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Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid
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Inertial modes are the eigenmodes of contained rotating fluids restored by the Coriolis force. When the fluid is
incompressible, inviscid, and contained in a rigid container, these modes satisfy Poincaré’s equation that has the
peculiarity of being hyperbolic with boundary conditions. Inertial modes are, therefore, solutions of an ill-posed
boundary-value problem. In this paper, we investigate the mathematical side of this problem. We first show that
the Poincaré problem can be formulated in the Hilbert space of square-integrable functions, with no hypothesis
on the continuity or the differentiability of velocity fields. We observe that with this formulation, the Poincaré
operator is bounded and self-adjoint, and as such, its spectrum is the union of the point spectrum (the set of
eigenvalues) and the continuous spectrum only. When the fluid volume is an ellipsoid, we show that the inertial
modes form a complete base of polynomial velocity fields for the square-integrable velocity fields defined over
the ellipsoid and meeting the boundary conditions. If the ellipsoid is axisymmetric, then the base can be identified
with the set of Poincaré modes, first obtained by Bryan [Philos. Trans. R. Soc. London 180, 187 (1889)], and
completed with the geostrophic modes.
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I. INTRODUCTION

Rotation is a ubiquitous feature in stars, planets, and satel-
lites. The dynamics of these objects is profoundly modified
when solid body rotation overwhelmingly dominates all other
flows. In this case, residual disturbances that make the flow
depart from an exact solid body rotation are strongly affected
by the Coriolis acceleration, which ensures angular momentum
conservation of the movements. This is especially true for
the low-frequency oscillations of stars or planets. For these
oscillations, buoyancy and Coriolis force are the restoring
forces at work. They make gravitoinertial waves possible [1,2].

In stars, these waves are of strong interest because their
detection and identification allow us to access to both the
Brunt-Väisälä frequency distribution as well as the local
rotation of the fluid. They are of particular interest in massive
stars, where they open a window on the interface separating
the inner convective core and the outer radiative, and stably
stratified, envelope. But these waves are also a key feature of
the response of tidally interacting bodies and therefore of their
secular evolution [3–6]. On this latter subject, several studies
have recently addressed the dynamics of fluid flows driven
by librations, which are common phenomena in planetary
satellites (e.g., [7–9]).

However, the mathematical problem set out by these
global oscillations is far from being fully understood. The
reason for that comes from the very basic boundary value
problem that emerges when diffusion and compressibility
effects are neglected: it is ill-posed mathematically [10].
The operator is indeed either of hyperbolic or mixed type
in the spatial coordinates, but the solutions need to match

*gbackus@ucsd.edu
†Michel.Rieutord@irap.omp.eu

boundary conditions. As already noted by many authors after
the seminal work of Hadamard [11], ill-posed problems are
plagued with many sorts of singularities (e.g., [12], for a
detailed discussion).

With planetary and stellar applications in mind the oscilla-
tions of an incompressible fluid confined in a rotating sphere or
spherical shell have attracted much attention [5,7,12–15]. The
oscillating flows in a spherical shell display strong singularities
when viscosity vanishes [12]. The singularities occur because
perturbations obey the spatially hyperbolic Poincaré equation
[see Eq. (9) below], and must meet boundary conditions.
The strongest singularities, called wave attractors after the
work of Maas and Lam [16], result from the reflection of
the characteristic lines (or surfaces) on the boundaries.1 In
the two-dimensional problem analog to that of the spherical
shell, characteristic lines are focusing around periodic orbits
(the attractors) [17]. It can be further shown that no eigenmode
can exist when an attractor is present [12]. Of course, viscosity
regularizes the solutions, but numerical solutions of the viscous
eigenvalue problem show that actual eigenmodes are strongly
featured by attractors. They appear as thin oscillating shear
layers attached to the attractor.

Surprisingly, when the inner core of the spherical shell is
suppressed, namely the container is a full sphere (or a full
ellipsoid) regular polynomial solutions exist for the inviscid
eigenvalue problem [18]. For the sphere and the axisymmetric
ellipsoid, these solutions have long been known since the paper
of Bryan [19], which followed the seminal work of Poincaré
[20] on the equilibrium of rotating fluid masses (but see also
[10,21]).

1Note that on the well-posed hyperbolic problem—Cauchy
problem—where initial conditions replace boundary conditions on
the time-coordinate, there is no reflection toward the past!
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When Greenspan [10] reviewed the subject in his mono-
graph on rotating fluids, he raised the question of the
completeness of the inertial modes in the sphere and the
ellipsoid. Indeed, if the normal modes are complete, then
any perturbation can be expanded into a linear combination
of eigenfunctions. In particular, any initial condition can be
expanded and the response flow can be calculated, while
perturbations by viscous or nonlinear effects can be easily
dealt with. Except for the work of Lebovitz [22] (see below),
Greenspan’s question remained untouched for almost 50 years
until the recent works of Cui et al. [23], who proved complete-
ness for the rotating annular channel, followed by the one of
Ivers et al. [24] who gave the demonstration for the sphere.

The present work extends the results of Ivers et al. [24] to
any ellipsoid. Importantly, our demonstration takes another
route than the one found by Ivers et al. [24]. We use a more
general formulation of the problem allowing us to use the tools
of functional analysis in the Hilbert space of square-integrable
functions. Since these tools are likely unfamiliar to many fluid
dynamicists, we try to make our demonstration as pedagogical
as possible.

The paper is organized as follows. In the next section,
we first formulate the Poincaré problem, either for forced
flows or for free oscillations. Then, in Sec. III, we propose
another formulation of the free oscillation problem that does
not assume continuity or differentiability of velocity fields.
Velocity fields are only supposed to be square-integrable. Such
an extension of the space of velocity fields is motivated by
three arguments: first, inviscid fluid may support discontinuous
velocity fields, like the classical vortex sheet [25]. Second,
singular velocity field can be expected because of the ill-posed
nature of the Poincaré problem. Third, and not least, by
assuming only square-integrability of the solution of the
problem, we can play in the Hilbert space of square-integrable
functions, and benefit from many results of spectral theory
on bounded, self-adjoint, linear operators. In Sec. IV, we
summarize what we can readily say about this problem using
some of the results of functional analysis, recalling in passing
the needed concepts of spectral analysis. We then establish a
sufficient condition for an operator to own a complete basis
of eigenfunctions. We show that polynomial eigenfunctions
can constitute such a base if the fluid volume is an ellipsoid.
This result was also obtained by Lebovitz [22], but our proof
is more direct and clearly exhibit the special nature of the
ellipsoidal boundary. In Sec. V, we consider the well-known
(since Bryan [19]) eigenmodes of the rotating spheroid (i.e.,
the axisymmetric ellipsoid). These solutions are of polynomial
nature and we show (Sec. VI) that they constitute the expected
complete base that has been inferred in the previous section.
Notably, we exhibit the set of geostrophic modes that are
associated with the zero-eigenfrequency, and without which
inertial modes would not make a complete base.

The present work is therefore a follow up of the work
of Ivers et al. [24] who obtained a first set of mathematical
results when the problem is restricted to the sphere and
when the velocity fields are supposed to be once-continuously
differentiable. The two works share many common results, but
hopefully they complete one another and offer the broadest
view of the Poincaré problem. The method proposed here
seems promising enough that one might hope to use it when

the fluid volume is not an ellipsoid. We have investigated two
other shapes, a cube and a spherical shell, with only negative
results. Hence, except the annular channel [23], we simply do
not know whether any non-ellipsoidal volume has a complete
set of eigenvelocities of some more general form.

II. CLASSICAL FORMULATION OF THE
POINCARÉ PROBLEM

In the steady, undisturbed reference state, an incompressible
nonviscous fluid with constant density ρ occupies an open
bounded set E with boundary ∂E that has an outward unit
normal n̂. Let E be the closure2 of E, i.e., E together with
∂E. Both ∂E and the fluid rotate rigidly about some given
axis with constant angular velocity �. Position vectors r are
measured relative to an origin chosen on the axis of rotation.
The body force on the fluid in the rotating reference frame is
independent of time and consists of self-gravity, externally ap-
plied gravity, and centrifugal force. The pressure in the fluid is
the hydrostatic pressure required to balance these body forces.

In the disturbed state ∂E is infinitesimally deformed to ∂Et

at time t , and the infinitesimal normal velocity of ∂Et is β. An
extra infinitesimal time-dependent body force f per unit mass
acts on the fluid. In consequence of these forces and its own
history, the fluid has an infinitesimal velocity v when viewed
from the rotating frame. The hydrostatic pressure suffers an
infinitesimal perturbation which it will be convenient to write
as 2ρ�q, where � is the magnitude of � and q is a function
of r and the time t . In the rotating reference frame, v and q are
governed by the equations

n̂ · v = β on ∂E, (1a)

∇ · v = 0 in E, (1b)

∂tv + 2 � × v = −2�∇q + f in E. (2)

Because ρ is constant, Eq. (1b) is exact, but Eqs. (1a) and (2)
are correct only to first order in the disturbances β, v, q, and
f. For simplicity it will be assumed that β and f are known
for all t > 0, and that v is known everywhere at t = 0. Using
this information to find v and q for all r in E and all t > 0
constitutes the Poincaré forced initial value problem.

It will be convenient to eliminate β at the outset. If β �= 0,
let θ be a solution of the following Neumann problem ([26],
p. 246) at each time t :

n̂ · ∇θ = β on ∂E, (3a)

∇2 θ = 0 in E. (3b)

The solubility conditions for this Neumann problem are
that ∂E be sufficiently smooth (for example, n̂ may vary
continuously on ∂E) and that∫

∂E

dAβ = 0, (3c)

2We recall that the closure of a metric space S includes the set itself
plus all the limits of converging suites defined on the set S. Hence,
the set of real numbers is the closure of the set of rational numbers.
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a condition whose fulfillment is assured by Eq. (1). Given
Eq. (3c), the solution θ of Eqs. (3a) and (3b) is determined
at each t up to an unknown additive function of t , and ∇θ is
uniquely determined for all t . If we define

v′ = v − ∇θ (4a)

then v′ satisfies Eqs. (1) and (2) with β replaced by 0, with q

replaced by

q ′ = q + (2�)−1∂tθ, (4b)

and with f replaced by

f′ = f − 2� × ∇θ. (4c)

Henceforth, we drop the primes and take β = 0 in Eq. (1a).
To find the normal modes we set f = 0 in Eq. (2) and look

for solutions of Eqs. (1) and (2) whose time dependence is

v(r,t) = v(r,0) e2i�λt , (5a)

q(r,t) = q(r,0) e2i�λt , (5b)

where λ is an unknown complex constant. In studying the
normal modes we will abbreviate v(r,0) and q(r,0) as v(r) and
q(r) or simply as v and q. In these circumstances, Eqs. (1) and
(2) are replaced by

n̂ · v = 0 on ∂E, (6a)

∇ · v = 0 in E, (6b)

−λv + i �̂ × v = −i ∇q in E, (7)

where �̂ = �/�, the unit vector in the direction of �.
Kudlick [27] and Greenspan [10] show that when v and q

are smooth enough to permit some differentiation then λ cannot
be +1 or −1. We will treat the geostrophic case (λ = 0) later,
so for the moment we assume that λ is not 0, +1 or −1. Then
([10], p. 51) Eq. (7) can be solved for v in terms of ∇q to
produce

λ(1 − λ2) v = −i λ2 ∇q + λ �̂ × ∇q + i �̂ �̂ · ∇q. (8)

Substituting Eq. (8) in Eq. (6a) gives

λ2 n̂ · ∇q + iλ(n̂ × �̂) · ∇q = (n̂ · �̂) (�̂ · ∇q) on ∂E.

(9a)

Substituting Eq. (8) in Eq. (6b) gives

(�̂ · ∇)2 q = λ2 ∇2 q in E. (9b)

Equation (9b) is the classical Poincaré equation for the
pressure disturbance q, and Eq. (9a) is the boundary condition
appropriate to the Poincaré problem, in which ∂E rotates
rigidly. Given an eigenfunction q and its eigenvalue λ in
Eq. (9), the corresponding v is recovered from Eq. (8).
Greenspan [28] shows that when v is sufficiently differentiable
then λ must be real and between −1 and 1. The resulting
hyperbolic character of Eq. (9b) for the normal modes has led
to the suspicion that there might be pathological elements in
the boundary value problem Eq. (9) [29].

III. ADMITTING NONDIFFERENTIABLE
VELOCITY FIELDS

A. Introduction

Inviscid incompressible fluids admit discontinuous velocity
fields provided discontinuities are parallel to the field so
as to fulfill mass conservation. Hence, eigenvalues may be
associated with nondifferentiable velocity fields. In view of
the ill-posed nature of the Poincaré problem, the possibility of
such eigen-velocities cannot be excluded. In this section, we
therefore reformulate the eigenvalue problem Eqs. (6) and (7)
in order to include non-differentiable velocity fields.

Under suitable smoothness assumptions Greenspan [28,30]
shows that, whatever the shape of the fluid volume E, all
eigenvalues λ of Eqs. (6) and (7) are real and lie in the interval
−1 < λ < 1. That author also shows that eigenvelocities v1

and v2 belonging to different eigenvalues λ1 and λ2 are
orthogonal in the sense that 〈v1|v2〉 = 0, where the inner
product is defined as

〈v1|v2〉 = |E|−1
∫

E

dV (r) v1(r)∗ · v2(r). (10)

Here |E| is the volume of the region E, and v1(r)∗ is the
complex conjugate of v1(r).

All this suggests that the eigenvalues λ are the eigenvalues
of some bounded, self-adjoint linear operator L on the
complex Hilbert space � consisting of all Lebesgue square-
integrable complex vector fields v on E. We recall that
square-integrability just means that the total kinetic energy
of the flow exists. For such velocity fields, we can define their
norm by

‖v‖ = 〈v|v〉 1
2 . (11)

Now, to find the appropriate operator L : � → �, we must
interpret Eqs. (6) and (7) when v is merely square-integrable
and not differentiable or even continuous.

B. Mass conservation for L2-velocity fields

For velocity fields v that are merely square-integrable and
not differentiable or even continuous ∇ · v is not well-defined
in E, and n̂ · v is not well-defined3 on ∂E. We begin by trying
to avoid this difficulty.

The game will be to define subspaces of the general Hilbert
space � that includes all the square-integrable complex vector
fields v defined on E. To ease reading, we shall use underlined
symbols to denote a space (of functions usually). It’ll be
boldface if the space is a space of vectorial functions. Thus, we
first introduce �∞ and �∞ that are, respectively, the spaces
of all infinitely differentiable complex scalar and vector fields
on E, the closure of E. Define

�∞ := ∇�∞. (12a)

That is, �∞ consists of all vector fields u, which can be written

u = ∇ φ (12b)

3A square-integrable vector field may indeed not be defined on ∂E,
namely on a set of volume measure 0 in E.
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for some φ in �∞. Then, clearly, �∞ ⊆ �, but � ∞ is
not closed in � under the norm Eq. (11). Indeed, we can
easily construct a suite of infinitely differentiable function that
converges to a discontinuous function. Therefore, we consider
its closure, �:

� := �∞. (13)

According to this definition, a vector field u on E belongs to
� if and only if it is square-integrable on E and there is a
sequence φ1, φ2, ... in �∞, such that

lim
n→∞ ‖u − ∇φn‖ = 0. (14)

In particular, � includes all fields u of form Eq. (12b) with φ

continuously differentiable on E.
Let us now introduce �, the orthogonal complement of �

in �. Thus, � consists of all vector fields w square-integrable
on E and such that 〈u|w〉 = 0 for every u in �. In particular,
w ∈ � implies that

|E|−1
∫

E

dV (r) (∇φ∗) · w = 0, (15)

for every φ in �∞. Conversely, since the orthogonal comple-
ment of a set is also the orthogonal complement of its closure,
if w is square-integrable on E and Eq. (15) is true for every φ

in �∞, then w ∈ �.
Now suppose w ∈ � ∩ �∞. Then, Gauss’s theorem per-

mits Eq. (15) to be rewritten as∫
∂E

dAφ∗(n̂ · w) −
∫

E

dV φ∗(∇ · w) = 0 ∀φ ∈ �∞. (16)

By the Weierstrass approximation theorem ([38], p. 65) every
φ continuous on E can be approximated uniformly and with
arbitrary accuracy by polynomials. Therefore, Eq. (16) holds
for all φ continuous on E. Then a well-known argument leads
to the conclusion that ∇ · w = 0 in E and n̂ · w = 0 on ∂E.
Therefore, the demand

v ∈ � (17)

is the appropriate generalization of Eq. (6) to square-integrable
vector fields which are not differentiable.

C. � and piecewise continuously differentiable fields

Before going any further, it is worth viewing Eq. (17) from
a physical point of view. � is indeed a very large space that
includes, among other fields, unbounded vector fields that are
not physically acceptable.

We know that the local equation ∇ · v = 0 is equivalent to
the integral condition∫

(S)
v · dS = 0 ∀ S ∈ E, (18)

when v is differentiable. It says that for any closed surface
S, contained in E, the mass-flux across this surface is zero
(for a fluid of constant density). We shall see now that being a
piecewise continuous vector field in � is equivalent to Eq. (18)
being satisfied.

Let us first observe that if v is a once-continuously
differentiable that verifies Eq. (6), then for any φ, a once-

continuously differentiable function of �∞, we have
∫

E

∇ · (φv) dV =
∫

∂E

φ v · dS = 0, (19)

so that∫
E

(φ∇ · v + v · ∇φ) dV =
∫

E

v · ∇φ dV = 0, (20)

which shows that such v-fields are members of �. Now,
Eq. (20) implies Eq. (6) by the reasoning following Eq. (16).

However, we can also be slightly less restrictive on v and
just assume a piecewise continuous field. Then we can show
that for such fields �-membership is equivalent to Eq. (18).

If �-membership Eq. (17) is true, then for any real φ,
once-continuously differentiable function of �∞, we have

∫
E

v · ∇φ dV = 0. (21)

However, ∇φ is a vector that is always orthogonal to any iso-φ
surface. Since Eq. (21) is true for any φ, for a given surface S

we can design a φ that is constant inside S and outside S + δS.
S + δS is the same as S but dilated by a small increment δ�.
In between the two surfaces φ is chosen to increase linearly
by the same amount so that ‖∇φ‖ is the same everywhere on
the surface. Hence, for this given φ, Eq. (21) implies that

∫
S

v · n‖∇φ‖dSδ� = 0, (22)

where n is the unit vector ∇φ/‖∇φ‖ normal to the surface.
Since φ is chosen such that δ� and ‖∇φ‖ are constant, we
can simplify Eq. (22) and get Eq. (18). We note that since φ

is any function of �∞ we can construct suites of functions
whose limit can fit any closed surface, even with sharp angles.
Hence, all piecewise continuous members of � satisfy mass
conservation expressed in Eq. (18).

Now we would like to know if � contains all the mass-
conserving velocity fields. Let us therefore show that a
piecewise continuous field verifying Eq. (18) is necessarily
in �. For that we prove that if this is not the case then we
get a contradiction. We thus consider a real velocity field that
verifies Eq. (18) but that does not belong to �. Hence, there
exists a scalar field φ ∈ �∞ defined over the full volume E

such that ∫
E

v · ∇φ dV �= 0. (23)

To make the reasoning easier to follow, we shall assume in
addition that φ is a monotonic function over E. If this is
not the case then E can be split into sub-volumes where it
is monotonic, and the following reasoning applies to each
sub-volume.

Since φ is defined over E, the equation

φ(x,y,z) = φ(x0,y0,z0) = φ0

defines a surface which contains the point (x0,y0,z0) ∈ E.
Since v is a mass-conserving velocity field, Eq. (18) is true
for any closed surface, in particular for the surface φ = φ0. If
this surface is not closed, then it is completed by the needed
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part of ∂E. Thus, we can write
∫

φ=φ0

v · dS = 0 =
∫

φ=φ0

v · ∇φ
dS

‖∇φ‖ .

Since φ is a function defined all over E, let φm and φM be the
minimum and maximum value reached by φ in E, then

∫ φM

φm

∫
φ=φ0

v · ∇φ
dS

‖∇φ‖dφ0 = 0.

However, dφ0/‖∇φ‖ is the differential length element orthog-
onal to the surface, hence dSdφ0/‖∇φ‖ is just the volume
element. When φ scans the interval [φm,φM ], the surface
φ = φ0 scans the volume E. We thus find that

∫
E

v · ∇φ dV = 0, (24)

in contradiction with Eq. (23).
To conclude, we see that all piecewise continuous velocity

fields of � satisfy mass conservation in its integral formulation
Eq. (18) and reciprocally. However, let us stress again that �

is a much wider space that includes vector fields for which
Eq. (18) or ∇ · v may not make sense. Its vector fields are just
square-integrable and verify Eq. (15), which will be sufficient
for our purpose.

D. The momentum equation

We need a similar generalization of the equation of
momentum. Equation (7) has no derivative in the velocity
field, so the question is just a matter of how to reduce the
functional space � to �.

Since � is closed, and � is its orthogonal complement in
�, therefore

� = � ⊕ �. (25)

That is, every v in � can be written in the form v =
u + w with u ∈ � and w ∈ �, and 〈u|w〉 = 0. The foregoing
definitions are very similar to the decomposition of the
classical vector space into two orthogonal subspaces (like a
plane and a line in IR3). In the following we just identify the
projection operators on the subspaces.

The orthogonality of the subspaces � and � means that
u and w are uniquely determined by v, so that it is possible
to define two functions, � : � → � and  : � → �, as
follows: for any v in �,

v = �(v) + (v), (26a)

where

�(v) ∈ �, (v) ∈ �. (26b)

From the uniqueness of �(v) and (v) it follows that � and
 are linear, and since 〈�v|v〉 = 0 it follows that ‖v‖2 =
‖�v‖2 + ‖v‖2. Thus ‖�v‖ � ‖v|| and ‖v‖ � ‖v||. The
functions � and  are the orthogonal projectors of � onto
� and �. They are bounded linear operators on � with the

following properties (see [31], p. 72):

I � = � + , (27a)

�2 = �, 2 = , (27b)

� = � = 0, (27c)

‖�‖ = ‖‖ = 1, (27d)

�∗ = �, ∗ = , (27e)

�� = �, � = �. (27f)

Here I � is the identity operator on �, and for any linear
operator F on �, ‖F‖ is its norm, namely,

‖F‖ = sup{‖Fv‖ : ‖v‖ = 1},
and F ∗ is its adjoint. The three statements u ∈ �, �u = u
and u = 0 are equivalent, as are the three statements w ∈ �,
w = w, and �w = 0.

When v and �v belong to �∞, it is easy to compute �v
and v = v − �v as follows. Let u = �v and w = v. Then
w ∈ � ∩ �∞, so w satisfies Eq. (6). Also, u = ∇φ for some
φ ∈ �∞, so

v = ∇φ + w. (28)

Then, because w satisfies Eq. (6),

∇2φ = ∇ · v in E, (29a)

n̂ · ∇φ = n̂ · v on ∂E. (29b)

Since v is given, Eqs. (29) constitute an interior Neumann
problem for φ ([26], p. 246). The solubility condition for this
problem is ∫

E

dV (∇ · v) =
∫

∂E

dA (n̂ · v),

a condition whose validity is guaranteed by Gauss’s theorem.
Therefore, Eq. (29) has a solution φ, unique up to an
additive constant. Then �v = u = ∇φ is uniquely determined
by Eq. (29), and v is the w of Eq. (28). We note that
Eq. (28) is the weak formulation of the classical Helmholtz
decomposition of three-dimensional vector fields (see [32],
for a mathematical discussion of divergence-free vector fields
in three-dimensional domains).

With the foregoing preliminaries we now return to the
momentum Eq. (7). Define the linear operator R : � → �

by requiring that for any v in �,

Rv = i �̂ × v. (30)

Then Eq. (7) can be written

− λv + Rv = −i ∇q. (31a)

Suppose for the moment that q ∈ �∞. Then, ∇q ∈ � ∞, so
∇q = 0. Thus, if we apply  to Eq. (31a), we obtain

−λv + Rv = 0. (31b)

But this is an equation that makes sense even if v is merely
square-integrable, while if v ∈ �∞ then Eq. (31b) implies
Eq. (31a) for some q. Thus, Eq. (31b) generalizes Eq. (7) to
all square-integrable v.
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Equation (31b) can be further simplified, since the eigen-
solution v must also satisfy Eq. (17), the generalization of
Eq. (6). As already noted, Eq. (17) is equivalent to v = v,
and this permits rewriting Eq. (31b) as

Lv = λv, (32a)

where

L = R. (32b)

The operator L is defined on the whole space �, but L� ⊆
� and L� = {0}. Hence, the only interesting part of L is
actually L|�, the restriction of L to �.

The Poincaré problem, Eqs. (6) and (7), is now generalized
to square-integrable but possibly nondifferentiable velocity
fields v. The pair v, λ solves this generalized Poincaré problem
if v is an eigenvector and λ the corresponding eigenvalue of
the linear operator L|� on the Hilbert space �.

Further study of L depends on the observations that

‖L‖ � 1 (33a)

and

L∗ = L. (33b)

To prove Eq. (33a), note from Eq. (32b) that ‖L‖ �
‖‖‖R‖‖‖. By Eq. (27d), therefore, ‖L‖ � ‖R||. But since
|�̂| = 1, |Rv| � |v|, and hence ‖Rv‖ � ‖v||. Thus,

‖R‖ � 1, (34a)

and Eq. (33a) follows. To prove Eq. (33b), note that for
bounded linear operators F,G on � one has (FG)∗ = G∗F ∗.
Thus, from Eq. (32b), L∗ = ∗ R∗ ∗. Then from Eq. (27e),
L∗ = R∗ , and Eq. (33b) will follow if we can prove that

R∗ = R. (34b)

This last is simply the assertion that for any v1, v2 in �,

〈v1|i �̂ × v2〉 = 〈i �̂ × v1|v2〉,
a fact evident from Eq. (10).

In what follows, L|� will usually be abbreviated as L when
no confusion can result. Properties Eq. (33) of L assure that all
its eigenvalues λ are real and lie in the interval −1 � λ � 1.
Because L is self-adjoint, a well-known argument (e.g., [31],
p. 112) shows that if L v1 = λ1 v1 and L v2 = λ2 v2 and λ1 �=
λ2 then 〈v1|v2〉 = 0.

Thus we generalized to square-integrable v the results
obtained by Greenspan [28,30] and Kudlick [27] for contin-
uously differentiable v, with one exception: Kudlick ([10],
p. 61) shows that for continuously differentiable v, λ = ±1
are not eigenvalues. In fact, the numbers λ = ±1 can be
excluded from the eigenvalue spectrum for any v which is
merely square-integrable, and for any volume. We give the
complete proof in appendix. For triaxial ellipsoids, λ �= ±1
also follows from Lebovitz’s [22] result that all eigenfunctions
in an ellipsoid are polynomials, and thus smooth enough to
admit Kudlick’s proof.

IV. COMPLETENESS OF THE EIGENFUNCTIONS
FOR A TRIAXIAL ELLIPSOID

A. Introduction

Generalizing the Poincaré problem to square-integrable
velocity fields is useful not only because such fields are needed
to describe flows of inviscid fluids, but also because they make
available the spectral theory for bounded, self-adjoint linear
operators in Hilbert space.

Let us briefly summarize what spectral theory tells us about
L (i.e., L|�) which we know to be a linear self-adjoint bounded
operator defined over a Hilbert space. First this operator is
normal as it (obviously) commutes with its adjoint: LL∗ =
L∗L. Then, for any nonzero bounded linear operator F on
a Hilbert space H, the spectrum σ (F ) of F is the set of all
complex numbers λ such that F − λI fails to have a bounded
linear inverse. The spectrum is always a non-empty, closed
subset of the complex plane ([31], pp. 89 and 94). If F is
bounded, then |λ| � ‖F‖ for every λ in σ ( F ) ([31], p. 109).
If F is self-adjoint, then σ ( F ) is a subset of the real axis ([31],
p. 71).

The spectrum can be divided into three parts known as the
point spectrum (the eigenvalues), the continuous spectrum and
the residual spectrum. These three sets are disjoint and in our
case they are subsets of the real axis interval [−1,1] since
‖L‖ � 1. For a self-adjoint operator, it may be proved that
the residual spectrum is empty (e.g., theorem 9.2-4 in [33]).
Hence, for our problem we are just left with the continuous
and eigenvalue spectra. In this case, a complex number λ

can qualify for membership in σ (F ) in two ways: first, there
may be a nonzero h in H such that (F − λI)h = 0; that is, λ

may be an eigenvalue of F (its eigenvector being h). In other
words, when λ is in the point spectrum of F, (F − λI) is not
injective. Second, λ may be such that (F − λI)−1 exists but
(F − λI) is not surjective. In other words, (F − λI)(H) �= H
but (F − λI)(H) = H or the image of (F − λI) is dense in H.
In this case λ belongs to the continuous spectrum.

Interestingly, another subdivision of the spectrum has been
introduced by mathematicians (e.g., [34], p. 51 or [35], p. 81).
This other division is between the approximate point spectrum
and the compression spectrum. Unlike the preceding subsets
of the spectrum, these two subsets are not disjoint. When λ is
in the approximate point spectrum ( F − λI) h may be nonzero
whenever h �= 0 , but there may be a sequence h1, h2, . . . in H
such that ‖ hn‖ = 1 and limn→∞ ‖ (F − λI) hn‖ = 0. In this
case, ( F − λI)−1 is a linear mapping well-defined on the range
of F − λI, but it is not a bounded operator and hence has no
linear extension to all of H ([31], p. 44). To be complete the
compression spectrum is the set

σcomp(F ) = {λ ∈ C|Range(F − λI) � H},
hence a subset of the continuous spectrum. However, we learn
from Ref. [35] (Sec. 2.4, theorem 12) that for a normal operator
the spectrum is identical to the approximate point spectrum.
Applied to the Poincaré problem in the spheroid, which admits
a set of eigenvalue dense in [−1,1], we may identify this
interval with the approximate point spectrum and real numbers
that are not eigenvalues are in the continuous spectrum. Of
course, no eigenvectors are associated with members of the
continuous spectrum.
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B. A preliminary step

How do we prove that a bounded, self-adjoint linear
operator F : H → H has a complete set of orthonormal
eigenvectors, i.e., a collection of orthonormal eigenvectors,
which constitutes an orthonormal basis for the Hilbert space
H ? One method is to find an infinite sequence of subspaces of
H , say H 1, H 2, H 3, ..., with these properties:

dim H n < ∞, (35a)

H n ⊆ H n+1, (35b)

H = ∪∞
n=1 H n (35c)

FH n ⊆ H n. (35d)

We claim that whenever such a sequence of subspaces
exists, F has a complete set of orthonormal eigenvectors in H.

To prove this claim, let K 1 = H 1 and for n � 2 let K n

be the orthogonal complement of H n−1 in H n. Then H n =
H n−1 ⊕ K n and K m ⊥ K n if m �= n. Then Eq. (35c) implies
that for any h ∈ H there is a unique sequence of vectors
k1, k2, ... with kn ∈ K n, such that

lim
N→∞

∥∥∥∥∥h −
N∑

n=1

kn

∥∥∥∥∥ = 0. (36)

The self-adjointness of F implies that FK n ⊆ K n for all
n, and thus F |K n is a self-adjoint operator on the finite-
dimensional space K n. Therefore K n has an orthonormal basis
consisting of eigenvectors of F |K n ([36], p. 156). Collecting
all these eigenvectors for all the K n gives an orthonormal set
of eigenvectors of F in H, and by Eq. (36) they constitute an
orthonormal basis for H.

The direct application of the construction Eq. (35) to the
Poincaré problem formulated in Sec. III would be to take
H = � and F = L|�. It turns out to be easier to take H = �

and F = L. Suppose that � contains a sequence of subspaces
� 1,� 2, ... such that Eq. (35) is true with H = �, H n = � n,
and F = L. We claim that then � has a complete orthonormal
basis consisting of eigenfunctions of L|�.

To see this, note that Eq. (35) also holds with H =
L�, H n = L� n, and F = L| L�. Therefore L� has an
orthonormal basis consisting of eigenfunctions of L.

Let � 0 be the set of all w in � such that Lw = 0.
Greenspan ([10], p. 40) calls these the geostrophic motions.
Any orthonormal basis for � 0 consists of eigenvectors of L.
Therefore we have an orthonormal basis for � consisting of
eigenvectors of L if we can prove that

� = �0 ⊕ L�. (37)

To prove Eq. (37), note first that if w ∈ � 0 then 〈Lw|v〉 = 0
for every v ∈ �. Hence, 〈w|Lv〉 = 0 for every v ∈ �. Hence
w ⊥ L�, so w ⊥ L�. Thus � 0 ⊥ L�. Next, suppose w ∈
� and w ⊥ L�. Since L2 w ∈ L�, therefore 〈w|L2 w〉 = 0.
But 〈w|L2 w〉 = 〈Lw|Lw〉 , so Lw = 0 and w ∈ � 0.

C. Polynomial subspaces

To apply the foregoing general remarks to the Poincaré
problem, we set H = � and F = L in Eq. (35), and we seek
appropriate spaces � n to use as the H n in Eq. (35). In the

axisymmetric ellipsoid, the Poincaré modes are all polynomial
velocity fields ([10], p. 64). This suggests that spaces of such
fields might serve as the � n. To describe these spaces requires
some notation. The origin of coordinates is fixed somewhere
on the axis about which the fluid rotates, and r is the position
vector relative to this origin. Let � [l, l] be the set consisting of
0 and all complex homogeneous polynomials of degree l in r. If
l < n, let � [l, n] be the set consisting of 0 and all polynomials
whose monomial terms have degrees from l to n inclusive. Let
� [l,∞] be the set consisting of 0 and all polynomials whose
constituent monomials have degree l or greater. For any pair
of integers (l, n) with l � n, including n = ∞, let � [l, n]
denote the set of vector fields whose Cartesian components
are members of � [l, n] .

The arguments to follow will compare the dimensions of
various linear spaces, and these dimension counts begin with
the spaces just described. By the definition of � [l, l], it is
spanned by the monomials xaybzc with a + b + c = l. They
are linearly independent, and their number is easily seen to be
(l + 1)(l + 2)/2, so

dim� [l, l] = (l + 1)(l + 2)/2. (38a)

Summing Eq. (38a) from l = 0 to l = n gives

dim� [0, n] = (n + 1)(n + 2)(n + 3)/6. (38b)

Then dim� [l, n] for l � 1 can be computed from

dim� [l, n] = dim � [0, n] − dim � [0, l − 1]. (38c)

The foregoing formulas hold with � replaced by � if the
right sides of Eqs. (38a) and (38b) are multiplied by 3. In
particular,

dim � [0, n] = (n + 1)(n + 2)(n + 3)/2. (38d)

For later convenience we ignore � [0, 0] and � [0, 1]. In
proving Eq. (35) we take H = �, F = L, and H n = � [0, n +
1] with n = 1, 2, . . .. Both Eqs. (35a) and (35b) are obvious,
and Eq. (35c) is well known ([37], p. 375; [38], p. 68).

It remains only to verify Eq. (35d) when F = L and H n =
� [0, n + 1] . We must show that if n � 2,

L� [0, n] ⊆ � [0, n]. (39)

From Eq. (30), clearly

R� [0, n] ⊆ � [0, n], (40)

so Eq. (39) will follow from Eq. (32b) if it can be shown that

� [0, n] ⊆ � [0, n]. (41a)

Since � +  = I �, Eq. (41a) is equivalent to

� � [0, n] ⊆ � [0, n]. (41b)

Thus, everything hinges on proving Eq. (41b). Lebovitz [22]
proves Eq. (41) directly by constructing explicit polynomial
bases for � [0, n] and �� [0, n] and showing that their total
number is dim � [0, n]. We give here an alternate proof which
avoids some computation.
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D. The case of the ellipsoid

We now show that Eq. (41b) is true whenever E is an
ellipsoid, axisymmetric or not. We take the ellipsoid’s principal
axes as the coordinate axes, so that the equation of ∂E is

Ax2 + By2 + Cz2 = 1, (42)

for some positive constants A,B,C. Then the outward unit
normal to ∂E is n̂ = K/‖K‖ where, in an obvious notation,

K = Axx̂ + Byŷ + Czẑ, (43a)

and

‖K‖ = (A2x2 + B2y2 + C2z2)
1
2 . (43b)

Let D = K · ∇, so that

D = Ax ∂x + By ∂y + Cz ∂z. (44)

To prove Eq. (41b) we choose any v ∈ � [0, n] and try to
show that �v ∈ � [0, n] when n � 2. We know that �v = ∇φ

where φ solves Eq. (29). That is,

∇2φ = ∇ · v in E, (45a)

Dφ = K · v on ∂E. (45b)

If we can show that Eq. (45) has a solution φ in � [1, n + 1],
then ∇φ ∈ � [0, n], and Eq. (41b) is established.

An idea of Cartan ([39], p. 358) finds φ. We note first
that if v ∈ � [0, n] then K · v ∈ � [1, n + 1]. Next we claim
that D : � [1, n + 1] → � [1, n + 1] has an inverse, D−1 :
� [1, n + 1] → � [1, n + 1]. To see this, observe that the
monomials xaybzc with 1 � a + b + c � n + 1 are a basis
for � [1, n + 1] and that

D xaybzc = (Aa + Bb + Cc) xaybzc. (46)

Since aA + bB + cC is positive, we can divide by it and solve
(46) for D−1 xaybzc.

Now let ψ ∈ � [1, n − 1] and consider the function φ

defined by

φ = D−1[K · v + (Ax2 + By2 + Cz2 − 1) ψ]. (47)

Clearly φ ∈ � [1, n + 1], and φ satisfies Eq. (45b). Can ψ be
chosen in � [1, n − 1] so that φ also satisfies Eq. (45a)? If so,
we have proved Eq. (41b). Thus, the question is whether, given
v ∈ � [0, n], we can find a ψ in � [1, n − 1], such that

T ψ = α, (48a)

where

T ψ = ∇2D−1[(Ax2 + By2 + Cz2 − 1) ψ] (48b)

and

α = ∇ · v − ∇2D−1(K · v). (48c)

Define Gn−1 to be the set of all scalar fields α on E, such
that

α ∈ � [0, n − 1] (49a)

and ∫
E

dV α = 0. (49b)

For any vector field v Gauss’s theorem implies Eq. (49b)
for the α computed from Eq. (48c). If also v ∈ � [0, n] then
clearly α also satisfies Eq. (49a), so α ∈ Gn−1 . Therefore, to
show that Eq. (48a) has a solution ψ ∈ � [1, n − 1] it suffices
to show that

T � [1, n − 1] = Gn−1. (50)

We establish Eq. (50) in two stages. First we prove that

T � [1, n − 1] ⊆ Gn−1, (51a)

and then we prove that

dimT � [1, n − 1] = dim Gn−1. (51b)

To prove Eq. (51a), note that if ψ ∈ � [1, n − 1] and
α = T ψ then the definition of T , Eq. (48b), makes Eq. (49a)
obvious, while Eq. (49b) follows from Gauss’s theorem. To
prove Eq. (51b), we note that

dim Gn−1 = n(n + 1)(n + 2)/6 − 1 = dim � [1, n − 1],

so it suffices to prove that T is injective, since in that case
dim � [1, n − 1] = dim T � [1, n − 1]. Thus, we need to show
that T ψ = 0 implies ψ = 0. Let φ = D−1[(Ax2 + By2 +
Cz2 − 1) ψ]. Then, T ψ = 0 implies ∇2φ = 0 everywhere,
while obviously Dφ = 0 on ∂E , so n̂ · ∇φ = 0 on ∂E. Thus φ

is constant in E. Then (Ax2 + By2 + Cz2 − 1) ψ = Dφ = 0
in E. Hence, ψ = 0 everywhere.

At this point the chain of argument is complete. We have
proved Eq. (50) and hence Eq. (41) when ∂E is the ellipsoid
Eq. (42), oriented in any way relative to �. In consequence,
we have Eq. (39), so that Eq. (35) is verified when H = �,
H n = � [0, n + 1] and F = L. It follows that when ∂E is
an ellipsoid then � has an orthonormal basis consisting of
velocity fields w1,w2, . . . each of which is an eigenvector of
L| � and is an inhomogeneous polynomial in r. This last fact
makes available Kudlick’s argument ([10], p. 61) that +1 and
−1 cannot be eigenvalues of any wn, so all the eigenvalues λn

of L|� satisfy −1 < λn < 1.
The foregoing demonstration essentially hinges on the fact

that the ellipsoid is a smooth quadratic surface, so that we
can work in the functional spaces of polynomials which
are square-integrable and infinitely differentiable. With a
polynomial velocity field of �[0,n], we have proved that the
projection on the subspace � is an internal operation, i.e.,
�(v) still belongs to �[0,n]. Since the subspace � of the
mass conservative velocity field and � are orthogonal and
complementary, it also means that the projection on � is also
an internal operation for this polynomial space. However, it is
easier to work with vector velocity fields of � because these
vector fields are irrotational and simply described by a scalar
function. With these remarks the operator L is also internal in
the polynomial space �[0,n] and polynomial eigenfunctions
are possible.

V. THE POINCARÉ MODES

A. Known properties

For an axisymmetric ellipsoid rotating about its axis of
symmetry Bryan [19] extracted from Poincaré [20] paper a
list of particular polynomial eigenvelocities belonging to the
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family described in the preceding section, and expressible in
closed form in terms of Legendre functions. For the Poincaré
problem Greenspan [10] and [25] give a succinct description
of such modes. These Poincaré modes are described in more
detail than is usual in the literature in Appendix B of the paper,
this in order to count them and to make possible a proof in the
next section that they are complete if supplemented by some
geostrophic modes.

From Appendix B, we shall keep in mind that the pressure
field associated with the eigenmodes read

q(s,φ,z) = eimφ P m
l (sin ξ )P m

l (sin η), (52)

for any given integer l � 1 and m ∈ [−l,l]. In this expression,
ξ and η are given as functions of the cylindrical coordinates s

and z by Eq. (B8) and P m
l are the classical associated Legendre

polynomials. The determination of the eigenfrequency needs
the computation of a root of

[cos γ ∂γ − mh(γ )]P m
l (sin γ ) = 0 (53)

with 0 < |γ | < π/2 and where h(γ ) is given by Eq. (B6).
Then, the root γ serves in the relation between ξ, η, s and
z Eq. (B8) and for the determination of the eigenfrequency
through Eq. (B6).

For m = 0 the polynomial solutions given by Eq. (52) have
an important peculiarity. In that case, if γ0 solves Eq. (53) so
does −γ0, and the two coordinate systems Eq. (B8) generated
from γ = γ0 and γ = −γ0 give the same pressure function
q via Eq. (52). However, they give different eigenvalues λ in
Eq. (B6), equal except for opposite signs. Hence they generate
different velocity fields v in Eq. (8). In ordinary eigenvalue
problems, the eigenfunction has a unique eigenvalue, so it
is better bookkeeping to regard the velocity field v rather
than the pressure field q as the eigenfunction belonging to
the eigenvalue λ.

As noted by Cartan [39], Kudlick [27], and Greenspan ([10],
p. 65), the pressure functions Eq. (52) are inhomogeneous
polynomials of degree l in the Cartesian coordinates x, y, z, a
fact which can be verified from Eq. (B15b). Hence the velocity
field v calculated via Eq. (8) from the q of Eq. (52) and the λ of
Eq. (B6) has Cartesian components which are inhomogeneous
polynomials of degree l − 1 in x, y, z.

One other observation will simplify the bookkeeping: when
m �= 0, γ = 0 cannot be a root of Eq. (53) because the left side
of Eq. (53) is the sum of two terms, one even and one odd in γ .
The odd term must vanish at γ = 0, so the even term cannot.
Otherwise, P m

l (μ) would have a double zero at μ = 0. Being a
nonzero solution of a second order linear ordinary differential
equation, P m

l can have no double zeros.
When m=0, the foregoing argument also shows that γ =0

cannot be a root of Eq. (53) if l is odd. If l is even and
m = 0, then γ = 0 must be a root of Eq. (53). This produces
γ = 0, and thus λ = 0 in Eq. (B6). But γ = 0 cannot be used
in Eq. (B8) to generate a curvilinear coordinate system, so
there is no pressure field Eq. (52) or velocity field Eq. (8)
corresponding to the root η = 0 of Eq. (53) when m = 0 and
l is even. This gap is easily repaired. For λ = 0 the pressure
field

q = sl = (x2 + y2)l/2, (54a)

and the velocity field obtained from it via Eq. (7), not Eq. (8),

v = (∂sq) φ̂ = l sl−2 (yx̂ − xŷ), (54b)

are solutions of Eqs. (6) and (7). These are the classical
geostrophic solutions. When l is even, Eq. (54a) is a poly-
nomial in x, y, z, of degree l, and the Cartesian components
of Eq. (54b) are polynomials of degree (l − 1). It seems
reasonable to assign the eigenvalue λ = 0 and the pressure and
velocity eigenfunctions Eq. (54) to the root γ = 0 of Eq. (53)
when m = 0 and l is even.

These bookkeeping conventions permit a simple enumera-
tion of the Poincaré polynomial solutions of Eqs. (6) and (7).
For each integer l � 1 and each integer m in −l � m � l,
let η be a root of

[cos η∂η − mh(η)]P m
l (sin η) = 0, (55a)

−π/2 < η < π/2. (55b)

Set γ = η and find λ from Eq. (B6). Find q and v from
Eqs. (B8), (52), and (8), except when η = 0. The root η = 0
can appear only when m = 0 and l is even. In that case, find
q and v from Eq. (54). Any q and v obtained in one of these
ways will be called an (l,m)-Poincaré pressure polynomial
and an (l,m)-Poincaré velocity polynomial. An (l,m) pressure
polynomial is an inhomogeneous polynomial of degree l in
x, y, z, and the Cartesian components of an (l,m) velocity
polynomial are inhomogeneous polynomials of degree l − 1
in x, y, z.

The foregoing discussion summarizes very briefly the
classical literature on the Poincaré polynomial solutions of
Eqs. (6) and (7) when ∂E is an ellipsoid symmetric about
the axis of rotation of the fluid. We propose to supplement
this classical work with a proof in Sec. VI that the Poincaré
velocity polynomials are complete. That proof requires that we
have a lower bound for the number N (l, m) of (l,m)-Poincaré
velocity polynomials. Our bookkeeping conventions assure
that N (l, m) is just the number of roots of Eq. (55).

B. A lower bound for the number of (l,m)-Poincaré
velocity polytnomials

To calculate this number, define μ = sin η and g(μ) = h(η),
so that from Eq. (B6b)

g(μ) = [1 − ε(1 − μ2)]
1
2 , (56a)

where

ε = 1 − (c/a)2 (56b)

measures the flatness of the spheroid. Then Eq. (55) becomes

[(1 − μ2)∂μ − mg(μ)]P m
l (μ) = 0, (57a)

with

−1 < μ < 1. (57b)

First, suppose m = 0. Then l + 1 applications of Rolle’s
theorem in the expression of associated Legendre polynomials,
namely,

P m
l (μ) = (2l l!)−1 (1 − μ2)m/2 ∂l+m

μ (μ2 − 1)l (58)

053116-9



GEORGE BACKUS AND MICHEL RIEUTORD PHYSICAL REVIEW E 95, 053116 (2017)

show that

N (l, 0) = l − 1. (59)

Next, suppose m �= 0. If μ is a root of Eq. (57) for this
m, then −μ is a root for −m. As Greenspan ([10], p. 64)
observes, this means that the Poincaré modes with m �= 0 are
traveling waves. Therefore,

N (l, m) = N (l, − m), (60)

and we need calculate N (l, m) only when m > 0. To this end,
define

F (μ) =
∫ μ

0
dζg(ζ ) (1 − ζ 2)−1, (61)

so that Eq. (57a) becomes

∂μ

[
e−mF (μ)P m

l (μ)
] = 0. (62)

Note that

g(ζ )

1 − ζ 2
= 1

2
(1 − ζ )−1 + 1

2
(1 + ζ )−1 − ε [1 + g(ζ )]−1,

so that

F (μ) = 1
2 ln(1 + μ) − 1

2 ln(1 − μ) − ln G(μ),

where

G(μ) = ε

∫ μ

0
dζ [1 + g(ζ )]−1.

Using Eq. (58), we can now write Eq. (57a) as

∂μ

[
G(μ)m(1 − μ)m ∂l+m

μ (μ2 − 1)l
] = 0. (63)

Applying Rolle’s theorem l + m times shows that the (l − m)th
degree polynomial ∂l+m

μ (μ2 − 1)l has exactly l − m simple
zeros in −1 < μ < 1. Therefore, the lth degree polynomial
(1 − μ)m ∂l+m

μ (μ2 − 1)l has only these zeros and m zeros at
μ = 1. Thus, the same is true of the function G(μ)m(1 −
μ)m ∂l+m

μ (μ2 − 1)l . Then Rolle’s theorem gives Eq. (63) at
least l − m roots in −1 < μ < 1. Thus,

N (l, m) � l − |m| if m �= 0. (64)

This inequality will suffice in Sec. VII to prove the com-
pleteness of the Poincaré velocity polynomials when ∂E is
an ellipsoid symmetric about the axis of rotation of the fluid.
That proof will produce, as a byproduct, the conclusion that
equality must hold in Eq. (64), so

N (l, m) = l − |m| if m �= 0. (65)

One interesting consequence of Eq. (57) is that the
eigenvalues λ of the Poincaré problem Eqs. (6) and (7) in an
axisymmetric ellipsoid are dense in the interval −1 < λ < 1.
Indeed, the eigenvalues belonging to m = 0 are already dense.
To see this, observe that for m = 0 Eq. (57a) becomes
∂μP 0

l (μ) = 0. An integration by parts and an appeal to
Legendre’s equation show that

∫ 1

−1
dμ(1 − μ2) ∂μP 0

l (μ) ∂μP 0
l′ (μ)

= l(l + 1)
∫ 1

−1
dμP 0

l (μ) P 0
l′ (μ), (66)

so that the polynomials ∂μP 0
l (μ) with l = 1, 2, 3,... are

orthogonal on −1 < μ < 1 with weight function (1 − μ2). It
follows ([40], p. 111) that their zeros are dense in that interval.

VI. COMPLETENESS OF THE POINCARÉ VELOCITY
POLYNOMIALS IN AN AXISYMMETRIC ELLIPSOID

The present section proves the claim made in its title: we
wish to verify that the polynomials that have been found by
Bryan [19] for the spheroid form indeed the complete base that
we expect for the ellipsoid.

A. Dimension of the polynomial subspace �� [0, n]

The proof depends on an appeal to Sec. IV. As noted in that
section, � is the closure of ∪∞

n=1� [0, n]. Since � = � and
 is continuous, it follows that

� = ∪∞
n=1� [0, n]. (67)

Therefore, to prove the completeness of the Poincaré velocity
polynomials it sufficies to prove that for each n the Poincaré
polynomials of degree � n constitute a basis for � [0, n].
In fact, we shall see that they almost constitute an orthogonal
basis.

The first step in the proof is to show that, whatever the shape
of the fluid volume E,

dim� [0, n] = n(n + 1)(2n + 7)/6. (68)

Second, when E is an axisymmetric ellipsoid rotating about
its axis of symmetry, of course all the Poincaré eigenvelocity
fields with degrees � n are members of � [0, n], so we finish
the proof by showing that the number of linearly independent
Poincaré modes of degree � n is at least Eq. (68).

Lebovitz [22] establishes Eq. (68) for ellipsoids E by
constructing a particular non-orthonormal polynomial basis
for � [0, n]. He says (p. 231, Sec. VII) that such polynomial
bases are available for all shapes E. We have not been able
to verify this. Nevertheless, Eq. (68) is true for all shapes E.
What fails for some nonellipsoids (for example, the cube) is
Eq. (41a). This does not rule out the existence of a complete
polynomial basis for the Poincaré problem because Eq. (35) is
not an equivalence.

We begin the proof of Eq. (68) by recalling ([36], p. 90) that
if Q is any finite dimensional subspace of � and F : � → �

is linear, and ker F|Q is the set of all v ∈ Q such that Fv = 0,
then

dim ker F |Q + dim FQ = dim Q. (69)

Next, since  and � are orthogonal projectors with  + � =
I�, it follows from the definitions that

ker |Q = Q ∩ � Q. (70)

Taking F =  in Eq. (69) and Q = �[0, n] in Eqs. (69) and
(70) gives

dim (�[0,n] ∩ ��[0,n]) + dim�[0,n] = dim� [0, n].

(71)
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Then, because of Eqs. (38c), (38d), and (71), we can establish
Eq. (68) by showing that

dim ( � [0, n] ∩ � � [0, n] ) = dim� [1, n + 1]. (72)

To prove Eq. (72), we note first that if φ ∈ � [1, n + 1] and
∇ φ = 0 then φ = 0 . Thus, ∇ : � [1, n + 1] → � [0, n] is an
injection, so

dim� [1, n + 1] = dim ∇ � [1, n + 1]. (73)

Therefore, to prove Eq. (72), it suffices to prove that

� [0, n] ∩ � � [0, n] = ∇ � [1, n + 1]. (74)

The ⊇ half of (74) is easy. If φ ∈ � [1, n + 1], then ∇φ ∈
� [0, n], and � ∇φ = ∇φ, so ∇φ ∈ � � [0, n]. To prove the ⊆
half of Eq. (74), suppose that v ∈ � [0, n] ∩ � � [0, n]. Then
v = � v, so v = ∇ φ for some scalar field φ. We can calculate
φ ( r ) as the line integral of v along a polygonal curve starting at
0, ending at r, and consisting of straight line segments parallel
to the coordinate axes. This calculation succeeds even if E

consists of several disconnected pieces, because a polynomial
known in any open set is uniquely determined in all space,
so the path of integration need not remain in E. Then φ ∈
� [1, n + 1], and v = ∇ φ ∈ ∇ � [1, n + 1].

B. Number and orthogonality of Poincaré polynomials

1. General idea

Having established Eq. (68), now we must count the
Poincaré modes. Suppose ∂E is an ellipsoid symmetric about
the axis of rotation of the fluid. Choose coordinates as in
section V and let N (l, m) be as defined there. That is, for
any integers l, m with l � 1 and |m| � l, N (l, m) is the
number of (l,m)-Poincaré velocity polynomials, and also the
number of roots of Eq. (55). Let η l,m,ν be those roots, with
1 � ν � N (l, m). Let λ l,m,ν be the eigenvalues obtained by
setting γ = ηl,m,ν in Eq. (B6). Let v l,mν be the corresponding
(l,m)-Poincaré velocity polynomials, obtained either from
Eq. (54b) or from Eq. (8), (B8), and (52). Then for all l, m, ν,

Lv l, m,ν = λ l,m,ν v l, m,ν (75)

and

v l, m,ν ∈ � [0, l − 1]. (76)

We propose to prove that, after a modest amount of Gram-
Schmidt orthogonalization, the v l, m,ν with l � n + 1 provide
an orthogonal basis for � [0, n]. We make no attempt to
normalize these eigenvelocities by finding ‖ v l, m,ν ‖.

The proof requires two steps: (i) to show that the number
of v l, m,ν with l � n + 1 is at least dim� [0, n]; (ii) to
show that the v l, m,ν are linearly independent. Step (ii) will be
accomplished by showing that most of the v l, m,ν are mutually
orthogonal and by dealing with the exceptions.

2. Poincaré polynomials are numerous enough

Step (i) requires counting the Poincaré velocity polynomials
v l, m,ν for which l � n + 1. Their number is obviously

n+1∑
l=1

l∑
m=−l

N (l, m),

and, by Eqs. (59), (60), and (64), we know that

l∑
m=−l

N (l, m) � l2 − 1.

If we recall that
n+1∑
l=0

(l + 1)(l + 2) = (n + 1)(n + 2)(n + 3)/3,

then it turns out that
n+1∑
l=1

l∑
m=−l

N (l, m) � n(n + 1) (2n + 7)/6. (77)

Comparing Eq. (77) with Eq. (68), we see that step (i) is
complete. If we can carry out step (ii), then the � in Eq. (77)
must be an equality. Hence, the same must be true in Eq. (64),
which parenthetically proves Eq. (65).

3. Orthogonality of Poincaré polynomials

It remains to complete step (ii). As noted by Greenspan
([28]; [10], p. 53) and Kudlick [27],

〈v l, m,ν |v l′,m′,ν ′ 〉 = 0, (78a)

whenever

λ l, m,ν �= λ l′,m′,ν ′ . (78b)

This fact is also evident from the observation that each
λ l, m,ν and v l, m,ν constitute an eigenvalue-eigenvector pair
of the self-adjoint operator L : � → �. There remains
the possibility that λ l, m,ν = λ l′,m′,ν ′ even though (l, m, ν) �=
(l′,m′, ν ′).

4. The case of accidental degeneracy

The foregoing case is called an accidental degeneracy. The
question is to check that even in that case the two eigenmodes
are still orthogonal, namely Eq. (78a) is still verified.

To deal with this difficulty, we consider other ways of
assuring Eq. (78a) besides Eq. (78b). For example, Eqs. (8)
and (52) assure Eq. (78a) when m �= m′.

Finally, suppose that m = m′ and (l, ν) �= (l′, ν ′), but

λ l, m,ν = λ l′, m,ν ′ . (79a)

When this happens, we must have

l �= l′, (79b)

because if l = l′ then Eq. (79a) implies ν = ν ′. If we do have
Eq. (79) then λ l, m,ν and λl′,m,ν ′ produce the same γ in Eq. (B5)
and the same coordinate system in Eq. (B8). Therefore the
roots μ and μ′ of Eq. (57) must be the same for l and l′ and the
given m. But from Eq. (56) g is a function of ε as well as μ.
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Suppose we ask how μ,μ′ and hence v l, m,ν and v l′, m,ν ′ vary
as we change ε slightly. From Eq. (57a), ∂ε μ is given by

[∂μ(1 − μ2)∂μP m
l − mgε∂μP m

l − mP m
l ∂μgε]∂εμ

= m P m
l ∂ε gε. (80)

Here the terms in gε can be calculated from Eq. (56a),
∂μ(1 − μ2) ∂μP m

l can be expressed in terms of P m
l by means

of Legendre’s equation, and when μ is a root of Eq. (57) then
∂μP m

l can be expressed in terms of P m
l . These substitutions

convert Eq. (80) into

2P m
l (μ) [l(l + 1)gε − ε m2gε + ε mμ]∂ε μ

= m(1 − μ2) P m
l (μ). (81)

Equation (58) of Legendre polynomials and the argument
before Eq. (64) establish that P m

l (μ) has no multiple zeros.
Therefore, at a root of Eq. (57) with m �= 0 we must have
P m

l (μ) �= 0. Hence, when m �= 0 we can cancel P m
l (μ) from

Eq. (81) and obtain a formula for ∂ε μ in which no terms
depend on l except for l(l + 1) on the left. Since l �= l′, it
follows that if m �= 0 then

∂ε μ �= ∂ε μ′. (82)

Therefore, if m �= 0 and ε is slightly altered, the eigenvalues
of L belonging to v l, m,ν and v l′,m,ν ′ will become different and
we will have Eq. (78). But from Eqs. (B8) and (52), v l, m,ν

and v l′,m,ν ′ depend continuously on ε, so Eq. (78a) remains
true even at the original value of ε where Eq. (78b) fails.
From Eq. (81), this argument will break down if m = 0, and
that case must now be considered. All other Poincaré velocity
polynomials are orthogonal to each other and to those with
m = 0.

When m = 0 there are two kinds of Poincaré velocity
polynomials v l,0,ν , the proper (nongeostrophic) ones and,
for even l, the geostrophic ones. There are proper Poincaré
velocity polynomials with m = 0 only for l � 3. By Eq. (37),
all the proper ones have nonzero eigenvalues λ, while all the
geostrophic ones have λ = 0. Therefore, as already noted by
Greenspan ([28]; [10], p. 54) and Kudlick [27], the proper
and geostrophic Poincaré polynomials are orthogonal to one
another, and we can consider them separately.

First consider the proper Poincaré velocity polynomials
with m = 0. The γ ’s needed to generate their coordinate
systems Eq. (B8) and pressure fields Eq. (52) are obtained
from sin γ = μ, where μ is a root of Eq. (57) with m = 0,
i.e.,

∂μP 0
l (μ) = 0. (83)

For each fixed l, all the different roots of Eq. (83) generate dif-
ferent eigenvalues λ and hence mutually orthogonal Poincaré
velocity polynomials. The only trouble comes when l �= l′
and ∂μP 0

l (μ) and ∂μP 0
l′ (μ) have a common zero, μ0. We know

no proof that rules this out, but if it does happen then all
the Poincaré velocity polynomials produced by the different l

which make μ0 a root of Eq. (83) will be orthogonal to all other
Poincaré velocity polynomials. They are linearly independent,
being polynomials of different degrees, so they can always
be orthogonalized by the Gram-Schmidt process. Perhaps
one could prove them mutually orthogonal by perturbing ∂E

into a slightly non-axisymmetric ellipsoid and using another

continuity argument on Eq. (80). But this would require a
discussion of the Lamé functions used to produce the analog
of Eq. (52) in a triaxial ellipsoid [20,39].

We now consider the geostrophic velocity polynomials
Eq. (54b). They are obviously not mutually orthogonal,
but are clearly linearly independent, being polynomials of
different degrees. This finishes the proof that the Poincaré
velocity polynomials are linearly independent, and accom-
plishes step (ii) of the overall argument. Thus the Poincaré
velocity polynomials are complete in � for an axisymmetric
ellipsoid E.

5. Orthogonalized geostrophic velocity polynomials

Although not necessary for the foregoing argument, it may
be interesting to note that the Gram-Schmidt orthogonalization
of the geostrophic velocity polynomials can be carried out
explicitly. Write Eq. (54b) as

vl = Cl s fn( s2/a2 ) φ̂, l = 2, 4, 6, . . . (84a)

where Cl is a constant, n = l/2 − 1 , and

fn(σ ) = σn. (84b)

Then a little calculation gives

〈vl|vl′ 〉 = Cll′

∫ 1

0
dσ (1 − σ )

1
2 σfn(σ )fn′(σ ), (85)

where n = l/2 − 1, n′ = l′/2 − 1 and Cll′ is another constant.
Thus, Gram-Schmidt orthogonalizing the geostrophic velocity
polynomials v2,v4,v6, . . . amounts to orthogonalizing the
monomials 1,σ,σ 2, . . . on the interval 0 � σ � 1 with the
weighting function (1 − σ )

1
2 σ . The resulting orthogonalized

polynomials in σ are P
(α,β)
n (2σ − 1), where n = l/2 − 1, α =

1
2 , β = 1, and P

(α,β)
n is a Jacobi polynomial ([40], p. 58). Thus,

the orthogonalized geostrophic velocity polynomials can be
taken as

ṽl = (l + 1)sP (α,β)
n (2s2/a2 − 1) φ̂, (86)

where α = 1
2 , β = 1 and n = l/2 − 1 . The corresponding

pressure polynomials q̃l are related to ṽl by

ṽl = (∂sq̃l) φ̂, (87)

so ([40], p. 63) we can take

q̃l = a2P (α,β)
n ( 2s2/a2 − 1), (88)

with α = − 1
2 , β = 1 and n = l/2 .

VII. CONCLUSIONS

In this work we first demonstrated that the Poincaré prob-
lem, which governs the inertial oscillations of a rotating fluid,
can be formulated in the space of square-integrable functions
without any hypothesis on the continuity or differentiability
of the velocity fields. This formulation makes available
many results of functional analysis. First, while restricting
the velocity field to those that verify incompressibility and
boundary conditions, in other words restricting the velocity
fields to a Hilbert subspace of the square-integrable vector
fields, we could formulate the Poincaré problem as a simple
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eigenvalue problem namely Lv = λv showing in passing that
the velocity field is the appropriate variable, rather than the
pressure, for this formulation. It turns out that the operator
L is bounded and self-adjoint of norm less or equal to unity.
Hence, the spectrum of L is real and occupies the interval
[−1,+1] of the real axis of the complex frequency plane.
A theorem of functional analysis (e.g., [33]) states that the
residual spectrum of such an operator is empty. Hence, the
interval [−1,+1] is shared by the eigenvalues (the point
spectrum) and the continuous spectrum, the two sets being
disjoint and complementary. This first part gives the general
framework that can be used to analyze the Poincaré problem
in any type of volumes.

From the foregoing background, we could show that the
inertial modes of a rotating fluid contained in an ellipsoid
are polynomial velocity fields and form a complete base for
square-integrable vector fields defined over this volume. We
thus confirm in an independent and more direct way a result
of Lebovitz [22]. We also show that the inertial modes of a
spheroid, first obtained by Bryan [19], form the expected base
when they are completed by the geostrophic modes. We here
confirm, independently, the same result obtained for the sphere
by Ivers et al. [24].

Our work shares many results with those obtained in
Ref. [24], but these authors restricted, at the outset, their
analysis to continuously differentiable velocity fields and
exhibit the completeness of the inertial base for the sphere
only. In their conclusion they observe that they could have used
an extension of their functional space so as to use a Hilbert
space, and the ensuing results of functional analysis. Our work
thus gives a follow up of this conclusion, but show in addition
that the mere Hilbert space of square-integrable functions is
sufficient for that (instead of the closure of the set of once
continuously differentiable functions). However, both works
shed light on the various properties of the Poincaré problem.

Because Poincaré problem is hyperbolic with boundary
conditions, thus ill-posed, the geometry of the container is
crucial to the properties of the eigen spectrum. As shown in
Ref. [12] information propagated by characteristics has to
be consistent to lead to regular solutions. To give a physical
picture, hyperbolic problem are well-posed with initial
conditions, while here we impose initial and final conditions,
which may not be compatible. Hence, each geometry is a
specific case. Except the ellipsoid and the annular channel
Ref. [23], it is unknown whether the Poincaré problem has a
complete set of eigenvelocities. Two nonellipsoidal examples
have been considered: the cube and the spherical shell, but
the proof of (in)completeness remained elusive. In view of
the results of Rieutord et al. [12] for the spherical shell and
Nurijanyan et al. [41] for the rectangular parallelepiped, it
may well be that the eigenvalue spectrum is almost empty
for both of these volumes. On the other hand we know
since Kelvin [42] that the cylinder admits eigenmodes but
the completeness of their set remains an open question. The
present work may give a route toward the answer.
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APPENDIX A: ±1 CANNOT BE EIGENVALUES OF THE
POINCARÉ PROBLEM

Let us consider the momentum equation and its complex
conjugate, namely from Eq. (7)

−λv + i�̂ × v = −i∇q and −λv∗ − i�̂ × v∗ = i∇q∗,

where λ = ±1. Let multiply the equations together. Hence, we
get

‖∇q‖2 = −‖v‖2 + ‖�̂ × v‖2 + iλ(v∗ · ∇q − v · ∇q∗),

(A1)

where we used λ2 = 1 and the equations a second time. Noting
that

‖�̂ × v‖2 = ‖v‖2 −
∣∣∣∣∂q

∂z

∣∣∣∣
2

, (A2)

where we aligned the rotation axis with the z axis. Thus, we
obtain

‖∇q‖2 +
∣∣∣∣∂q

∂z

∣∣∣∣
2

= iλ(v∗ · ∇q − v · ∇q∗), (A3)

which we now integrate over the fluid volume. We finally
obtain ∫

(V )
‖∇q‖2 +

∣∣∣∣∂q

∂z

∣∣∣∣
2

dV = 0, (A4)

where we used that ∫
(V )

v∗ · ∇q dV = 0,

which trivially follows from mass conservation and boundary
conditions when the velocity field is differentiable, but which
is also true for merely square-integrable velocity fields thanks
to Eq. (15) since v∗ ∈ �.

Hence, from Eq. (A4), we find that ∇q = 0. Now we need to
check that the vanishing pressure gradient implies a vanishing
velocity field. From the equations of motion, we immediately
find that

vz = 0 and vy = ±ivx. (A5)

So the motion, if it exists, is only a planar flow, perpendicular
to the rotation axis.

Then, mass conservation demands that v ∈ � [cf Eq. (17)],
which means that for every φ ∈ �∞, we have∫

(V )
v · ∇φ∗ dV = 0. (A6)

With Eq. (A5), setting f = ∂xφ − i∂yφ, it also means that for
any f ∈ �∞, we have∫

(V )
vxf

∗ dV = 0. (A7)
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Thus, vx is orthogonal to all infinitely differentiable complex
scalar functions defined on the volume V . It can only be zero,
and so is the velocity field. Hence,

±1are not eigenvalues of the Poincaré problem.

Let us now comment this mathematical result from a more
physical view point. The fact that the numbers ±1 are excluded
from the eigenvalue spectrum comes from the fact that the
fluid’s domain is bounded. To view that, it suffices to consider
the propagation of characteristics that are associated with
the Poincaré operator. In a meridional section of the fluid’s
volume, these characteristics are straight lines that bounce on
the boundaries (e.g., Figs. 8 or 9 in [14]). When the frequency
gets close to unity, the characteristics get almost perpendicular
to the rotation axis and, as they bounce on the boundaries,
they form a web of lines that is very dense. If we recall that
characteristic lines are the trace of equiphase surfaces, we
understand that phase oscillates very rapidly in the z direction.
In other words the wave number kz tends to infinity. Thus no
mode can exist at λ = ±1 while there is no impediment for a
propagating wave in the direction parallel to the rotation axis
in an unbounded domain.

APPENDIX B: EXPLICIT FORM OF THE POINCARÉ
MODES IN THE AXISYMMETRIC ELLIPSOID

Suppose that E is an ellipsoid symmetric about the axis of
rotation of the fluid. Choose Cartesian coordinates x, y, z with
z along the axis of rotation. Thus, the unit vector ẑ in the z

direction is �̂ and the boundary ∂E has the equation

x2 + y2

a2
+ z2

c2
= 1, (B1)

where a and c are the two semiaxes of ∂E. It is convenient
to introduce cylindrical polar coordinates s, φ, z where s =
(x2 + y2)1/2 and x = s cos φ,y = s sin φ. In these coordi-
nates, the longitude φ separates and we may seek solutions of
Eq. (9) in the form

q = eimφq̃(s, z), (B2)

where m is any integer. Substituting Eq. (B2) in Eq. (9) gives

(s∂s + m λ−1)q̃ = (a/c)2(λ−2 − 1)z∂zq̃ on ∂E,

(B3a)(
∂2
s + s−1∂s − m2s−2

)
q̃ = (λ−2 − 1)∂2

z q̃ in E. (B3b)

For any λ satisfying

0 < |λ| < 1, (B4)

Bryan [20] sought a solution of Eq. (B3) by introducing
a system of confocal spheroidal coordinates depending on
and adapted to that particular value of λ. Bryan’s coordinate
systems are most simply described in trigonometric terms.
Given a λ satisfying Eq. (B4), choose γ so that

0 < |γ | < π/2, (B5a)

tan γ = (c/a) λ (1 − λ2)−1/2. (B5b)

(In this paper, when x > 0 then x1/2 is always the positive
square root of x.) Given γ , we can recover λ as

λ = sin γ

h(γ )
, (B6a)

where

h(γ ) = a−1 ( a2 sin2 γ + c2 cos2 γ )1/2. (B6b)

To obtain the trigonometric version of Bryan’s curvilinear
coordinates, in the (s, z) plane consider the half-ellipse

s2/a2 + z2/c2 = 1, s � 0, (B7)

obtained from Eq. (B1). For any γ satisfying Eq. (B5a), let
(ξ, η) be curvilinear coordinates inside Eq. (B7), chosen so
that

s = a
cos ξ cos η

cos γ
, (B8a)

z = c
sin ξ sin η

sin γ
, (B8b)

with

|γ | < ξ < π/2 (B8c)

and

−|γ | < η < |γ |. (B8d)

Figure 1 shows the curvilinear coordinate system (ξ, η)
generated by a typical γ satisfying Eq. (B5a). In that figure,
the two oblique straight lines are drawn so as to be tangent to
Eq. (B7) at the points P(±γ ), where

P(γ ) = ŝ a cos γ + ẑ c sin γ, (B9)

ŝ being the unit vector in the s direction in the (s, z) plane. All
the level curves of ξ and η obtained from Eq. (B8) are arcs
of half-ellipses tangent to those two oblique lines. The level
curves ξ = constant belong to half-ellipses which intersect
Eq. (B7) between P(±γ ) and the z axis, while the level curves
η = constant belong to the half-ellipses that intersect Eq. (B7)
between P(±γ ) and aŝ. The level curve ξ = π/2 is the segment
of the z axis connecting −cẑ and cẑ. The level curve ξ =
|γ | is the part of Eq. (B7) connecting P(γ ) and P(−γ ). The
level curve η = −|γ | is the part of Eq. (B7) connecting −c ẑ
and P(−|γ |). The level curve η = |γ | is the part of Eq. (B7)
connecting c ẑ and P(|γ |). The level curve η = 0 is the segment
of the s axis connecting the origin and aŝ.

In terms of the coordinates (ξ,η) the partial derivatives ∂s

and ∂z are as follows:

aD(ξ,η) sec γ ∂s = sin ξ cos η∂ξ − cos ξ sin η∂η, (B10a)

cD(ξ,η) csc γ ∂z = cos ξ sin η∂ξ − sin ξ cos η∂η, (B10b)

where

D(ξ,η) = cos2 ξ − cos2 η. (B10c)
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FIG. 1. Bryan’s ellipsoidal coordinate system Eq. (B8) when γ =
45◦ or γ = −45◦ and 2a = 3c. The fluid lies inside the heavy ellipse
where η = −|γ | or ξ = |γ | or η = |γ |. The points P(±|γ |) are given
by Eq. (B9), ŝ and ẑ being unit vectors in the direction of increasing
s and z.

Straightforward calculation using Eq. (B5b) then shows that

(a sec γ )2 D(ξ,η)
[
∂2
s + s−1 ∂s − m2s − (λ−2 − 1)∂2

z

]
= L(m)

η − L
(m)
ξ , (B11a)

where

L(m)
η = ∂2

η − tan η ∂η − m2(sec η)2. (B11b)

In the same way,

D(ξ,η) sin2 γ [s∂s + mλ−1 − (a/c)2(λ−2 − 1)z∂z]

= D(η,γ ) sin ξ cos ξ∂ξ + D(γ,ξ ) sin η cos η∂η

−D(η,ξ )mλ−1 sin2 γ. (B12)

Thus, the Poincaré Eq. (B3b) becomes

L(m)
η q̃ = L

(m)
ξ q̃, (B13)

and the boundary condition Eq. (B3a) separates into three parts
corresponding to the three arcs into which P(γ ) and P(−γ )
divide the half-ellipse Eq. (B7). To satisfy Eq. (B3a), q̃ must
behave as follows: for |γ | < ξ < π/2, one must have

[sin η cos η∂η − mh(γ ) sin γ ]q̃(ξ,η) = 0 at η = ±γ ;

(B14a)

and for −|γ | < η < |γ |, one must have

[sin ξ cos ξ∂ξ − mh(γ ) sin γ ]q̃(ξ,η) = 0 at ξ = |γ |.
(B14b)

Because of Eq. (B13), a particular solution of Eq. (B3b)
can be obtained by choosing any integer l � |m| and setting

q̃(ξ,η) = P m
l (sin ξ ) P m

l (sin η), (B15a)

where P m
l is the associated Legendre function,

P m
l (μ) = (2l l!)−1 (1 − μ2)m/2 ∂l+m

μ (μ2 − 1)l . (B15b)

This q̃ will also satisfy the boundary conditions Eq. (B3a)
if it satisfies Eq. (B14), that is, if

[sin η cos η∂η − mh(γ ) sin γ ]P m
l (sin η) = 0 at η = ±γ

(B16a)

and also

[sin ξ cos ξ∂ξ − mh(γ ) sin γ ]P m
l (sin ξ ) = 0 at ξ = |γ |.

(B16b)

Obviously Eq. (B16a) implies Eq. (B16b). Moreover, the
left side of Eq. (B16a) has the same parity in η as does
P m

l (sin η), so if Eq. (B16a) is satisfied for η = γ it is also
satisfied for η = −γ . At η = γ , Eq. (B16a) reduces to

[cos η ∂η − mh(η)]P m
l (sin η) = 0, (B17a)

where, because of Eq. (B5a),

0 < |η| < π/2. (B17b)

Note that when m = 0 the choice l = 0 is of no interest
because then in Eq. (B15a) q̃ = 1 so Eq. (8) gives v = 0.

Now we can summarize Bryan’s [19] recipe for constructing
some eigenfunctions q and their corresponding eigenvalues λ

in the Poincaré pressure problem Eq. (9): choose any integer
l � 1 and any integer m satisfying −l � m � l. Find a root
η of Eq. (B17) and set γ = η. Then use this γ to generate
a curvilinear coordinate system Eq. (B8) inside the fluid
ellipsoid. Choose

q(s, φ, z) = eimφ P m
l (sin ξ ) P m

l (sin η), (B18)

where s and z are given by Eq. (B8). Finally, calculate λ from
γ via Eq. (B6).
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