ∗
N,1 shown

in Figs. 17–22 for various N up to N = 7. The behavior of
the two-loop anomalous dimensions γ ′∗

N,0 for even N and
γ ′∗

N,1 for odd N , respectively, as functions of d and α is
shown in Figs. 35–40 for N = 1, . . . ,7. Direct comparison
of Figs. 35–40 with the corresponding Figs. 17–22 again
demonstrates an essential difference in the behavior of the
leading two-loop anomalous dimensions γ ′∗

N,0 and γ ′∗
N,1 of the

composite operators (62) in comparison with the leading two-
loop anomalous dimensions γ ∗

N,0 and γ ∗
N,1 of the composite

operators (28).

FIG. 31. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 4 and

p = 0,2,4 on the compressibility parameter α for d = 3, ρ = 0, and
ε = 1.

FIG. 32. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 5 and

p = 1,3,5 on the compressibility parameter α for d = 3, ρ = 0, and
ε = 1.

The most visible difference is observed between Figs. 17
and 35 for N = 2 and p = 0. As it follows from Fig. 35, the
two-loop anomalous dimension γ ′∗

2,0 does not depend at all
on the compressibility as well as on the value of the spatial
dimension of the turbulent system studied in the framework of
the Kraichnan model of a passively advected scalar quantity.
On the other hand, the situation is completely different in the
case of the two-loop anomalous dimension γ ∗

2,0 which strongly
depends on the parameter of compressibility α as well as on
the spatial dimension d (see Fig. 17). Let us note, however,
that for the spatial dimension d = 2 the anomalous dimension
γ ∗

2,0 is independent of α, i.e., it is a constant, and is equal to
γ ′∗

2,0. This observation demonstrates the known fact that in two
dimensions the magnetic field behaves formally as a scalar

FIG. 33. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 6 and

p = 0,2,4,6 on the compressibility parameter α for d = 3, ρ = 0,
and ε = 1.
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FIG. 34. Dependence of the total two-loop anomalous dimen-
sions γ ∗

N,p (solid curves) and γ ′∗
N,p (dashed curves) for N = 7 and

p = 1,3,5,7 on the compressibility parameter α for d = 3, ρ = 0,
and ε = 1.

field, the fact which is represented here by equality of the
corresponding anomalous dimensions and therefore is valid
for all anomalous dimensions with arbitrary values of N and
p, i.e.,

γ ∗
N,p(α) = γ ′∗

N,p(α), d = 2. (71)

There is also a significant difference in the behavior of the
anomalous dimensions γ ∗

3,1 (Fig. 18) and γ ′∗
3,1 (Fig. 36), namely,

while the anomalous dimension γ ′∗
3,1 is strictly increasing

function as the function of the spatial dimension d for arbitrary
value of 0 � α � 1 the behavior of the anomalous dimension
γ ∗

3,1 is much more complicated (see Fig. 18). Of course, it is
easy to check that γ ∗

3,1 = γ ′∗
3,1 for d = 2 in accordance with

general relation (71).

FIG. 35. Dependence of the total two-loop anomalous dimension
γ ′∗

2,0 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.

FIG. 36. Dependence of the total two-loop anomalous dimension
γ ′∗

3,1 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.

Further, starting from N � 4 the behavior of the anomalous
dimensions γ ′∗

N,0 for even N and γ ′∗
N,1 for odd N becomes

qualitatively very similar as is demonstrated in Figs. 37–40
for N = 4, 5, 6, and 7 but different from the “universal”
behavior of the corresponding anomalous dimensions γ ∗

N,0
and γ ∗

N,1 demonstrated in Figs. 19–22. In this case, maybe the
most visible difference between the behavior of the anomalous
dimensions γ ′∗

N,0 and γ ′∗
N,1 and the anomalous dimensions γ ∗

N,0
and γ ∗

N,1 is the fact that while the anomalous dimensions γ ′∗
N,0

and γ ′∗
N,1 weakly depend on the parameter of compressibility

for large enough values of the spatial dimension (in the
limit d → ∞ they become constants), the dependence of
the anomalous dimensions γ ∗

N,0 and γ ∗
N,1 on the parameter

α become very strong for large enough values of d, namely,
they become linearly decreasing functions of the parameter α

FIG. 37. Dependence of the total two-loop anomalous dimension
γ ′∗

4,0 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.
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FIG. 38. Dependence of the total two-loop anomalous dimension
γ ′∗

5,1 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.

(see Figs. 19–22). Note that this difference is also valid for the
anomalous dimensions with N = 2 and 3 (compare Figs. 17
and 18 with Figs. 35 and 36). In addition, again, in accordance
with the general relation (71), the leading two-loop anomalous
dimensions γ ∗

N,0 and γ ∗
N,1 of our vector problem are equal to

the corresponding anomalous dimensions γ ′∗
N,0 and γ ′∗

N,1 of the
scalar problem for d = 2 regardless of the value of α.

This behavior of the total two-loop anomalous dimensions
γ ∗

N,0, γ ′∗
N,0 (for even values of N ) and γ ∗

N,1, γ ′∗
N,1 (for odd

values of N ) in the limit d → ∞ is related to the fact that in
this limit the two-loop corrections γ

∗(2)
N,p as well as γ

′∗(2)
N,p vanish

regardless of the values of N and p as well as regardless of
the value of α. It means that, in this case, the total anomalous
dimensions γ ∗

N,p and γ ′∗
N,p of the composite operators (28) and

(62) are completely determined by the one-loop corrections

FIG. 39. Dependence of the total two-loop anomalous dimension
γ ′∗

6,0 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.

FIG. 40. Dependence of the total two-loop anomalous dimension
γ ′∗

7,1 on the parameter of compressibility α and on the spatial
dimension d for ε = 1.

γ
∗(1)
N,p and γ

′∗(1)
N,p given in Eqs. (40) and (64), namely,

γ ′∗
N,p = γ

′∗(1)
N,p ε = −N − p

2
ε, (72)

which is evidently independent of α, and

γ ∗
N,p = γ

∗(1)
N,p ε = −

[
N − p

2
+ N (N − 1)

2
α

]
ε, (73)

which is an explicit linear function of α.

VII. ANOMALOUS SCALING OF THE SINGLE-TIME
CORRELATION FUNCTIONS OF THE MAGNETIC FIELD

IN THE COMPRESSIBLE AND HELICAL TURBULENT
ENVIRONMENT

As was discussed in Sec. IV, our main aim is to investigate
the scaling properties of the single-time two-point correlation
functions of the magnetic field defined in Eq. (22) and to
find their dependence on the parameters α and ρ which
represent compressibility and spatial parity violation of the
turbulent system described by the Kraichnan-Kazantsev model
defined in Sec. II. In the strictly isotropic case, the asymptotic
inertial-range behavior of the correlation functions (22) is
given in Eq. (30) and is defined by the anomalous dimensions
γ ∗

N of the isotropic composite operators (29). In the two-loop
approximation, these isotropic anomalous dimensions are
equal to the anomalous dimensions γ ∗

N,p for p = 0 which are
given in Eq. (39) with (40) and (42). Note that in the isotropic
case N is always an even number (see the corresponding
discussion in Sec. IV).

On the other hand, in the anisotropic case the asymptotic
inertial-range behavior of the correlation functions (22) again
has the formal form (30) valid in the isotropic case, but now all
anomalous dimensions γ ∗

N must be replaced by the anomalous
dimensions γ ∗

N,pmin
with corresponding values of pmin which

give the minimal values of γ ∗
N,p (see, e.g., Ref. [16] for details).
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Note also that in the anisotropic case N can be an even as well
as an odd number.

Thus, using the hierarchy relations (59)–(61), which are
valid in our model at the one-loop as well as at the two-loop
level of approximation at least for not very large values of the
compressibility parameter α (see Figs. 29–34 as well as the
corresponding discussion in Ref. [49]), one can immediately
write the final general asymptotic expressions for the inertial-
range behavior of the correlation functions BN−m,m(r) (22):

BN−m,m(r) ∼ rγ ∗
[N,0]−γ ∗

[N−m,0]−γ ∗
[m,0] , (74)

which holds for even values of N and m,

BN−m,m(r) ∼ rγ ∗
[N,0]−γ ∗

[N−m,1]−γ ∗
[m,1] , (75)

which is valid for even value of N and odd value of m, and

BN−m,m(r) ∼ rγ ∗
[N,1]−γ ∗

[N−m,0]−γ ∗
[m,1] , (76)

for odd values of N and m. The remaining (the fourth)
possibility with odd value of N and even value of m is already
included in the last case, therefore, it is not necessary to write
it separately.

Now, using the explicit fixed point expressions for the one-
and the two-loop corrections to the anomalous dimensions (39)
given in Eqs. (40) and (42), one can write (at the two-loop level
of approximation)

BN−m,m(r) ∼ rζN,m = rζ
(1)
N,mε+ζ

(2)
N,mε2

, (77)

where the one-loop corrections ζ
(1)
N,m are

ζ
(1)
N,m = −m(N − m)(d − 1)[1 + α(d + 1)]

(d + 2)(d − 1 + α)
(78)

for even values of N and m as well as for odd values of N and
m, and

ζ
(1)
N,m = − (d − 1){m(N − m)[1 + α(d + 1)] + d + 1 + α}

(d + 2)(d − 1 + α)
,

(79)

which is valid for even values of N and odd values of m. On
the other hand, the two-loop corrections ζ

(2)
N,m in Eq. (77) have

the form

ζ
(2)
N,m = −Sd−1

Sd

d

(d + 2)(d − 1 + α)2

×
∫ 1

0
dx(1 − x2)

d−3
2 {

√
1 − x2

× [(d − 2)D1(W1Y1 + 2ρ2δ3dY3) + D2W2Y1]

− 2(D3W3 + D4W4)Y2/(d + 4)}, (80)

where functions Wi,i = 1, . . . ,4 and Yi, i = 1,2,3, are given
in Eqs. (47)–(53) and

D1 = 2m(N − m), (81)

D2 = 2m(N − m), (82)

D3 = m(N − m)(3N + 2d − 4), (83)

D4 = 3m(N − 4)(N − m) (84)

FIG. 41. Dependence of the total two-loop scaling exponent ζ2,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

for even values of N and m,

D1 = 2[m(N − m) + d + 1], (85)

D2 = 2[m(N − m) − 1], (86)

D3 = m(N − m)(3N + 2d − 4) + (N − 4)(d + 1), (87)

D4 = 3(N − 4)[m(N − m) − 1] (88)

for even N and odd m, and

D1 = 2m(N − m), (89)

D2 = 2m(N − m), (90)

D3 = (N − m)[m(3N + 2d − 4) − d − 1], (91)

D4 = 3(N − m)[m(N − 4) + 1], (92)

which are valid for odd values of N and m.
The behavior of all independent scaling exponents ζN,m up

to N = 7 for the single-time two-point correlation functions
BN−m,m (22) as functions of the parameters α and ρ is shown
explicitly in Figs. 41–52 for d = 3 and ε = 1. Looking at

FIG. 42. Dependence of the total two-loop scaling exponent ζ3,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.
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FIG. 43. Dependence of the total two-loop scaling exponent ζ4,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

these figures, one can immediately conclude that the spatial
parity violation of the turbulent environment (represented by
the parameter ρ) has strong impact on the scaling properties of
the correlation functions BN−m,m, namely, the corresponding
scaling exponents become essentially more negative, i.e., the
scaling behavior of the functions BN−m,m become significantly
more anomalous. Note that this behavior is in agreement
with recent experimental measurements presented in Ref. [52]
where it was shown that the intermittent behavior of the
magnetic field increases with the injected helicity. On the other
hand, when compressibility of the system is considered, the
situation seems to be more complicated. It is evident from
Figs. 41–52 that there is a significantly different behavior of
the scaling exponents ζN,m for small values of N , namely, for
N = 2, 3, 4, and 5, in comparison to the scaling exponents
for N � 6. Let us discuss it in more detail.

First, looking at Fig. 41 one can see that for small
enough values of the parameter ρ the scaling exponent ζ2,1

is decreasing function of the parameter α in the whole
interval 0 � α � 1. However, in the case when the helicity

FIG. 44. Dependence of the total two-loop scaling exponent ζ4,2

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

FIG. 45. Dependence of the total two-loop scaling exponent ζ5,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

of the turbulent system approaches its maximal absolute value
|ρ| = 1, the compressibility begins to increase the value of the
scaling exponent ζ2,1, i.e., makes the scaling behavior of the
function B1,1 less anomalous even for small values of α.

A little bit different behavior can be seen in the case of the
scaling exponent ζ3,1 which describes the scaling behavior of
the correlation function B2,1 (see Fig. 42). Here, the scaling
exponent ζ3,1 is decreasing function of α for all possible values
of ρ if the parameter α is small enough. Only for large enough
values of α as well as for large enough value of ρ (ρ → 1),
the scaling exponent ζ3,1 increases as the function of α. This
behavior is rather specific because it is the only case when
a scaling exponent ζN,m decreases as the function of α for
the system with the maximal violation of the spatial parity
(|ρ| = 1).

A decreasing of the scaling exponents ζN,m as the functions
of the compressibility parameter α for small enough absolute
values of the helicity parameter ρ can also be seen in the cases
with N = 4 and 5, i.e., for the correlation functions B3,1, B2,2,
B4,1, and B2,3 (see Figs. 43–46). As it follows from these
figures, this behavior is valid, however, only for small enough
values of α. For relatively large values of α, these scaling

FIG. 46. Dependence of the total two-loop scaling exponent ζ5,3

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.
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FIG. 47. Dependence of the total two-loop scaling exponent ζ6,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

exponents become increasing functions of α regardless of the
absolute value of ρ. At the same time, when |ρ| tends to 1,
then these scaling exponents become increasing functions of
α for all its values.

Finally, looking at Figs. 47–52 it is evident that the scaling
exponents ζN,m for N = 6 and 7, i.e., for the correlation
functions B5,1, B4,2, B3,3, B6,1, B4,3, and B2,5, are always
increasing functions of α for all absolute values of the helicity
parameter ρ. Note that the similar behavior is also valid for all
scaling exponents ζN,m with N � 8.

In the end, let us note that the smallest values of the
scaling exponents ζN,m are always obtained for α = 0 and
|ρ| = 1. There is, however, one exception from this general
rule, namely, the scaling exponent ζ3,1 for the correlation
function B2,1 (see Fig. 42), for which the minimal value is
obtained for |ρ| = 1 and a nonzero value of the compressibility
parameter α.

FIG. 48. Dependence of the total two-loop scaling exponent ζ6,2

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

FIG. 49. Dependence of the total two-loop scaling exponent ζ6,3

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

VIII. PERSISTENCE OF LARGE-SCALE ANISOTROPY AT
SMALL SCALES IN COMPRESSIBLE AND HELICAL

TURBULENT SYSTEM

To complete our analysis, let us also discuss the problem
of isotropy restoration in the presence of an anisotropy of
the turbulent system, namely, in our case, the presence of the
large-scale anisotropy. As was shown in Ref. [48], the two-
loop corrections to the incompressible and nonhelical form of
the present model, i.e., in the model with α = ρ = 0, lead to
more pronounced persistence of the anisotropy in the inertial
range in comparison with the corresponding one-loop analysis
[16], especially in the phenomenologically most interesting
three-dimensional case. Here, our aim is to find the impact
of the presence of helicity as well as compressibility of the
turbulent environment on the persistence of the large-scale
anisotropy deep inside the inertial range and, to this end (see,
e.g., Ref. [16] for all details), we shall study the behavior of the
dimensionless ratios of the single-time two-point correlation

FIG. 50. Dependence of the total two-loop scaling exponent ζ7,1

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.
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FIG. 51. Dependence of the total two-loop scaling exponent ζ7,3

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

functions of the magnetic field BN−m,m (22), namely,

RN ≡ BN−1,1

B
N/2
1,1

=
〈
bN−1

r (t,x)br (t,x′)
〉

〈br (t,x)br (t,x′)〉N/2
. (93)

Now, using the generalization of the asymptotic expression
given in Eq. (30) to the anisotropic case together with the
hierarchy relations discussed in Sec. V, one can immediately
write the explicit dependence of RN on the ratios r/ l and r/L,
namely,

R2n+1 ∝
(

r

l

)−γ ∗
2n,0

(
r

L

)γ ∗
2n+1,1−(n+1/2)γ ∗

2,0

, (94)

which is valid for odd values of N = 2n + 1 and

R2n+2 ∝
(

r

l

)−γ ∗
2n+1,1

(
r

L

)γ ∗
2n+2,0−(n+1)γ ∗

2,0

, (95)

valid for even values of N = 2n + 2 [16], where, in our
case, various γ ∗

x,y represent the corresponding two-loop
expressions for the anomalous dimensions given in Eqs. (39),
(40), and (42).

FIG. 52. Dependence of the total two-loop scaling exponent ζ7,5

on the parameters α and ρ for spatial dimension d = 3 and for ε = 1.

To estimate the persistence of the anisotropy deep inside the
inertial range, it is convenient to write the dependence of the
ratios (94) and (95) on the Péclet number Pe ≡ (L/l)ε which
is formally obtained by substituting l instead of r in Eqs. (94)
and (95) [24]. One obtains

R2n+1 ∝ Pe[(n+1/2)γ ∗
2,0−γ ∗

2n+1,1]/ε, (96)

R2n+2 ∝ Pe[(n+1)γ ∗
2,0−γ ∗

2n+2,0]/ε, (97)

and, in the two-loop approximation, we have

R2n+1 ∝ Peξ2n+1 = Peξ
(1)
2n+1+ξ

(2)
2n+1ε, (98)

R2n+2 ∝ Peξ2n+2 = Peξ
(1)
2n+2+ξ

(2)
2n+2ε, (99)

where

ξ
(1)
2n+1 ≡ 2n + 1

2
γ

∗(1)
2,0 − γ

∗(1)
2n+1,1

= (d − 1)[(4n2 − d − 2)(1 + α) + 4αdn2]

2(d + 2)(d − 1 − α)
, (100)

ξ
(1)
2n+2 ≡ (n + 1)γ ∗(1)

2,0 − γ
∗(1)
2n+2,0

= 2n(n + 1)(d − 1)[1 + α(d + 1)]

(d + 2)(d − 1 − α)
(101)

represent the one-loop expressions which explicitly depend on
the compressibility parameter α and which are reduced to the
known one-loop incompressible results discussed in Ref. [16]
in the limit α = 0, namely,

ξ
(1)
2n+1 = 4n2 − d − 2

2(d + 2)
, (102)

ξ
(1)
2n+2 = 2n(n + 1)

d + 2
. (103)

On the other hand, the two-loop corrections are given as
follows:

ξ
(2)
N = Sd−1

Sd

d

(d + 2)(d − 1 + α)2

×
∫ 1

0
dx(1 − x2)

d−3
2 {

√
1 − x2

× [(d − 2)E1(W1Y1 + 2ρ2δ3dY3) + E2W2Y1]

− 2(E3W3 + E4W4)Y2/(d + 4)}, (104)

where functions Wi, i = 1, . . . ,4, and Yi, i = 1,2,3, are given
in Eqs. (47)–(53) and

E1 = 4n2 − d − 2, (105)

E2 = 4n2, (106)

E3 = 2n(2n − 1)(2n + d + 2), (107)

E4 = 4n(n − 1)(2n − 1) (108)

for odd values of N = 2n + 1 and

E1 = 4n(n + 1), (109)

E2 = 4n(n + 1), (110)
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FIG. 53. Dependence of the total two-loop exponent ξ3 on the
parameters α and ρ for spatial dimension d = 3 and for ε = 1.

E3 = 4n(n + 1)(2n + d + 2), (111)

E4 = 8n(n2 − 1) (112)

for even values of N = 2n + 2. It is an easy task to show
that in the limit α = ρ = 0 one comes to the two-loop results
obtained in Ref. [48] [see Eqs. (115) and (116) in Ref. [48]].

In Figs. 53–57, the behavior of the exponents ξN for N =
3, . . . ,7 as functions of α and ρ is shown at the two-loop level
of approximation for real spatial dimension d = 3 and for
ε = 1. From the point of view of persistence of the anisotropy
in the inertial range, the most interesting is the behavior of
the exponents ξN for odd values of N , i.e., the exponents for
the odd-order quantities (93). Note that these quantities are
identically equal to zero by symmetry when the system is
isotropic and their behavior in the helical and compressible
system with large-scale anisotropy is shown in Figs. 53, 55,
and 57 for N = 3, 5, and 7, respectively. However, looking at
these three figures one can observe immediately that there is

FIG. 54. Dependence of the total two-loop exponent ξ4 on the
parameters α and ρ for spatial dimension d = 3 and for ε = 1.

FIG. 55. Dependence of the total two-loop exponent ξ5 on the
parameters α and ρ for spatial dimension d = 3 and for ε = 1.

essentially different behavior of the corresponding exponents
as functions of α and |ρ| for these three cases. Let us discuss
it in detail.

First, let us look at Fig. 53, where the behavior of the
exponent ξ3 is shown explicitly. For α = ρ = 0, in two-loop
approximation, one obtains ξ3 = −0.0235 (for ε = 1) which
was found in Ref. [48]. It means that, in the two-loop
approximation, the function R3 decreases for Pe → ∞ in the
incompressible and nonhelical case but much slower than in
the one-loop approximation for which one has ξ

(1)
3 = −0.1

[16] [see also Eq. (102) for d = 3 and n = 1]. Now, when
the spatial parity violation of the system is assumed, as it
is evident from Fig. 53, the exponent ξ3 decreases as the
function of the parameter |ρ|, i.e., it becomes more negative,
and one can conclude that the persistence of the large-scale
anisotropy becomes less pronounced in the helical system,
at least, if the function R3 is studied. On the other hand,
when the compressibility of the turbulent system is supposed,
the situation is opposite, namely, the exponent ξ3 is rapidly
increasing function of α and it acquires positive values already

FIG. 56. Dependence of the total two-loop exponent ξ6 on the
parameters α and ρ for spatial dimension d = 3 and for ε = 1.

053210-24



SIMULTANEOUS INFLUENCE OF HELICITY AND . . . PHYSICAL REVIEW E 95, 053210 (2017)

FIG. 57. Dependence of the total two-loop exponent ξ7 on the
parameters α and ρ for spatial dimension d = 3 and for ε = 1.

for relatively small values of the parameter α. It means that
the persistence of the anisotropy in the inertial range is much
more pronounced in the compressible systems than in the
incompressible ones, at least, as for the behavior of the function
R3. It is interesting that this behavior of the exponent ξ3 as
the function of α and |ρ| is exceptional because all the other
exponents behave completely in a different way.

As it follows from Figs. 55 and 57, the exponents ξ5 and ξ7

are increasing functions of the absolute value of ρ. It means
that functions R5 and R7 as the functions of Pe increase more
rapidly when turbulent system is helical in contrast to the
corresponding behavior of the function R3. Note that the same
behavior is also valid for all other functions with odd values
N � 9. On the other hand, there is little difference between
the behavior of the exponents ξ5 and ξ7 as for their dependence
on the compressibility parameter α. While the exponent ξ5 is
at the beginning an increasing function of α for small enough
values of |ρ| and then, starting from some value of α, becomes a
decreasing function of α (see Fig. 55) the exponent ξ7 is always
a decreasing function of α regardless of the value of ρ (see
Fig. 57). At the same time, the exponent ξ5 also becomes purely
decreasing function of α for large enough absolute values of
ρ. Note that the behavior of all the other functions ξN with odd
values of N � 9 as functions of the parameter α is similar to
the behavior of the exponent ξ7. Finally, looking at Figs. 55 and
57, it is evident that the most pronounced persistence of the
large-scale anisotropy is demonstrated in the behavior of the
functions RN with odd values of N � 5 in the incompressible
turbulent system (α = 0) with maximal spatial parity violation
|ρ| = 1. However, this is not true for the function R3 for
which the persistence of anisotropy deep inside the inertial
range is the most pronounced in the nonhelical system with an
appropriate value of the parameter of compressibility. Here,
however, it is necessary to bear in mind that our results can be
taken seriously only for small enough values of the parameter
α (see discussion in Sec. II). Anyway, we can conclude that,
depending on the studied function RN with given odd value
of N , one can see that large-scale anisotropy persistence in
the inertial range increases in compressible and/or helical
turbulent environment.

For completeness, in Figs. 54 and 56 the explicit behavior of
the exponents ξ4 and ξ6, which drive the asymptotic behavior of

the functions R4 and R6, respectively, in the limit Pe → ∞, is
shown as functions of the parameters α and |ρ|. It is evident that
the behavior of the exponent ξ4 is similar to the corresponding
behavior of the exponent ξ5 and the behavior of the exponent
ξ6 matches the corresponding behavior of the exponent ξ7.
However, the exponents ξN with even values of N are not
crucial for the analysis of the problem of the persistence of the
anisotropy in the inertial range of the turbulent system because
the corresponding functions RN are nonzero even in the pure
isotropic case.

IX. CONCLUSION

In this paper, we have investigated the scaling properties of
the single-time two-point correlations functions of the passive
weak magnetic field in the framework of the compressible and
helical Kazantsev-Kraichnan model of the kinematic MHD
turbulence in the presence of the large-scale anisotropy by
using the field theoretic RG technique and the OPE in the
second-order (two-loop) approximation. First of all, it is shown
that the IR asymptotic behavior of the model deep inside the
inertial interval has scaling form which is driven by the IR
stable fixed point of the corresponding RG equations [see
Eq. (20)] which depends explicitly on the parameter related to
the description of the compressibility of the studied turbulent
environment but is independent of the presence of the spatial
parity violation (helicity) in the system. Note that the present
model has an important feature, namely, that the IR stable fixed
point is exactly defined by the one-loop calculations (by the
first-order approximation in the corresponding perturbation
expansion), i.e., it has no higher-loop contributions.

On the other hand, it is shown that the single-time two-point
correlation functions of the magnetic field defined in Eq. (22)
exhibit the anomalous scaling behavior related to the nontrivial
singular asymptotic behavior of the corresponding scaling
functions which is investigated by using the OPE technique.
In this respect, the influence of the compressibility and
the helicity of the turbulent environment on the anomalous
dimensions of the leading composite operators in the OPE
(28) with the smallest (the most negative) critical dimensions
is analyzed up to the second-order approximation. The general
two-loop analytic expression for the anomalous dimensions
is found as an explicit function of the parameters which
characterize the compressibility and helicity of the system [see
Eqs. (39), (40), and (42)–(53)] and their anisotropic hierarchies
are discussed. It is shown that for physically acceptable values
of the compressibility parameter (α < 1) as well as for all
possible values of the helicity parameter (0 � |ρ| � 1), the
hierarchy relations (59)–(61) are valid in accordance with the
Kolmogorov’s local isotropy restoration hypothesis.

Further, the properties of the anomalous dimensions of the
composite operators (28) important for our vector model are
compared to the corresponding properties of the anomalous
dimensions of the leading composite operators (62) which play
the central role in the Kraichnan model of a passively advected
scalar field. It is shown that there is a significant difference
between the scaling properties of the passively advected scalar
and vector (magnetic) fields, i.e., that the internal tensor
structure has nontrivial impact on the scaling properties of
passively advected quantities. This difference, which takes
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place already in the incompressible and nonhelical case (see
Ref. [48]), is even more pronounced when the compressibility
and/or spatial parity violation of the turbulent environment
are supposed. First of all, it is shown that while in the case
of the Kraichnan model of passively advected scalar quantity
the anomalous dimensions of the leading composite operators
are helicity blind, the anomalous dimensions of the composite
operators relevant for the Kazantsev-Kraichnan model strongly
depend on the helicity parameter (see Figs. 5–16). It is also
shown that there is also a nontrivial difference between them
as for their dependence on the compressibility parameter
(see Figs. 23–28 as well as Figs. 17–22 and 35–40). As it
follows from Figs. 23–28, while the total two-loop anomalous
dimensions of the composite operators (28) always decrease as
functions of the compressibility parameter when its values are
small enough, the leading total two-loop anomalous dimen-
sions of the composite operators (62) of the scalar model are
increasing functions of the compressibility parameter (the only
exceptions are the anomalous dimensions for N = 2 and 3).

The calculated two-loop anomalous dimensions of the
composite operators (28) are then used for analysis of the
dependence of the scaling exponents of the single-time two-
point correlation functions (22) of various orders on the
compressibility parameter as well as on the helicity parameter.
It is shown that, at least in the two-loop order of approximation,
due to the validity of the anisotropy hierarchies among
the anomalous dimensions of the composite operators (28),
the asymptotic scaling behavior of the correlation functions
(22) inside the inertial interval is driven by the anomalous
dimensions of the operators from the isotropy shell (when the
operator has even order) and of the operators that are the closest
to the isotropic shell (in the case of the operators with odd
orders) for all physically acceptable values of the compress-
ibility and helicity parameters. It is found (see Figs. 41–52)
that the presence of the spatial parity violation in the turbulent
environment can significantly decrease the scaling exponents
of the magnetic correlation functions (22). It means that
the negative scaling exponents of these correlation functions
become even more negative under the influence of helicity, i.e.,
the intermittent behavior of the fluctuations of the magnetic
field in the conductive turbulent environment is more strongly
pronounced when the mirror symmetry is broken in the system.
Note that this pure theoretical result is in agreement with recent
experimental observation obtained in an MHD plasma [52]. On
the other hand, the influence of compressibility on the inertial-
range scaling behavior of the single-time correlation functions
of the magnetic field is more complicated. For small order cor-
relation functions, namely, for B1,1, B2,1, B3,1, B2,2, B4,1, and
B3,2, the corresponding scaling exponents decrease as func-
tions of the compressibility parameter, at least for small enough
values of the compressibility parameter, for small spatial parity
violation in the system (see Figs. 41–46). However, for higher
correlation functions, the corresponding scaling exponents be-
come increasing functions of the compressibility parameter re-
gardless of the value of the helicity parameter (see Figs. 47–52,

where the critical dimensions for the correlation functions
B5,1, B4,2, B3,3, B6,1, B4,3, and B5,2 are shown explicitly).

In addition, we have also performed a detail analysis of
the influence of compressibility and spatial parity violation of
the turbulent environment on the persistence of the large-scale
anisotropy deep inside the inertial interval. For this purpose,
the explicit asymptotic dependence of dimensionless ratios
of the magnetic correlation functions defined in Eq. (93) on
the Péclet number is established. Note that relevant functions
for analyzing of the anisotropy persistence in the inertial
range are the odd-order ratios of the correlation functions
which are identically equal to zero when exact isotropy of
the system is supposed. The corresponding exponents are
found as explicit functions of the compressibility parameter
as well as of the helicity parameter up to the two-loop
approximation [see Eqs. (98)–(112)]. It is shown that, up to
the one exception, namely, the odd ratio with N = 3 (see
Fig. 53), the presence of the helicity in the system leads to
most pronounced persistence of the large-scale anisotropy, i.e.,
the corresponding exponents are increasing functions of the
helicity parameter (see Figs. 55 and 57). On the other hand,
the exponent ξ3 is an increasing function of the compressibility
parameter (at least for physically relevant small values of
the compressibility parameter) regardless of the value of the
helicity parameter (see Fig. 53). At the same time, the exponent
ξ5 is increasing function of the compressibility parameter only
near the nonhelical limit of the system and only for very
small values of the compressibility parameter (see Fig. 55).
Finally, the compressibility always leads to the decreasing
of the exponents ξN for N � 7, i.e., to the less pronounced
persistence of the anisotropy.

The analysis performed in this paper indicates that various
symmetry violations in the turbulent environments can have
a nontrivial impact on the asymptotic scaling properties
of physically important quantities (such as the single-time
correlation functions of the magnetic field studied in the paper).
Although, in this paper, we have analyzed the influence of the
compressibility and the spatial parity violation of the turbulent
system on the statistical properties of the passive magnetic
field in the framework of the Kazantsev-Kraichnan model
where the statistics of the turbulent velocity field is assumed
to be Gaussian, nevertheless, we suppose that they correctly
describe the properties of real systems at least qualitatively.
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and R. Remecký, ibid. 80, 046302 (2009); A. V. Gladyshev, E.
Jurčišinová, M. Jurčišin, R. Remecký, and P. Zalom, ibid. 86,
036302 (2012); N. V. Antonov and M. M. Kostenko, ibid. 90,
063016 (2014).

[45] L. Ts. Adzhemyan, N. V. Antonov, and A. V. Runov, Phys.
Rev. E 64, 046310 (2001); M. Hnatič, M. Jurčišin, A. Mazzino,
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[48] E. Jurčišinová and M. Jurčišin, J. Phys. A: Math. Theor. 45,
485501 (2012).
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