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We perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application
of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement
fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on
the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk
implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics
code RAGE. The impact of the particle mean free path on the implosion is also explored. In a second study, we focus
on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic
studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution
of fluid instabilities, originating from the higher resolution of RAGE and statistical noise in the kinetic studies.
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I. INTRODUCTION

Astrophysics and laboratory plasma physics problems often
contain flows at different Knudsen numbers K . The latter can
be defined as the ratio of the interaction mean free path λ of
particles in the system and a problem-specific hydrodynamic
length scale. For K � 1.0, the dynamical evolution of a
system can be described through fluid dynamics equations
[1–4]. Transport equations, like the Boltzmann equation, are
applied for larger K or for flows containing components
with small and large Knudsen numbers. They describe the
change in the phase-space density function of a system due to
forces and particle interactions. One approach to solving them
numerically is by use of kinetic particle methods, such as the
direct simulation Monte Carlo (DSMC) [5] and particle-in-cell
[6–8]. Here, N simulation particles approximate the density
function in position and momentum space [9]. The particles
move according to their 6N coupled equations of motion:

d �xi

dt
= �pi

mi

,
d �pi

dt
= −�∇U, i = 1 . . . N, (1)

where U is a mean-field potential. The particle interaction
depends on the collisional integral and can be, e.g., elastic
scattering (DSMC) or Coulomb collisions (particle-in-cell).
Despite their computational cost (for small K , the number
of particle interactions is large while time scales become
small), particle methods are attractive tools, as they can model
nonequilibrium and continuum flows [10,11].

Our code is such a kinetic particle code. Its development is
motivated by flows that are transient and move between small
and large K or contain multiple interacting components with
different Knudsen numbers. One possible future application
lies in inertial confinement fusion (ICF) capsule implosion
studies [12–14]. Although the implosion dynamics is governed
by hydrodynamic phenomena, the fusion fuel ions [deuterium
and tritium (D/T)] can have large mean free paths, which
lead to kinetic effects and might impact ignition [15–21].
At present, our code does not have ICF capabilities since
the required physics input (e.g., electric field, electrons,

and physical cross sections) is yet to be implemented. The
purpose of the current work is to test our code in simple
implosion scenarios (beyond the standard shock-wave and
fluid instability simulations [22,23]) and to compare our
results with those from hydrodynamics codes. The majority
of studies are therefore performed close to the continuum
regime but we also test large values of λ. All simulations
are done in two dimensions. Although our code can run in
three dimensions, small time steps and long implosion time
scales require an efficient distributed memory parallelization
scheme, which has not been implemented yet [24]. Since there
are no analytic solutions to the implosion problems, in this
work we compare our results to the Radiation Adaptive Grid
Eulerian hydrodynamics code RAGE [25].

In the following, we give a brief description of our code
in Sec. II together with a rough overview of ICF implosions
to motivate our simulation setups. The first studies explore
imploding disks with homogeneous initial density (two-zone
simulations) in Sec. III. These include comparisons between
RAGE and the kinetic code in the continuum limit and tests
on the impact of different particle numbers, mean free paths,
and resolution. An analysis of nonequilibrium phenomena is
also performed. In Sec. IV, we study fluid instabilities in disks
with different density layers (three-zone simulations). These
calculations are done with RAGE and the kinetic code in the
continuum limit. A summary is given in Sec. V.

II. CODE AND SIMULATION OVERVIEW

Our current code is similar to DSMC methods, the main
difference lying in the way we pick interaction partners. In
traditional DSMC, particles are sorted into spatial cells and
those within the same cell are randomly selected as scattering
partners. This usually leads to a dependence between the
particle mean free path λ and the cell size �x. Typically,
both have to be of the same size. In our code, we search
for interaction partners by calculating the point-of-closes
approach (PoCA) [26,27], which decouples λ and �x. This
scattering partner search adds to the computational time,
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however, it can improve the spatial resolution and reduce
acausality effects in relativistic simulations.

In the current study, particles undergo elastic collisions.
Since these are short-range interactions, we can sort the
particles into a spatial grid and select collision partners from
the same or neighboring cells only. We use a Cartesian grid
for a collision partner search that is equidistant and fixed in
size. Initially, we set the cell size �x so that a cell contains
several particles and the calculation is computationally effi-
cient. Furthermore, �x together with the maximum particle
velocity vmax defines the time step via �t = �x/vmax. Once
interactions partners are identified, the collision is performed
by choosing the directions of the outgoing particle velocities
randomly in the center-of-mass frame. For elastic collisions,
λ is an input parameter of our simulations. As for hard
spheres, it is connected to the two-dimensional (2D) effective
particle radii via reff,2D = (2 λ n)−1, where n is the number
density. To reach a regime that is close to the continuum, λ

should be minimized. However, due to the finite number of
particles per grid cell Ncell, λ has a smallest possible value of
λmin ∼ 2

√
π/(4Ncell) �x, which results in a finite viscosity

and diffusivity [23]. Both can be reduced by increasing the
value of Ncell or decreasing �x. This generally requires a large
total particle number and we typically use N ∼ 107−108. To
ensure that a system is modeled as close to the continuum
limit as possible (even for varying values of Ncell) we usually
set λ to a very small value, e.g., 10−5�x. Although this can
result in reff � �x, we still only consider particles in the
neighboring cells for interactions. In the continuum limit, we
usually analyze thermodynamic variables, such as density and
pressure, which we determine as average properties per output
grid cell [22].

In ICF capsule implosions, a capsule can generally be
divided into three regions [12]. The innermost region typically
contains a mixture of D/T gas that is surrounded by a dense
shell of D/T ice. The outer region is the ablator. As the
capsule is irradiated by lasers or x rays, material from the
ablator expands outwards, forcing the remaining matter to
move inwards to conserve momentum (rocket effect). This
initializes the capsule implosion and launches shock waves that
propagate toward the capsule center, rebound on themselves,
and interact with the converging cold D/T ice shell. The
interaction decelerates and halts the shell while the enclosed
compressed D/T gas reaches high temperatures. A hot spot is
created in the center, surrounded by cold D/T fuel; it becomes
the starting point for fusion reactions. Fluid instabilities play
an important role in ICF capsule implosion studies. They
generally have a negative impact on the fusion yield, as
they mix cold and hot fuel and induce deformations of the
capsule [28,29]. The main instabilities that arise in ICF are
Rayleigh-Taylor (RTIs) and Richtmyer-Meshkov instabilities
(RMIs). The first are caused by opposite density and pressure
gradients when two fluids of different densities are accelerated
into each other [30,31]. RMIs arise due to the passage of
a shock wave through the interface of two fluids [32,33].
So-called Kelvin-Helmholtz instabilities (KHIs) are created
by a velocity difference across a fluid interface [34,35]. They
can form at the edges of RTIs and RMIs.

In the past, we simulated simple converging and blast
problems [22] and studied 2D single-mode RTIs, all with

good agreement with analytic predictions. However, numerical
studies of implosions are especially challenging: As the
initial configuration converges, small perturbations can grow
into large instabilities and shocks can become affected by
nonphysical grid effects [36,37]. At the center of the simulation
space, grid-based methods have to increase the resolution in
order to capture small structures, while kinetic approaches
have to deal with an increasing number of particles. In the
current work, we therefore extend our previous studies of
standard shocks and fluid instabilities to implosion scenarios.
We also perform a check whether our code can evolve 2D
KHIs in the continuum limit (see the Appendix).

III. TWO-ZONE IMPLOSION SIMULATIONS

A. Simulation setup and shock launch

Here, we discuss 2D implosion simulations following
the setup of García-Senz et al. [38]. A disk with radius
r2 = 1.0 cm and homogeneous density ρ = 1 g/cm2 is divided
into two zones. Zone 1 extends up to a radial distance of r1 =
0.8 cm with a specific internal energy (SIE) of eint = 1 erg/g
everywhere. Zone 2 lies between r1 and r2. Its SIE increases
linearly from eint(r1) = 1 erg/g to eint(r2) = 104 erg/g. The
energy deposition is instantaneous at t = 0 and the resulting
surface ablation and rocket effect compress the disk and
launch a shock wave. The shock converges towards the center,
increasing the density and temperature of matter, rebounds
on itself, and propagates again outwards. In all simulations
of this paper, an imploding 2D disk can be understood as a
slice of an infinite cylinder, with the simulated spatial domain
lying perpendicular to the cylinder axis. This is of course
different from imploding spherical ICF capsules and the main
motivation to use this geometry is to do a direct comparison
with the hydrodynamic studies in [38]. Anticipated differences
from spherical setups are implosion time scales and details
in the compression, e.g., the evolution of the density (for
a comparison between cylindrical and spherical implosion
simulations see [39]).

We perform a high-resolution RAGE (hr-RAGE) simulation
with 1000 × 1000 grid points and two levels of refinement.
A low-resolution version (lr-RAGE) uses 400 × 400 grid
points and no refinement. The simulation space has a size
of 0 cm � x,y � 5 cm and contains one-quarter of the disk.
For the kinetic studies, we test different particle numbers and
resolutions, summarized in Table I. The highest resolution
is achieved with 6 × 107 particles, simulating one-quarter of
the disk with 0 cm � x,y � 2 cm (Kinetic-Q-60). Boundary
conditions are reflective for x,y < 0 cm, while particles with
coordinates x,y > 2 cm are ignored. We refer to the latter as
free boundary conditions. The other kinetic simulations evolve
the full disk with −2 cm � x,y � 2 cm and free boundary
conditions everywhere. Kinetic-F-100 uses 108 particles in
8000 × 8000 grid cells and Kinetic-F-20 has 2 × 107 particles
in 4000 × 4000 cells. Kinetic-F-100 can be regarded as a
simulation with intermediate resolution, while Kinetic-F-20
has low resolution. To achieve a regime that is close to
the continuum limit, we set λ = 10−5�x. The implosion is
evolved over 25 ms, which marks the point at which the
rebound shock wave reaches ∼r0. In both theRAGE and the
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TABLE I. Parameters of the kinetic simulations in the 2-zone implosion setup.

Simulation No. of particles Calculation bins Output bins Domain size

Kinetic-Q-60 6 × 107 6000 × 6000 2000 × 2000 0 cm � x,y � 2 cm
Kinetic-F-100 1 × 108 8000 × 8000 2000 × 2000 −2 cm � x,y � 2 cm
Kinetic-F-20 2 × 107 4000 × 4000 500 × 500 −2 cm � x,y � 2 cm

kinetic simulations, matter is an ideal gas with an adiabatic
index of γ = 2, i.e., two velocity degrees of freedom (f = 2).
With the internal energy Eint = f NkbT /2, the SIE is given by
the root-mean-square velocity vrms:

eint = Eint/(N m) = N kbT /(N m) = v2
rms/2, (2)

where the temperature is kbT = m v2
rms/2. Particles are initial-

ized with equal masses m, while their velocities are determined
from a 2D Maxwell-Boltzmann (MB) distribution using vrms.
The pressure can be calculated from either the ideal-gas
equation of state,

P = eint ρ (γ − 1), (3)

or the stress tensor [40,41],

P = − 1

f A

N∑
i=1

mi (�vi − �vb)2
. (4)

The above sum runs over all particles i with velocities �vi , while
�vb is the bulk velocity. Figure 1 shows the time evolution of
the mass density and SIE radial averages. The shock launches

FIG. 1. Time evolution of the (a) mass density ρ and (b) SIE eint

radial profiles for Kinetic-Q-60.

at the interface of zones 1 and 2, converging to the center at
t ∼ 12.5 ms. As it propagates inward (and outward after the
reflection) the shock leads to a strong compression and heating
of matter.

The details of the shock launch are given in Fig. 2 via the
mass density, radial velocity, and SIE profiles for t � 3.0 ms.
Results are taken from Kinetic-Q-60 and hr-RAGE. At t ∼
0.6 ms, high-energy particles leave the disk surface, causing
a rocket effect. Matter in zone 2 starts to move inwards at
a homogeneous but steadily increasing radial velocity [see
Fig. 2(b)]. As particles converge onto the stationary matter
at the interface with zone 1, a density peak forms around
r1 and moves inwards. By t ∼ 1.3 ms, the velocity plateau
has steepened into a maximum that sits right behind the
density peak. At this point, as did García-Senz et al. [38],
we observe the formation of two shock waves: one that is

FIG. 2. (a) Mass density ρ, (b) radial velocity vrad, and (c) SIE eint

radial profiles for Kinetic-Q-60 (thick colored lines) and hr-RAGE
(thin solid black lines) at early times.
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FIG. 3. Time snapshots of (a, b) mass density ρ, (c, d) radial velocity vrad, and (e, f) SIE eint profiles of Kinetic-Q-60 (thick colored lines)
and hr-RAGE (thin solid lines).

moving outwards and one that is moving inwards. The first is
shown in Fig. 2(b) at r ∼ 0.81 cm for t = 1.7 ms. It eventually
leaves the simulation space. At the same time, the inward shock
wave (r ∼ 0.75 cm) passes through the compressed matter. Its
breakout leads to a double-peak structure in the density which
can be seen for t � 2.3 ms in Fig. 2(a). The first peak (at
smaller r) is the shock wave, while the second one is the
remaining compressed matter. The higher resolution in RAGE

is clearly visible via the higher peak densities and sharper
shock profiles. However, in general, the agreement between
Kinetic-Q-60 and hr-RAGE is very good.

B. Fluid instabilities and implosion symmetry

Figure 3 shows the mass density and radial velocity profiles
of Kinetic-Q-60 and hr-RAGE for t � 4.0 ms. Both calcula-
tions agree well, especially in the beginning of the implosion.
As in all particle-based methods, statistical noise is present in
the thermodynamic properties of the kinetic simulations. The
smooth profiles at large r are due to radial averaging over many
cells. At the center, fluctuations become more pronounced
since only a few output cells are present. We note that for
t � 12.0 ms, the shock in the kinetic simulation is slightly
ahead of the one in RAGE. Fluctuations in the thermodynamic
properties might lead to some local acceleration of the shock.
However, unless the effect is systematic, we would expect it
to average out with time. The difference in the shock positions

might also originate in the initial stage of the implosion. hr-
RAGE has a significantly higher resolution than Kinetic-Q-60
and can therefore resolve the shock formation much better,
which could lead to deviations between the two approaches
later on. However, the most likely reason for the disagreement
between the shock positions seems to be the presence of RTIs
in the kinetic simulation. Figure 2(c) shows the evolution of
the SIE during shock launch. In combination with Figs. 2(a)
and 2(b), we see that in the initial stages of the implosion, hot
matter from zone 2 is accelerated into the cold denser matter of

FIG. 4. Mass density ρ (thick lines) and pressure P (thin lines)
radial profiles for Kinetic-Q-60 at t = 1.3 ms (solid red lines) and
t = 3.0 ms (dashed black lines). Regions with opposite ρ and P

gradients are shaded gray.
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FIG. 5. Zoom-in on the two-peak density configuration for
Kinetic-Q-60 at t = 3.0 ms. We can see the formation of RTIs at
the edge of the outer density peak.

zone 1. This usually favors the formation of RTIs. Indeed, an
examination of the density and pressure profiles at t = 1.3 ms
and t = 3.0 ms in Fig. 4 reveals opposite ρ and P gradients.
The corresponding unstable regions (shown as gray areas)
lie behind the compressed matter at t = 1.3 ms and between
the shock front and the second density peak at t = 3.0 ms.
The resulting instabilities can be seen in the density map at
t = 3.0 ms in Fig. 5. They are seeded by small perturbations
due to the finite particle number in our code [23]. The opposite
pressure and density gradients persist until late times and
result in filamentlike structures, shown in, e.g., Fig. 6(b) at
r ∼ 0.6 cm. For RAGE, we do not see such phenomena, which
is most likely due to the lack of perturbations. The difference
in the shock locations might either be initialized early, during
the passage of the shock through the RTIs, or occur at later
times and be caused by, e.g., a slightly different compression
of matter due to the presence of RTIs.

Unlike in realistic ICF simulations, instabilities in the two-
zone setup are unlikely to lead to large-scale deformations.
However, as the shock converges and rebounds, grid effects can
impact its shape. We test how well symmetry is preserved by
plotting the density distribution for Kinetic-F-100 in Fig. 6 for
t = 4.0, 18.0, and 24.0 ms, together with the shock positions

from the radial profiles in Fig. 3. With 108 test particles, we
achieve a good resolution and see excellent agreement between
the shock position from radial averaging and the 2D density
map, with well-preserved spherical symmetry. At t = 18.0 ms,
the outgoing shock encounters and compresses the filamentlike
structures. However, the interaction does not impact the shock
propagation.

C. Particle number dependence

We now test the dependence of the implosion dynamics on
the particle number and resolution. Figure 7 shows the density
and radial velocity profiles of all kinetic and hydrodynamic
models for t = 4.0 ms and t = 18.0 ms. At t = 4.0 ms, the
shock location is consistent between all models, with only
Kinetic-F-20 and lr-RAGE having slightly broader fronts.
Interestingly, the height of the second density peak is much
more sensitive to the resolution and particle number. The
highest density is achieved with hr-RAGE, followed by
Kinetic-Q-60. For a lower particle number and resolution, the
height of the peak decreases while its width becomes larger.
The radial velocity, on the other hand, does not show any
significant dependence on either N or the resolution.

At t = 18 ms, the shock in lr-RAGE lags behind the one
in hr-RAGE. lr-RAGE also has slightly higher densities for
r < 0.35 cm, while the kinetic simulations agree well with
hr-RAGE for 0.025 cm < r < 0.6 cm. However, they show
differences at smaller r: at the disk center, their densities
are around ρc ∼ 1.8 g/cm2, while hr-RAGE tends towards
ρc ∼ 0.8 g/cm2 and lr-RAGE to ρc ∼ 1.5 g/cm2. This could
be caused by the so-called wall heating, enhanced temperature,
and decreased density at the origin that many fluid dynamics
codes are subject to and that are not seen in the kinetic approach
[22,42,43]. On the other hand, the disagreement between the
kinetic and the hydrodynamic studies could also originate from
the finite particle numbers in the kinetic code or grid effects in
RAGE.

D. Mean-free-path and nonequilibrium study

In this section, we explore nonequilibrium phenomena in
our simulations using large-particle mean free paths. Since our
previous studies showed that particles with λ < 3�x behave
similarly to matter in the continuum limit, while λ > 30�x

FIG. 6. Mass density ρ for Kinetic-F-100 at (a) t = 4.0 ms, (b) 18.0 ms, and (c) 24.0 ms. Dashed white lines mark the shock positions as
obtained from radial profiles in Fig. 3.
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FIG. 7. (a, b) Density ρ and (c, d) radial velocity vrad profiles for
all simulations at t = 4.0 ms (a, c) and 18.0 ms (b, d).

results in particle behavior close to free streaming [22,23], we
run Kinetic-F-20 with λ = 10−5�x, 3�x, 10�x, and 30s�x.
The low particle number is chosen for fast computation. As
seen in the previous section, the density profile is slightly
different from that of Kinetic-Q-60. However, the general
features and response to λ should be similar.

During the initial stages of the implosion, we see a strong
dependence of matter compression on λ, with the width and
height of the forming density peak being very sensitive to
the mean free path. Figure 8 shows the mass density, radial
velocity, and SIE profiles at t = 4.0 and 18.0 ms. At t =
4.0 ms, the shock broadening is clearly visible for increasing
λ. As for different values of N , the second density peak and
corresponding dip in the SIE are very sensitive to the mean
free path. The radial velocity, on the other hand, is smooth at
the density peak but shows a dependence on λ in the outgoing

shock at r ∼ 0.95 cm. At t = 18.0 ms, we can see that after
shock rebound, the central density remains high for longer
times if λ is large. This is a consequence of lower particle
velocities as the slow particles linger at the disk center. Since
the SIE is connected to the particle speed, its values at the
center are also lower for large λ.

Shocks, especially at high Mach numbers, can experience
nonequilibrium behavior such as deviations from MB veloc-
ity distributions and temperature anisotropies [44–47]. One
example is the two-component velocity distributions found
in kinetic ICF implosion simulations, which are caused by
energetic runaway ions and the mixture of matter upstream
and downstream of the shock [48–50]. Another example are
rarefied hypersonic flows, which are prone to anisotropies
in T (or P ) components longitudinal and transverse to the
direction of shock propagation. The longitudinal components
experience an overshoot at the shock front, which is due to a
slow transformation of the ordered longitudinal motion into
thermal transverse random motion [46].

We explore whether the above or similar effects also appear
in our simulations. First, we determine the Mach numbers
M that are reached during the implosions. These are defined
as M = vrad/vs , where vrad is the radial velocity of matter
and vs is the speed of sound. The latter can be calculated
via vs = vrms

√
γ /2.0 for a 2D ideal gas. We find that in

our simulation setup the Mach numbers rarely reach M > 1,
the highest values being present at the beginning of the
implosion. Furthermore, M decreases for larger λ, which is
shown in Fig. 9, where we plot radial profiles of the Mach
numbers for different λ at t = 4.0 ms. However, note that M

is calculated using the bulk radial velocity, while particles in
the high-velocity tail of the MB distribution can have much
higher speeds.

Figures 10 and 11 show the distributions of longitudinal
and transverse particle velocities, vl and vt , for λ = 10−5�x

and 10�x at t = 4.0 and 18.0 ms. The corresponding velocity
components for a particle i at a radial distance r , vl,i , and vt,i ,
are determined by

vl,i = vil − 〈vl〉, vil = �vi · �̂ri, 〈vl〉 =
Nr∑
j

�vj · �̂rj

Nr

, (5)

vt,i = ±
√∑

α

v2
t,iα, vt,iα = viα − vil r̂iα − 〈vtα〉, (6)

〈vtα〉 =
Nr∑
j

vjα − vjl r̂jα

Nr

, α = x,y, (7)

where Nr is the number of particles at r and �̂ri = �ri/|�ri | is the
normalized distance vector. For vt,i we have to choose a sign.
We select vt,i < 0 if vt,iα < 0. To locate the position of the
shock, we also plot the radial velocity. We find two distinct
features connected to nonequilibrium behavior. First, instead
of immediately equilibrating with the hot matter upstream of
the shock, the cold shocked matter seems to retain its MB
distribution for a short time. This is especially visible for λ =
10�x and we mark the distributions with arrows in Figs. 10(a)
and 10(b). Furthermore, we find that for both λ = 10−5�x and
λ = 10�x, a few fast particles move ahead of the shock. To

053206-6



TWO-DIMENSIONAL IMPLOSION SIMULATIONS WITH A . . . PHYSICAL REVIEW E 95, 053206 (2017)

FIG. 8. (a, b) Mass density ρ, (c, d) radial velocity vrad, and (e, f) SIE eint profiles for Kinetic-F-20 and different λ values at t = 4.0 ms
(a, c, e) and t = 18.0 ms (b, d, f). Profiles for Kinetic-Q-60 with λ = 10−5�x (thin black line) are added for comparison.

quantify the resulting deviations of the velocity distributions
from equilibrium, we follow Marciante et al. [44] and calculate
the relation between the fourth and the second central velocity
moments, 〈�v4〉 and 〈�v2〉, for vl and vt :

〈
�vk

l/t

〉 =
√

m

2πkT

1

Nr

Nr∑
i

(vl/t,i)
k. (8)

For MB, the moments are expressed as

〈�vk〉 =
√

m

2π kT

∫
(v − 〈v〉)k exp

(
− mv2

2 kT

)
(9)

and should fulfill ξl/t = 〈�v4
l/t 〉/3〈�v2

l/t 〉2 = 1.

FIG. 9. Mach number M radial profiles at t = 4.0 ms for different
mean free paths λ.

In Fig. 10, we see that at t = 4.0 s, ξl and ξt can be
much larger than 1 and the deviations are present for both
λ = 10−5�x and λ = 10�x. For λ = 10−5�x, ξl � 1 only
in a small region right at the shock front. The nonequilibrium
behavior is a little surprising due to the low Mach numbers and
the small mean free path. A likely cause is the finite minimal
value of λ (see discussion in Sec. II), which could lead to
small noncontinuum effects. For λ = 10�x, the fast shock-
heated particles can move farther into the cold matter. As a
consequence, the regions with ξl/t � 1 are more extended and
located ahead of the shock. Although for both the longitudinal
and the transverse velocities, the deviations from MB are large,
ξt is smaller than ξl and its deviation sets in a little later. This
behavior is due to the higher velocity of the shock-heated
particles in the direction of shock propagation. Furthermore,
the higher density at the shock in the transverse direction can
lead to more particle interactions that equilibrate matter and
keep ξt lower.

The velocity distributions at t = 18.0 ms are plotted in
Fig. 11. As for t = 4.0 s, ξl and ξt exceed 1 at the shock front.
However, this time, their values are significantly smaller due to
the relatively similar SIEs in matter upstream and downstream
of the shock. This leads to faster particle equilibration and
therefore smaller deviations from MB. As before, we find
that while for λ = 10−5�x the longitudinal and transverse
velocities are very similar, ξt is smaller than and lags behind
ξl for λ = 10�x, showing again that the nonequilibrium
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FIG. 10. Distribution of longitudinal particle velocities vl for (a)
λ = 10−5 �x and (b) λ = 10 �x (b) at t = 4.0 ms. The radial velocity
is plotted as the dashed red line. The ratios of the fourth and second
central velocity moments are represented by the thick solid line for
ξl and the thin solid line for ξt .

FIG. 11. Same as Fig. 10, but at t = 18.0 ms.

FIG. 12. Longitudinal (thick lines) and transverse (thin lines)
velocities vl,rms and vt,rms for (a) λ = 10−5 �x and (b) λ = 10 �x

at different times. Particles with a radial distance of 0.578 cm � r �
0.582 cm (a) and 0.567 cm � r � 0.571 cm (b) (vertical gray bands)
are used to determine the velocity distributions.

behavior is more pronounced in the direction of shock
propagation.

We now look in more detail at the velocity distributions
as particles are accelerated by the shock. Figure 12 shows
the radial profiles of the longitudinal and transverse root-
mean-square velocities vl,rms and vt,rms at different times. The
velocities are determined from the second central moments
via vl/t,rms = 〈v2

l/t 〉1/2. Interestingly, despite the small values
of M , we find an overshoot of vl,rms at and around the
shock. The overshoot is barely visible for λ = 10−5�x but
strongly pronounced for 10�x. Furthermore, for the latter,
while vl,rms > vt,rms at the shock, the relation inverses for
larger r . Although the difference between vl,rms and vt,rms is
small, it points to separate equilibrations of the longitudinal
and transverse particle velocities.

To analyze the velocity distributions, we use particles with
0.578 cm � r � 0.582 cm for λ = 10−5�x and 0.567 cm �
r � 0.571 cm for λ = 10�x [gray areas in Figs. 12(a)
and 12(b)]. The distributions of the particle velocities are
plotted in Figs. 13 and 14 for λ = 10−5�x and λ = 10�x,
respectively. Before interacting with the shock (i.e., at t �
3.6 ms for λ = 10−5�x and t � 3.2 ms for λ = 10�x), they
follow MB with vl,rms = vt,rms = 1 cm/s, which corresponds
to the SIE in zone 1 under the initial conditions. For λ =
10−5�x, the particles interact with the shock at t ∼ 4.0 ms.
At this time, their velocity distribution has a two-component
structure: one component being the shock-heated matter
and the other corresponding to the cold matter that has
not equilibrated yet. The velocity peak at vl/t = 0 is the
nonequilibrium feature marked by the arrow in Fig. 10. Only
a short time later, at t = 4.6 ms, all particle velocities have
equilibrated and follow an MB with vl/t,rms ∼ 30.8 cm/s.
Due to the larger shock width and earlier onset of particle
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FIG. 13. Distributions of (a) longitudinal and (b) transverse
velocities for particles with 0.578 cm � r � 0.582 cm and λ =
10−5 �x. Before and after shock-wave passage the distributions
follow MB with given vl/t,rms (thin lines). Nonequilibrium behavior
is present at t = 4.0 ms.

acceleration, the nonequilibrium effects are more pronounced
for λ = 10�x. At t = 3.6 s, we can see the formation of
high-velocity tails in the MB distributions caused by inflowing
fast particles. As shown in Fig. 14, the longitudinal velocity
tail contains higher velocities than the transverse one, which
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FIG. 14. Same as Fig. 13, but for particles with 0.567 cm � r �
0.571 cm and λ = 10 �x. Nonequilibrium behavior is visible via
the high-velocity tail of the MB distributions at t = 3.6 ms and the
two-component structure at t = 4.0 ms.

explains the larger values of ξl in comparison to ξt shown
in Figs. 10 and 11. Similarly to λ = 10−5�x, the velocity
distributions at t = 4.0 ms have a two-component structure
but equilibrate to one MB at t = 4.6 ms.

In summary, in our simple implosion simulations we find
nonequilibrium features that are also seen in other kinetic
shock-wave studies. One is the overshoot of the root-mean-
square velocity component longitudinal to the shock direction
of motion; the other manifests itself in non-Maxwellian
velocity distributions such as a tail of fast particles and a two-
component structure due to the mixing of cold and hot matter.
A detail in our simulations that will need further attention
is the seemingly different equilibration of the longitudinal
and transverse velocities for large mean free paths after the
shock-wave passage. It could be related to the expansion of
matter behind the shock or be due to the simple treatment of
the particle mean free paths in our simulation setup.

IV. THREE-ZONE IMPLOSION SIMULATIONS

The previous section has explored the implosion of a disk
with initial homogeneous mass density. While it is a good
benchmark setup, this configuration is very different from an
ICF capsule. The latter typically contains low-density fusion
fuel gas, enclosed by at least one shell of dense matter (e.g.,
D/T ice, plastic, glass). In this section, we therefore follow the
work of Joggerst et al. [39], who performed hydrodynamic
2D implosion simulations of disks that are divided into
three zones with different densities. Similar configurations
were previously used by Youngs and Williams [51] to study
turbulent mixing in spherical implosions. In this three-zone
setup the most inner region of the disk (zone 1) has a low
mass density and intermediate SIE. It is surrounded by a dense
shell (zone 2) with the same pressure but a low SIE, while the
outer layer (zone 3) has an intermediate mass density and very
high SIE. Unlike the two-zone configuration, this setup allows
the development of fluid instabilities in the presence of seeds
[51,52]. The implosion is driven by a time-dependent input of
SIE eint(r,t) and radial velocity vrad(r,t) in a defined boundary
region located in zone 3. Joggerst et al. [39] apply different
hydrodynamic codes and test the formation and evolution
of fluid instabilities. One of the codes is RAGE and we use
the published results for comparison. The fluid instabilities
originate either from numerical artifacts or from imposed
perturbations, which are seeded on the interface between zone
1 and zone 2. Our simulations are done with the same setup
and we want to see whether we find the same or similar
behavior as the hydrodynamic code. As we have seen, kinetic
simulations are prone to creating fluid instability seeds due to
statistical noise (note, however, that the fluctuation in DSMC
can correspond to real thermal fluctuations when each particle
represents a single actual molecular particle [53,54]) and one
possible consequence is that the resulting instabilities will
dominate the ones arising from imposed perturbations.

A. Unperturbed simulation

The disk has initially a radius of 15 cm, whereas zone 1
extends from 0 to 10 cm, zone 2 from 10 to 12 cm, and zone
3 from 12 to 15 cm. Particles in each zone are initialized
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TABLE II. Initial conditions of the three-zone implosion.

Zone Z Radial size r Density ρZ SIE eint,Z

1 (0–10) cm 0.05 g/cm2 3.00 erg/g
2 (10–12) cm 1.00 g/cm2 0.15 erg/g
3 (12–15) cm 0.10 g/cm2 150.0 erg/g

according to the SIE and mass density listed in Table II.
To simulate an ideal gas with γ = 5/3 as in [39], we allow
particles to have three velocity degrees of freedom. This is
different from the two-zone simulations, where particles only
have x and y velocities, corresponding to the directions in
which they propagate. Now, although we still restrict the
particle motion to the x-y plane, particles have x, y, and
z velocities, which are updated according to 3D kinematics
in each collision [22]. Furthermore, instead of initializing
particles with the same mass but different number densities
we choose a homogeneous particle distribution with zone-
dependent masses. This is done for computational reasons.
Since the density in zone 2 is 20 times higher than that in
zone 1, we would have to place 20 times more particles
in each computational cell. As a consequence, the search
for a collision partner would require a long time. With a
homogeneous initial particle distribution, particle masses are
assigned according to the zone-dependent mass density ρZ (see
Table II), while their positions are chosen randomly in a disk
with radius 15 cm. In pure DSMC simulations, one must be
cautious when assigning different masses to particles, as these
enter directly into the determination of interaction probabilities
and number of interacting particles [55]. Large differences
in the masses can result in individual particle interactions
being nonconservative with regard to energy and momentum
[55]. This problem should not occur in our simulations, since
the selection of scattering partners is not directly dependent
on masses and the interaction in the center-of-mass frame
explicitly conserves energy and momentum.

For the implosion, the time-dependent SIE and radial
velocity are imposed in a boundary region defined by r � Rbd

with Rbd(t) = R0(1 − ubdt), R0 = 13 cm, and ubd = 0.2 s−1.
The radial velocity is vrad(r,t) = −ubdR0r/Rbd(t), while the
SIE is kept constant at eint(r,t) = 150 erg/g for t � 0.5 s.
For t > 0.5 s, it decreases linearly with time to 0.15 erg/g at
t = 3.0 s. Furthermore, the mass density in the boundary re-
gion is kept constant at ρbd = 0.10 g/cm2. In our simulations,
the above conditions are implemented in the following way: At
the beginning of each iteration, we determine the radius Rbd.
Particles with r � Rbd are assigned new random positions in
the boundary region to achieve a constant density ρbd. Each
particle is then given a new velocity with thermal components
according to eint(r,t) and radial components according to
vrad(r,t). We use N = 4.0 × 107 particles in a simulation
space with 0 � x,y � 40 cm and the center of the disk at
x = y = 20 cm. The boundary conditions are free everywhere
and the simulations are run in the continuum limit with
λ = 10−5�x.

Figure 15 shows the evolution of the mass density for a
simulation time of 3 s. The shock wave forms at the outer
boundary of zone 2 due to the high pressure exerted by matter
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FIG. 15. Time evolution of the mass density ρ radial profile in
the three-zone implosion. For comparison, we add the inner and outer
edges of zone 2 (dashed-dotted lines) and the shock location (dotted
line) for a 1D RAGE simulation with the same setup [39].

in zone 3. Unlike the two-zone setup, it is now the imposed
SIE and radial velocity, and not the rocket effect, that compress
the capsule. Because all particles in the boundary region are
directed inward, they cannot leave the disk surface and the
entire configuration stays compact. The shock breaks out from
zone 2 into zone 1 at t ∼ 0.5 s and rebounds at t ∼ 1.8 s. As
it reaches a distance of r ∼ 2.1 cm at t ∼ 2.1 s, the shock
encounters the converging dense shell. Although the shell
decelerates due to the interaction, it continues to move inwards
and requires several encounters with the shock to come to
a halt. To make comparisons with RAGE, we add the dense
shell profiles and shock positions of a 1D RAGE implosion
simulation of Joggerst et al. [39]. All in all, the two calculations
are very similar. We note that the boundaries of zone 2 in the
kinetic study are smeared out. This is due to the formation of
RTIs, which is discussed in the next section. Furthermore, in
the 1D RAGE implosion, the shock is a bit ahead of the kinetic
simulation. This difference is due to either the formation of
fluid instabilities in the kinetic study, the higher resolution in
RAGE, or the small differences in 1D vs 2D simulations.

B. Induced perturbations

To study the evolution of fluid instabilities, we modify the
interface of zones 1 and 2 by adding single-mode perturbations
with Aμ cos (μ θ ), where θ is the angle, Aμ = 0.125 cm
the amplitude, and μ the mode. The chosen values are
μ = 5 for long-wavelength perturbations and μ = 47 for short
wavelengths. The previously discussed unperturbed simulation
corresponds to μ = 0. We find that the general dynamical
evolution is similar in all cases, with shock creation, breakout,
and rebound at roughly the same times. In Fig. 16, we plot 2D
density distributions for all modes at t = 1.5 and 2.5 s. The
imposed instabilities are most pronounced for μ = 47, which
is due to the exponential dependence of the RTI growth rate
on the wave number [34,56].

We can compare Fig. 16 to Figs. 4 and 5 of Joggerst
et al. [39] and find that the general disk configurations are
similar. However, in all kinetic simulations, the outer edge
of the dense shell has filamentlike structures that are not
present in RAGE. They result from RTIs that are associated
with a rarefaction wave. The wave is created at shock breakout
from zone 2 into zone 1. As it propagates outwards it carries
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FIG. 16. Snapshots of the 2D density distribution for implosions with seeded perturbations (a, d) with mode 0, (b, e) with mode 5, and
(c, f) with mode 47 at t = 1.5 s (a–c) and t = 2.5 s (d–f) (see text for details). The simulations use 4.0 × 107 particles and apply the same setup
as by Joggerst et al. [39].

perturbations from the inner to the outer edge of zone 2, also
known as feedout [57]. The perturbations are seeds for RTIs
that grow due to opposite pressure and density gradients. As
an example of the latter, we plot the radial profiles of ρ and
P for t = 0.8 s and t = 1.4 s in Fig. 17 and represent the
corresponding unstable regions with gray areas. In addition,
the entire unstable area is shown via the dashed-dotted line in
Fig. 18, which shows the pressure as a function of time. The
question arises why we do not see the filamentlike structures in
RAGE. Comparing the t = 1.5 s disk configurations in Fig. 16
to the RAGE simulation [39], we find that in the latter, zone
2 has very smooth edges. This is most likely due to the
higher resolution of RAGE, which is in contrast to our kinetic
calculations, which are accompanied by statistical noise. As a
consequence, although the opposite ρ and P gradients should
exist in RAGE simulations, the higher resolution might prevent
RTI seeds from forming.
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profiles at t = 0.8 s (solid lines) and t = 1.4 s (dashed lines). Vertical
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gradients that are unstable with respect to RTIs.

However, differently from the outer edge, the inner edge
of zone 2 seems to have numerically induced small-scale
instabilities in RAGE. They are best visible for μ = 0 at
t = 2.5 s [39]. The instabilities are also present in the kinetic
study [see, e.g., Fig. 16(d)], but RAGE resolves them to a much
shorter wavelength. For the kinetic studies, the instabilities can
be linked to RMIs that are created during shock breakout from
zone 2 into zone 1 or could be a result of so-called feedthrough
from the outer edge of zone 2 inwards [52]. They are barely
visible at t = 1.5 s but, by t = 2.5 s, have been amplified via
interactions with the reflected shock. For μ = 47, they are least
pronounced, being dominated by the induced fluid instabilities.

At late times, the short-wavelength fluid instabilities (μ =
47) interact with each other. While in RAGE, they form a mixing
layer with many small-scale structures, the corresponding
region in the kinetic simulation looks quite different. Here, due
to the lower resolution of the kinetic code, the structures are
much coarser and their amplitude lower. The long-wavelength
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FIG. 18. Time evolution of the pressure radial profile in the three-
zone implosion. The dashed-dotted-dotted line represents a region
with opposite density and pressure gradients.
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FIG. 19. Bubble (>0-cm) and spike (<0-cm) heights during the
three-zone implosion. Symbols show data taken from [39], where
the bubble and spike heights are given with respect to the interface
between zone 1 and zone 2 from a 1D simulation. In the kinetic
simulations (solid line), we determine the fluid interface by averaging
over the bubble and spike heights. For better comparison with RAGE,
we perform a similar averaging for its data points (dashed-dotted
line).

instabilities for μ = 5, on the other hand, are well resolved
by the kinetic code. This is the reason why, for this setup, its
agreement with RAGE is best.

To do a more qualitative comparison of the instabilities,
we plot the bubble and spike heights in Fig. 19. The values
for RAGE are taken directly from Joggerst et al. [39]. They
are obtained by measuring the bubble and spike positions
relative to the interface of zones 1 and 2 in an unperturbed 1D
simulation. In the kinetic studies, we determine the location of
the interface by averaging between the bubble and the spike
positions. The distance of the bubbles and spikes from that
interface is given by

ri =
B∑
i

|�rbi − �rc|/2B −
S∑
j

∣∣�rsj − �rc

∣∣/2S, (10)

where �rbi/si is the position of the ith bubble/spike, �rc the
location of the disk center, B the number of bubbles, and S

the number of spikes. The resulting bubble/spike height is
rb/s = ±ri . Note that by these definitions the bubbles and
spikes have the same amplitude, while for RAGE they can be
different. For a better comparison, we therefore determine
average bubble and spike heights in RAGE via r̃i = r̃b −
0.5(r̃b + r̃s), with rb/s = ±r̃i , r̃b and r̃s being the measured
bubble and spike heights of Joggerst et al. [39].

For t < 0.5 s, i.e., before shock breakout, the instability
heights are similar for RAGE and the kinetic simulations.
For μ = 0, they are negligibly small in RAGE, while the
particle-caused granularities in the kinetic simulation lead
to a finite but small width of the interface between zone 1
and zone 2. After shock breakout, the instabilities stay small
initially. However, as the reflected shock interacts with the
converging dense shell (t ∼ 2.1 s), they experience a drastic
growth. For μ = 5, the behavior is similar, although the bubble
and spike growth sets in earlier, at around t ∼ 1.5 s. As
mentioned before and shown in Fig. 19, RAGE and the kinetic
simulations agree best for μ = 5, while the largest differences
are found for μ = 47. Both RAGE and the kinetic simulations
show the same trends in instability growth and decrease,
however, the bubble/spike amplitudes are significantly lower
in the kinetic studies, especially for t > 2.1 s. This is again due
to the lower resolution in the kinetic code. While for RAGE,
the μ = 47 instabilities are amplified by the interaction with
the shock, in the kinetic simulations, their structure is much
coarser early on and they form a layer that is more compressed
than amplified by the reflected shock.

However, in general, the large-scale behavior and time
evolution of the three-zone kinetic implosion simulation is
very similar to those in RAGE. Differences are the finer details
in RAGE and the occurrence of additional fluid instabilities
in the kinetic code. Both can be traced back to the higher
resolution in RAGE and the presence of statistical noise in the
kinetic studies. These differences can be reduced by using a
larger number of particles, however, most likely they cannot
be completely eliminated.

V. SUMMARY

We present 2D implosion simulations with a kinetic Monte
Carlo particle transport code. Its development is motivated
by the existence of flows with different Knudsen numbers
in a large range of physical phenomena, including inertial
confinement fusion capsule implosions. Our code is not an
attempt to improve hydrodynamic approaches for matter in the
continuum regime. Its target application is systems that contain
components at different Knudsen numbers, which are usually
modeled by different coupled methods. The tests performed
in this study include the implosion of disks with two-zone
and three-zone configurations. The two-zone setup is a simple
test that we perform with a detailed analysis of the shock
propagation and comparison to simulations using the RAGE

hydrodynamics code. In the continuum limit, we find very
good agreement between the kinetic and the hydrodynamic
simulations. The kinetic studies also include simulations with
different particle numbers and mean free paths to explore
the impact of the latter on the implosion dynamics and non
equilibrium phenomena like particle velocity distributions
and anisotropies. The three-zone configuration contains a

053206-12



TWO-DIMENSIONAL IMPLOSION SIMULATIONS WITH A . . . PHYSICAL REVIEW E 95, 053206 (2017)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

d
i
s
t
a
n
c
e
 
y t = 0 t = τ t = 2τ

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8

d
i
s
t
a
n
c
e
 
y

distance x

t = 4τ

 0  0.2  0.4  0.6  0.8

distance x

t = 6τ

 0  0.2  0.4  0.6  0.8

distance x

 1

 1.2

 1.4

 1.6

 1.8

 2

t = 8τ

FIG. 20. Snapshots of the average particle species s during the development of KHIs at different times. The simulation time is given by the
characteristic growth time τ . KHIs are initialized by perturbations of the velocity field given by Eq. (A1).

low-density central zone that is enclosed by a dense shell
and an ablator. By imposing single-mode perturbations be-
tween the inner region and the dense shell, we induce fluid
instabilities and compare their evolution to the corresponding
hydrodynamic results. We find that the general dynamical
evolution of the implosion agrees well between the RAGE

and the kinetic code. Differences originate from the more
detailed structures of the fluid instabilities in the hydrodynamic
simulations and additional instabilities in the kinetic studies,
which are seeded by statistical noise.
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APPENDIX: KEVIN-HELMHOLTZ INSTABILITIES

To study the development of KHIs with our kinetic code
in the continuum limit, we use the same configuration as
Price [58], who applied smooth particle hydrodynamics (SPH)
with artificial viscosity and thermal conductivity terms. Our
simulation space is of size 0 � x � 1 and 0 � y � 0.5 and is
divided into a lower (y < 0.25) and an upper (y > 0.25) half.
The simulation grid has 4000 × 2000 cells, with 500 × 250
cells for the output. The units in these simulations are given
by the dimension of length L̂, density ρ̂, and pressure P̂ .
As a consequence, the velocity is given in units of (P̂ /ρ̂)0.5,
while time is given in units of L̂(ρ̂/P̂ )0.5 [22]. The boundary
conditions are periodic in the x direction and reflective in the

y direction. The entire space is filled with particles. In the
lower half, the mass density is ρ2 = 2, while in the upper half
it is ρ1 = 1. The pressure is P = 2.5 everywhere. Particles
in the lower half have a net x velocity vx,2 = 0.5, while
particles in the upper half stream in the opposite direction,
with vx,1 = −0.5. In addition to their masses, particles have a
characteristic species type s. We set s = 1 for particles in the
upper half and s = 2 for particles in the lower half. To create
seeds for single-mode KHIs, we perturb the y velocity with

δ = A sin

(
±2π (x + 0.5)

l

)
for |y ± 0.25| < 0.025,

(A1)

where A = 0.025 is the amplitude and l = 1/6 the wavelength
of the single-mode instabilities. Linear theory predicts a
characteristic growth time τ [58]:

τ = l
ρ1 + ρ2√

ρ1ρ2 |vx,1 − vx,2| . (A2)

Since τ is proportional to l, small-scale KHIs will appear first,
followed by instabilities of a longer wavelength. Figure 20
shows 2D snapshots of the species distribution at different
simulation times. The emerging structures can be compared
to cases 4 and 5 in Fig. 7 of Ref. [58]. At t = τ , we see the
onset of KHIs with λ = 1/6, with fully developed vortices
at t = 2τ . The time scales and shapes of these instabilities
are in good agreement with the SPH results. As expected, the
KHIs merge into instabilities with λ = 1/2 by t = 6 τ . Price
[58] shows results for t = 1τ,2τ,4τ , and 8τ . The last snapshot
for case 4 agrees with our results at t = 8τ , while for case
5 it is more similar to our KHIs at t = 6τ . The difference
between the two SPH cases is the usage of additional thermal
conductivity and artificial viscosity terms in case 5, which
might impact details of the KHI evolution. However, we find
that the general agreement of KHIs in the kinetic simulation
versus the SPH study is good.
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