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Fully kinetic simulation study of ion-acoustic solitons in the presence of trapped electrons
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The nonlinear fluid theory developed by Schamel suggests a modified KdV equation to describe the temporal
evolution of ion acoustic (IA) solitons in the presence of trapped electrons. The validity of this theory is
studied here by verifying solitons’ main characteristic, i.e., stability against successive mutual collisions. We
have employed a kinetic model as a more comprehensive theory than the fluid one, and utilized a fully kinetic
simulation approach (both ions and electrons are treated based on the Vlasov equation). In the simulation approach,
these solitons are excited self-consistently by employing the nonlinear process of IA solitons formation from an
initial density perturbation (IDP). The effect of the size of IDPs on the chain formation is proved by the simulation
code as a benchmark test. It is shown that the IA solitons, in the presence of trapped electrons, can retain their
features (both in spatial and velocity direction) after successive mutual collisions. The collisions here include
encounters of IA solitons with the same trapping parameter, while differing in size. Kinetic simulation results
reveal a complicated behavior during a collision between IA solitons in contrast to the fluid theory predictions and
simulations. In the range of parameters considered here, two oppositely propagating solitons rotate around their
collective center in the phase space during a collision, independent of their trapping parameters. Furthermore,
they exchange some portions of their trapped populations.
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I. INTRODUCTION

The ion-acoustic (IA) solitons were first discovered in the
context of nonlinear fluid theory by Washimi and Taniuti
[1]. These nonlinear modes, localized structures, possess two
characteristics:

(1) propagation without change in their features, such as
velocity, shape, and size (e.g., width and height).

(2) stability against (theoretically infinite number of) mu-
tual collisions.

The IA solitons have been observed both in laboratory
experiments [2] and in a wide range of space plasma obser-
vations [3–5]. Fluid theory predicts the existence condition
for solitons called nonlinear dispersion relation (NDR), which
is, in fact, a sensitive relationship among different features
of solitons, e.g., velocity and size. Any localized structure
with values other than what is dictated by NDR is expected
to break into N-solitons in a long-term evolution. The exis-
tence of N-soliton solution for the KdV equation has been
proven with different mathematical approaches starting by the
seminal work of Hirota [6,7]. In this paper, by harnessing
this phenomenon, i.e., chain formation, self-consistent IA
solitons are produced from an initial density perturbation
(IDP).

Schamel [8–10] has developed a modified KdV (mKdV)
equation, by extending the work of Washimi and Taniuti [1] to
include the trapping effect of electrons. Based on β (trapping
parameter), the distribution function of trapped electrons can
take three different types of shapes, namely hollow (β < 0),
plateau (β = 0), and hump (β > 0). Schamel has identified
three regimes considering the trapping effect [8]. For β = 1,
the KdV regime recovers from mKdV solutions. For βc < β <

1 and β < βc, two modified KdV regimes are proposed with
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their own distinctive IA solitons, namely Schamel-KdV and
Schamel, respectively. βc depends on the amplitude of the IA
soliton and stays below βc < 1.0.

This study is an attempt to verify Schamel’s theory and
its prediction about IA solitons in the presence of trapped
electrons, based on a fully kinetic simulation approach
for the first time (both electrons and ions dynamics are
treated by the Vlasov equation). The second characteristic
of (self-consistently excited) IA solitons is addressed for
different values of β. The trapping parameter (β) ranges
from negative to positive values, covering all three possible
shapes of the distribution function of trapped electrons. All
three regimes suggested by Schamel are also examined in the
chosen range of the trapping parameter. Collisions of the IA
solitons are analyzed in both spatial and velocity directions
focusing on number density profiles and distribution functions,
respectively. However, the study is limited to collisions of IA
solitons with the same trapping parameter.

There have been a few simulation studies considering IA
solitons. Most of these simulations have utilized fluid-based
simulations (either KdV or fully fluid) [11,12], which can’t
include the trapping effect accurately. In the case of hybrid-PIC
simulations, the trapping effect of electrons are mostly ignored
by assuming electrons as a Boltzmann’s fluid [13]. Kakad
et al. [14] have considered the trapping effect in their PIC
simulations. However, they have not studied the trapping effect
systematically in the range as wide as the one reported here.
Furthermore, the inherit noise in PIC smooths out the details
of the distribution function of trapped electrons, destroying
trapping effect.

The self-consistent approach to create IA solitons, i.e.,
chain formation, is tested for small and large amplitude IDPs
in Sec. III A. Predictions and simulation results reported by
fluid or PIC method are verified [11–14] as a benchmark
test. Stability of the IA solitons in the presence of trapped
electrons against collisions is addressed in Sec. III B. The
kinetic details of the collisions for three different shapes of
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the trapped electrons distribution functions are presented in
Sec. III C.

II. BASIC EQUATIONS AND NUMERICAL SCHEME

All variables and quantities used in the rest of the text are
normalized to dimensionless forms to simplify the equations.
Space and time are normalized by λDi and ω−1

pi , respectively,

where ωpi =
√

ni0e2/(miε0) denotes the ion plasma frequency
and λDi =

√
ε0KBTi/(ni0e2) is the characteristic ion Debye

length. The velocity variable v has been scaled by the ion
thermal speed vthi

= √
KBTi/mi , while the electric field and

the electric potential have been reduced by KBTi/(eλDi) and
KBTi/e, respectively (here, KB is Boltzmann’s constant). The
densities of the two species are normalized by ni0, while
energy is scaled by KBTi . In order to introduce an IDP into the
simulation domain, the so-called Schamel distribution function
[15,16] is used as follows:

fs(v)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A exp
[−(√

ξs

2 v0 + √
E(v)

)2]
if

{
v < v0 −

√
2Eφ

ms

v > v0 +
√

2Eφ

ms

A exp
[−(

ξs

2 v2
0 + βsE(v)

)]
if

{
v > v0 −

√
2Eφ

ms

v < v0 +
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2Eφ

ms

,

in which A =
√

ξs

2π
n0s and ξs = ms

Ts
are amplitude and the nor-

malization factor, respectively. E(v) = ξs

2 (v − v0)2 + φ 1
Tsqs

represents the (normalized) energy of particles. v0 stands for
the velocity of the IA soliton. In the set of the simulations
presented here, this distribution function has been used to
introduce a stationary IDP (v0 = 0) at x0:

φ = ψ exp

(
x − x0




)2

, (1)

where ψ and 
 are the amplitude and width of the stationary
IDP, respectively. It is proven that this distribution function
satisfies the continuity and positiveness conditions while
producing a trapped population in its phase space [15,16].

The simulation method, employed here, has been devel-
oped by the authors based on the method called Vlasov-
hybrid simulation(VHS), which was initially proposed by
Nunn [17] (for details see Refs. [18–20]). It follows the
trajectories of the so called phase points [21] in the phase
space, depending on Liouville’s theorem as the theoretical
framework. It meets the condition of positiveness of the
distribution function during temporal evolution perfectly.
Preserving entropy (

∫
f ln f dvdx) and energy stands as one of

the major advantages of the method. In simulations presented
in this paper, each plasma species (i.e., electrons and ions) is
described by the (scaled) Vlasov equation:

∂fs(x,v,t)

∂t
+ v

∂fs(x,v,t)

∂x

+ qs

ms

E(x,t)
∂fs(x,v,t)

∂v
= 0, s = i,e, (2)

where s = i,e represents the corresponding species. The
variable v denotes velocity in phase space. qs and ms are

normalized by e and mi , respectively. Densities of the plasma
components are calculated through integration as

ns(x,t) = n0s

∫
fs(x,v,t)dv, (3)

which are coupled with Poisson’s equation:

∂2φ(x,t)

∂x2
= ne(x,t) − ni(x,t). (4)

The equilibrium values ns0 are assumed to satisfy the quasineu-
trality condition (ne0 = ni0) at the initial step.

The constant parameters that remain fixed through all of our
simulations are mi

me
= 100, time step dτ = 0.01, θ = Te

Ti
= 64,

and L = 4096, where L is the length of the simulation box.
Perturbation features are either ψ = 0.05 and 
 = 10 (small
IDP) or ψ = 0.2 and 
 = 500 (large IDP). The values of
β were modified between successive simulations in range
of −1.0 � β � 1.0. We have considered a two-dimensional
phase space with one spatial and one velocity axis. The
phase space grid (Nx,Nv) size is (4096,4000). The periodic
boundary condition is employed on x direction in order to
create successive collisions between IA solitons.

III. RESULTS AND DISCUSSION

Before presenting the simulation results, a general overview
of their temporal evolution is reported. An initial density
perturbation (IDP), which is selected to be around x/λDi =
512, is produced in the simulation domain using the Schamel
distribution function. First, this IDP breaks into two oppositely
drifting density perturbations (DDPs) due to the symmetry in
the velocity direction. As the temporal progression continues,
each of the DDPs emit their own Langmuir wave packets
ahead of itself. These wave packets are much faster than the
ionic structures such as DDPs. Therefore, they quickly get
separated from the IDPs. Furthermore, the DDPs forms one
or more IA solitons with different velocities and sizes, but
with the same β as the stationary IDP [22]. The number of IA
solitons depends on the value of the trapping parameter as well
as the amplitude of IDPs. IA solitons with higher amplitude
possess higher velocities, hence the IA solitons are aligned
in spatial direction based on their height. Behind the DDPs,
ion-acoustic wave packets are created that are slightly slower
than the DDPs. The IA wave packets are produced independent
from the DDPs.

The solitons and DDPs created from the chain formation are
not stationary BGK states. However, they are produced self-
consistently, which makes them free from any approximation
used in the Schamel’s theory derivation of mKDV equations,
such as small amplitude. Furthermore, this process resembles
the experimental approach used in a double plasma (DP) device
to excite solitons [2].

Since the periodic boundary condition is employed on the
spatial direction, the wave packets never leave the simulation
domain. In long-term simulations, they resonate with each
other and cause numerical instabilities so that particles are
pushed out of the simulation domain. Hence, the conservation
laws are violated. Simulation results presented here are long
before the time of the resonance and the conservation laws
are checked for deviations to stay below 1% constantly. This
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FIG. 1. The evolution of the distribution function versus velocity
is shown for β = 0.2 (a) and β = −0.1 (b). At τ = 10 the distribution
function (black dotted line) is presented at x = 550, middle of the
DDP, which shows hump (hollow) for β = 0.2 (β = −0.1). Blue solid
line presents the distribution function at the middle of the first soliton
just before its first collision. Filamented structures can be witness to
grow inside the distribution function of trapped population.

effect restricts the trapping parameter (β) range, reported in
this study. The further the trapping parameter deviates from
zero, the stronger wave packets would appear. On the other
hand, since the focus is on the collision of the IA solitons,
the periodic boundary condition can’t be removed. Therefore,
here the study is limited to −1.0 < β < 1.0.

In the early stage of the evolution, before any collisions,
the internal structure of solitons in the phase space shows
filamentation structures which become finer during temporal
progression (Fig. 1).

A. The effect of IDP size

When the amplitude of the DDPs are small enough, they
don’t disintegrate into a number of IA solitons. Each of the
DDPs forms just one IA soliton. Figure 2 shows the simulation
results for the case of small IDP (ψ = 0.05 and 
 = 10) with
β = 0. The existence of two wave packets, namely, Langmuir
and ion-acoustic, can be observed. The Langmuir wave packet

FIG. 2. The temporal evolution of electrons (a) and ions (b)
number density, for the case of a small IDP (ψ = 0.05, 
 = 10) with
β = 0, is shown. The propagation of both Langmuir and IA wave
packets can be witnessed. The number density are shown with color
covering values from 1.0 to 1.005. Note that the colors are arranged
based on a power-law distribution so the small amplitude Langmuir
wave packet in the electron number density can be recognizable.

is recognizable in the electron number density, as waves
propagating faster than the DDPs. For the ion number density
in the same area, a small-amplitude noise can be recognized.
The noise is coming from the effect of Langmuir waves on
ions. Since ions don’t resonate or participate in propagation
of Langmuir waves, there is no wave pattern in the noise. On
the other hand, the IA wave packet appears behind the DDPs
which is also independent from them. The IA wave packet

FIG. 3. Profiles of electrons number density (a) and charge
density (a) are shown for a large IDP (ψ = 0.2, 
 = 500) with
β = −0.1. Four different times during disintegration process, namely,
τ = 0, 50, 100, 150, are presented with black (around x = 500),
blue (around x = 1000), red (around x = 1500), and green (around
x = 2000), respectively. The disintegration process of each of DDPs
into three IA solitons can be seen in details.
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FIG. 4. The temporal evolution of electrons number density and charge density are shown for a large IDP (ψ = 0.2, 
 = 500) and two
values of β. Panels (a) and (b) represent the electrons number density for β = −0.1, while (c) and (d) display the charge density for the same
value of β. The electrons number density for β = 0.2 is shown in (e) and (f), while (g) and (h) display the charge density. Twelve (eight)
collisions are observed for each of six (four) IA solitons in case of β = −0.1 (β = 0.2). Zoomed-in panels (b), (d), (f), and (h) on the right side
of each figures display the details of three successive collisions around the time 550 < τ < 750. Since the trajectories of solitons don’t change
by this collisions, hence their velocities are conserved.

starts from the remanence of the initial perturbation when the
DDPs have already left it.

Figure 3 presents the results for a large IDP (ψ = 0.2
and 
 = 500) with β = −0.1. The DDPs disintegrate into

three solitons. First, the initial stationary IDP breaks into two
opposite DDPs. Then, each of the DDPs steepens on their
propagation side due to nonlinearity. Furthermore, three IA
solitons start surfacing. The earlier they appear (since they
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FIG. 5. The temporal evolution of features such as amplitude (a),
width (b), and velocity (c) of ions (blue solid line) and electrons (black
dotted line) number densities are shown for the right-propagating first
and dominant soliton in case of β = −0.1, ψ = 0.2, and 
 = 500.
Anomalies take place in the measurement during collision times, i.e.,
180 < τ < 250, 380 < τ < 450, 580 < τ < 650. The fluctuation of
the values around the average for propagation times (excluding the
collision intervals) are less than 1%, 5%, and 8% for amplitude
(1.12 < ae < 1.14,1.14 < ai < 1.16), width (85 < we < 95, 70 <

wi < 80), and velocity (11.0 < vi = ve < 9.0), respectively.

FIG. 6. For a large IDP (ψ = 0.2, 
 = 500) with β = −0.1, the
number density profiles of the first and dominant IA soliton are
presented for different times. The number density profiles of electrons
(a) and ions (b) before and after the first (τ = 180, τ = 250) and
the second (τ = 380, τ = 450) triple collision are shown. The same
is presented for electrons (c) and ions (d) for the third (τ = 580,
τ = 650) and the fourth (τ = 780, τ = 900) triple collisions.

are faster), the more dominant and taller they are. As Fig. 3
shows, the breaking between the first and the associated
DDP happens around τ = 100, and the breaking between
the second and the third IA solitons takes place later around
τ = 150. Note the difference between Figs. 2 and 3, in which
the ion-acoustic wave packets are created independent from
the DDPs, but the IA solitons are created from the bulk of the
DDPs. These results, i.e., (a) the existence of wave packets,
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FIG. 7. For the case of large IDP (ψ = 0.2 and 
 = 500) and β = −0.1, the hollow in the electrons’ distribution function accompanying the
right-propagating first and dominant IA soliton are shown in the phase space. The phase space structure of the trapped population is presented
before and after first (τ = 180, 250), second (τ = 380, 450), third (τ = 580, 650), and fourth (τ = 780, 900) triple collisions, respectively,
starting from the top left corner. The size and shape of hollows stay the same for all the figures, confirming the stability. However, the symmetry
of the hollow (in the phase space) are distorted increasingly as the number of collisions increases. See Supplemental Material [24] for the early
stage development of the hollow, i.e., τ < 180.

(b) the breaking of an stationary IDP into two oppositely DDPs,
(c) disintegration of a DDP into one or more IA solitons,

have been reported in both fluid and PIC simulations as well
[11–14].
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B. Stability against mutual collisions

Figure 4 demonstrates successive mutual collisions be-
tween IA solitons for two cases β = −0.1 and β = 0.0 for
large IDPs (ψ = 0.2,
 = 500). In the case of β = −0.1,
each of the DDPs break down into three IA solitons. Each
of the these IA solitons has gone through 12 collisions
up to τ = 1000. These collisions take place between IA
solitons of different sizes with same trapping parameter β.
The 12 collisions happen in 4 sets of triple collisions during
180 < τ < 250, 380 < τ < 450, 580 < τ < 650, and 780 <

τ < 900. In the case of β = 0.2, two IA solitons emerge from
each of the DDPs, and there are 8 collisions.

In order to study the stability of these IA solitons during
mutual collisions, different features of them have been consid-
ered. Two categories of features have been studied here, i.e.,
(a) spatial features such as amplitude, width, and shape in the
number density profiles and the velocity of propagation, and
(b) velocity-direction features like width and shape in phase
space.

Figure 5 focuses on three of these spatial features, i.e.,
amplitude, width, and velocity for the case of trapping
parameters with negative values. It shows that they stay the

same after the mutual collisions within acceptable margin of
error. The collision intervals can be easily recognized within
all three figures. What’s more, one can observe the initial
break-up of IDP (τ < 25) and then steeping of the DDPs
before breaking into number of solitons (25 < τ < 70) in the
figure reporting temporal evolution of amplitude. Figure 6
presents the number density profiles of the first IA soliton
for the case β = −0.1, hence focusing on shape of solitons
and its stability. The electron and ion number density profile
of the first right-propagating IA soliton is shown for eight
different times before and after each of the triple collisions.
The stability of the IA soliton can be observed clearly as its size
(including height and width) and shape in the spatial direction
don’t change. These two figures confirm the stability of spatial
features against mutual collisions.

The number densities of plasmas species, as fluid approx-
imation of their distribution functions N = ∫

f dv, serve as a
starting point for the fluid theory. Therefore, the stability of
their features against mutual collisions prove their fluid-level
stability. In other words, kinetic effects such as electron
trapping do not alter the stability and the propagation features
of IA solitons.

FIG. 8. For the case of large IDP, i.e., ψ = 0.2 and 
 = 500, with β = 0.0 (β = 0.2), the electrons’ distribution function are shown in the
phase space in the two top (bottom) figures. These figures represent the trapping area associated with the right-propagating first and dominant
IA soliton. The phase space structure of the plateau (β = 0.0) and the hump (β = 0.2) is presented before the first collision (τ = 190, 200,
respectively) and after the final collision (τ = 950). Stability of IA solitons can be confirmed by comparing the size and shape of nonlinear
structures. However, their symmetry is distorted due to the number of mutual collisions. Furthermore, plateau structure prove to be more robust
than the other two shapes.
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FIG. 9. Collision of hollows; for the case of β = −0.1, the distribution functions of electron and ions are presented during a collision
between right (R) and left (L) propagating IA solitons. The frame is moving alongside the right-propagating IA soliton and shows the times
from τ = 37 up to τ = 48 (arranged from top left corner). The collision for the electrons appears as a rotation of both phase-space hollows
around their collective center of mass. Furthermore two solitons exchange a portion of their trapped population during collision. However, for
the ions, the collision simply consists of two displacements moving through each other. See Supplemental Material [24] for complete successive
steps of this collision, i.e., 0 < τ < 130.
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For the kinetic level study, the temporal evolution of the
distribution functions of plasma species are focused upon.
Figure 7 displays the phase space structure of the electron
distribution function at the same times as Fig. 6. The size and
shape of the distribution function hollow accompanying the
IA soliton remain intact, confirming the stability of velocity-
direction features of IA solitons against mutual collisions.
However, the symmetry of the distribution function inside the
hollow is changing into a more and more chaotic form, as the
IA soliton passes through more and more collisions.

Figure 8 provides the same results as Fig. 7 for two other
cases, i.e., β = 0.0 and β = 0.2. The same tendency can be
witnessed, the trapped population becomes more chaotic at the
end of simulation compared to the initial step before the first
collision. However, the internal structure of plateau structure
(β = 0) displays less interruption compared to the two other
forms, i.e., hollows and humps. Hence, we conclude that the
plateau structure shows more resilience on the kinetic level
during mutual collisions. This is due to the constant value
of distribution function inside the plateau which can hide the
spiral movement inside it. Moreover, the final snapshot of
the hollow and humps at the end of simulations (after a few
collisions) resemble the plateau distribution (β = 0) due to the
increasing distortion in the trapped populations.

The same comparisons have been carried out for −1 < β <

1, specifically β = −1.0, −0.5, 0.5, and 1.0. This range of β

covers all three regimes proposed by Schamel [8] as well as
all three possible shapes of the trapped electrons distribution
function. Hence, the stability of IA solitons, in the presence
of trapped electrons, against successive mutual collisions is
confirmed, which consequently proves Schamel’s theory.

C. Collision process on kinetic level

In order to show the kinetic details of a collision between
two solitons, we have carried out another set of simulations,
in which the two oppositely propagating solitons are isolated
from the chain formation simulation and are introduced into
a new simulation box. Hence, the collision happens purely
in pairs. This removes the effect of secondary phenomena
coming from the chain formation process (such as wave
packets, dribs, and other solitons) from the collisions. The
time of extraction of the first soliton from the chain formation
simulation is chosen τ < 200, just before the first set of
collisions.

Figure 9 presents the simulation results for the first collision
between the two first/dominant IA solitons (marked as R and L)
propagating oppositely for the case of β = −0.1, ψ = 0.2, and

 = 500. Due to the negative value of trapping parameter, IA
solitons are accompanied by a hollow in electron distribution
function. The right and left propagating IA solitons collide at
time 37 < τ < 42. During this time they undergo one rotation
around their collective center of mass. During collision, this
rotation has been observed for all the other collisions of the first
set of simulations (see Fig. 6) as well, e.g., 180 < τ < 250,
390 < τ < 400, 590 < τ < 600, and 790 < τ < 800. The
rotation of the hollows in phase space around each other
has been witnessed before in context of beam instability.
Especially in the case of the two-beam instability, hollows
in the phase space would attract each other, rotate and merge

FIG. 10. Collision of plateaus; A collision between two IA
solitons for the case of β = 0.0 is presented in the phase space
of electrons from τ = 41 up to τ = 52 (starting from the top left
corner). The collision takes place between right (R) and left (L)
propagating solitons. The frame follows the right-propagating (R)
soliton. The collision causes the two plateaus in the phase space to
rotate once around their collective center and exchange some parts of
their populations.

together two by two until they form one hollow [23]. Figure 9
also reports the phase space of ions and their behavior during
collision, which is rather simple compared to electrons.
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For a plateau accompanying the IA solitons, i.e., β = 0,
the same pattern has been witnessed during their collisions as
well (see Fig. 10).

FIG. 11. Collision of humps; for the case of β = 0.2, a collision
of two oppositely propagating IA solitons is shown in the phase space
of electrons. The collision happens from τ = 40 up to τ = 49 (starting
from the top left corner). The phase space structure accompanying
the IA solitons are humps here, hence the red color. One rotation
around the collective center and the exchange of trapped population
takes place during collision between the two humps.

Figure 11 presents the results for the case of positive value
of β = 0.2, when there is a hump in the electrons’ distribution
function following IA solitons. In cases of the other value
of −1 < β < 1 (as far as considered here), the same pattern
has been observed during the mutual collisions. We conclude
that this rotational behavior of trapped populations stays
independent from the value of trapping parameter (β).

Furthermore, in all the cases shown (β = −0.1, 0, 0.2)
and studied (−1.0 < β < 1.0), during collision, the trapped
populations of the two solitons are exchanged and shared
during each collisions. This causes the internal structure of the
accompanying nonlinear structures to change and reemerges
more chaotic after each mutual collision (see Figs. 7 and 8).
However, the smoothing (which is due to the discretization
of the phase space on the both spatial and velocity direction)
contributes to this phenomenon as well.

IV. CONCLUSIONS

A fully kinetic simulation approach is utilized to verify
the Schamel’s theoretical predictions concerning IA solitons
in the presence of trapped electrons. This study confirms the
stability of different features of these solitons against mutual
collisions. Hence, this study concludes that kinetic effects such
as electron trapping don’t destroy IA solitons, at least in the
range of β (trapping parameter) considered here. To the best of
our knowledge, this study stands as the first attempt to address
this issue purely based on kinetic theory.

The collisions (limited to the encounter of trapped electrons
with the same trapping parameter) have been studied here on
two levels, i.e., fluid and kinetic. On the fluid level, we have
established that the IA solitons reemerge from the successive
mutual collision intact. Four features of them, including hight,
width, velocity, and shape, have been focused upon. The results
of the analysis for β = −0.1 are reported here in which each
soliton has experienced 12 mutual collisions. The constancy
of these characteristics, under 10% fluctuation around the
average values, implies the stability of IA solitons against
mutual collisions.

On the kinetic level, it is presented that the overall shape and
width of the trapped population accompanying the IA solitons
does not change after a few mutual collisions. However, the
internal structure of the trapped population changes after
each collision without any traceable impact on the fluid-level
characteristics. These changes push the phase space structures
of the trapped populations to become more chaotic. We have
noted that for β �= 0, more prominent alteration has been
witnessed.

Furthermore, the collision process itself, on the kinetic
level, displays a more complicated behavior than what has
been observed on the fluid level, i.e., two solitons simply
passing through each other. Two main phenomena have been
witnessed, i.e., rotation of the trapped populations around
their collective center and the partial exchange of their
trapped populations. These two procedures are shown to be
independent from the value of trapping parameter (β). We
have carried out simulations in which solitons are isolated
from the chain formation process and have been introduced
into a new simulation box in order to remove all secondary
effects from collision process. The results confirm the same
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pattern of behavior as the first set of simulations. The exchange
of populations affects the internal arrangement of the trapped
population and causes the alteration, which have been reported
here. Nonetheless, the effect of smoothing contributes to the
alteration.

Comparison of these results with the theoretical predictions
for the collision of phase-space electron hollows should reveal
the dynamical process behind the rotation during collisions.
However, such a comparison and study stay beyond the scope
of this paper. It is under consideration and will be commu-
nicated elsewhere. But this much can be mentioned here,
that the results presented here are limited to moderate-size IA
solitons and −1.0 < β < 1.0. In the case of high-amplitude
IA solitons, the collision of IA soliton might be affected by

the kinetic effects more strongly and the number of rotations
(here equals one) might change.
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