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Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model
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The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven
Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a
liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation
layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot
electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We
present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional
direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five
different modes of convection are identified in the configuration, which are partly coupled to each other: RC in
the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten
salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis
confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly
unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical
Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for
the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent
heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is
comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that
incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances
the turbulent heat transfer across the triple-layer configuration.
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I. INTRODUCTION

In the wake of the rapid growth of renewable energies,
the intermediate storage of energy is of central importance.
Besides thermal and mechanical methods, chemical energy
storage in liquid metal batteries (LMB) is a promising way
that has received increasing attention in recent years [1,2]. A
liquid metal battery consists of three stratified liquid layers.
The heaviest layer is the cathode, which consists of a liquid
metal alloy. It is separated from the liquid-metal anode at
the top by a molten salt layer rather than by an ion-permeable
solid separator as in standard batteries [3]. This implies that the
operating temperature of present prototypes is several hundred
degrees Celsius compared to room temperature in standard
devices. The feasibility of such configurations was demon-
strated recently in the laboratory. Among them are electrode
combinations of lithium and lead-antimony alloys (Li||Pb-
Sb) [2] or magnesium and antimony (Mg||Sb) [4], respectively.

LMBs are multiphysics fluid systems that couple thermal
effects, magnetic fields, and electrochemical reactions to
turbulent flows in each of the three layers. Different aspects
of LMB systems have been studied in recent years. The
current-driven Tayler instability, which may cause an electrical
short-circuit between both electrodes for large systems with di-
ameters of the order of a meter, has been investigated by Weber
et al. [5,6] and Herreman et al. [7]. The metal pad instability,
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which is already known from aluminum reduction cells, has
been studied by Zikanov [8]. Turbulent mixing processes in the
liquid metal electrodes due to heating have been investigated
experimentally by Kelley and Sadoway [9]. Very recently,
thermal convection in the three-layer liquid metal battery was
studied numerically by Shen and Zikanov [10]. The authors
showed in this work that in the presence of Joule heating,
convective motion is always triggered for the typical Rayleigh
or Grashof numbers in practical configurations. It can be
expected that a significant part of the open physical questions
and problems arises at the upper and lower interfaces between
the electrodes and the molten-salt layer. This provides the mo-
tivation for our study of interfacial convection in LMBs. More-
over, the temperature distribution is an important optimization
parameter in the operation of LMBs since a high temperature
leads to increased energy losses while a low temperature
increases the likelihood of short circuits by solidification.

In the present work, we want to investigate the effects of
interfacial tension in a LMB. We ignore other processes in
LMBs such as mass transport and chemical reactions due
to modeling uncertainties and in order to keep the number
of equations and parameters manageable. More precisely,
we will extend the three-layer thermal convection setting
by Marangoni effects and study the linear stability and the
full nonlinear evolution of such a LMB model. Our three-
dimensional numerical simulations (DNS) will show that
thermal Marangoni convection is an important factor for the
flow inside a LMB. In this respect, we extend the model of
Shen and Zikanov [10] to account for the differences of all
transport coefficients and the gradient of interfacial tension. By
doing this, interfaces are coupled by the continuity of all three
velocities components across the interface and the balance of
tangential viscous stresses with interfacial tension gradients.
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Effects of the electrical current and the resulting Ohmic heating
are included by different heating rates in the three layers,
which reflect the differences in electrical conductivity. As a
consequence, temperature gradients are produced that poten-
tially cause interfacial tension driven flows (i.e., Marangoni
convection) and buoyancy-driven flows (i.e., Rayleigh-Bénard
convection). Our numerical simulations will allow us to study
these effects either in combination or independently, whereby
their relative importance can be estimated.

The deformations of layers, which have been incorporated,
e.g., in magnetohydrodynamic numerical simulations of Her-
reman et al. [7], are neglected. The azimuthal magnetic field,
which is caused by the charge current across the cell, is also
neglected. This simplification is in line with the results of Shen
and Zikanov [10]: The azimuthal magnetic field of a homoge-
neous current remains negligible for laboratory-sized configu-
rations which are in the focus of the present work, particularly
in view to the nonlinear evolution of the three-layer model.
The typical layer height is then of the order of centimeters.

Also, we will consider an internal fraction of the triple-
layer only and exclude side walls. This will allow us to
use the simpler Cartesian geometry in combination with
periodic boundary conditions in the horizontal directions.
The latter step opens the possibility to apply exponentially
fast converging pseudospectral simulations [11]. Finally, as in
all previous studies, the model is considerably simplified by
disregarding the mass transport of metal from the top layer
to the bottom layer and the resulting change of density and
interfacial tension with the composition.

Thermophysical properties, especially for molten salts, are
difficult to obtain from the literature for currently investigated
LMBs. Thus we select the following representative substances
for the LMB configuration:

(1) For the upper electrode, we take lithium with a melting
point at 181 ◦C. Lithium is a typical metal with favorable
properties to construct LMBs [1]. Material properties of
lithium are taken from Ref. [12].

(2) For the layer that separates both liquid metal electrodes,
a lithium chloride (59 mol%)-potassium chloride (41 mol%)
eutectic mixture is taken which is denoted as LiCl-KCl. The
melting point is at 355 ◦C. Most of the required transport
properties of eutectic LiCl-KCl are collected in Williams
et al. [13]. The surface tension value can be found in Ref. [14]
and the electrical conductivity in Ref. [15]. The mass density
as a function of temperature is given in Ref. [14]. It is noted
that in Ref. [10] the same salt used.

(3) For the lower electrode, we take eutectic lead-bismuth
(Pb-Bi), which has been also used in the mixing experiments
in Ref. [9]. The material properties of eutectic Pb-Bi are also
collected in Ref. [16].

As a typical temperature in an experiment [2] we take T ∞ =
500 ◦C (773.15 K), which is far above the melting temperature
of all three battery components. The material properties at this
operating temperature are collected in Table I. The interfacial
tension between layers is estimated by the method of Girifalco
and Good [17]; see Sec. II C.

Our paper is organized as follows. Section II presents the
nondimensional model equations and the numerical method.
Section III presents the linear stability analysis for the triple-
layer configuration. Four convection regimes are identified:

TABLE I. List of all material parameters of a three-layer battery
system Li || LiCl-KCl || Pb-Bi at an operating temperature of 500 ◦C.
All references for the numerical values are given in the text.

Physical quantity Symbol SI unit Value

Mass density ρ
(1)
ref kg/m3 1.0065 × 104

ρ
(2)
ref kg/m3 1597.9

ρ
(3)
ref kg/m3 484.7

Kinematic viscosity ν(1) m2/s 1.29 × 10−7

ν(2) m2/s 1.38 × 10−6

ν(3) m2/s 6.64 × 10−7

Thermal diffusivity κ (1) m2/s 1.015 × 10−5

κ (2) m2/s 1.90 × 10−7

κ (3) m2/s 2.48 × 10−5

Thermal conductivity λ(1) W/(mK) 14.41

λ(2) W/(mK) 0.365

λ(3) W/(mK) 50.12

Specific heat C(1)
p J/(kgK) 141.05

C(2)
p J/(kgK) 1201.6

C(3)
p J/(kgK) 4169.0

Electrical conductivity σ (1)
e S/m 7.81 × 105

σ (2)
e S/m 187.1

σ (3)
e S/m 3.0 × 106

Expansion coefficient β
(1)
T 1/K −1.28 × 10−4

β
(2)
T 1/K −3.32 × 10−4

β
(3)
T 1/K −2.08 × 10−4

Change in interfacial tension σ I
refα

I
T N/(mK) 3.1 × 10−5

σ II
refα

II
T N/(mK) 7.98 × 10−5

Rayleigh-Bénard convection (RC) in the middle and top layers
and Marangoni convection (MC) at each of the two interfaces.
Based on these linear stability investigations, Sec. IV discusses
three-dimensional DNS of the full nonlinear evolution at given
material parameters, which represent typical laboratory-scale
configurations in terms of currents and layer heights. In
Sec. V, we derive a practical Rayleigh number criterion to
decide when each of the four different regimes can appear
and/or will dominate. The anticonvection mode (AC) in the
bottom electrode is also considered. Moreover, the relevance
of interfacial deformations caused by the convection in the
layers is estimated. Finally, we summarize the present work in
Sec. VII and give a brief outlook.

II. THREE-LAYER MODEL AND NUMERICAL METHODS

A. Characteristic units

The model describes three immiscible Newtonian liquids
that are stably stratified due to their density difference.
Figure 1 sketches this three-layer model in the nondimensional
formulation. The lower layer, representing a dense liquid-metal
alloy, is located in the range −d (1) < z < 0, and related
quantities will be denoted with a superscript (1). The molten
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FIG. 1. Sketch of the simplified three-layer liquid-metal battery
model. All size lengths are given in units of the lower layer height
d (1).

salt layer occupies the interval 0 < z < d (2). On top, a layer
of liquid metal is located with d (2) < z < d (2) + d (3). Layers
	(1) and 	(2) are separated by the planar interface I, and layers
	(2) and 	(3) by the interface II, respectively.

The three layers are bounded by solid walls at the bottom
and top, which are held at a uniform temperature T ∞. A
homogenous internal heating is applied in each of the three
layers, which mimics a prescribed homogeneous current
density j0ez. The differences in the electrical conductivity σ (i)

e

are also taken into account. Convection is driven by gradients
in mass density ρ(i)(T ) as well as the interfacial tensions σ I(T )
and σ II(T ), all of which depend on the temperature field T (x,t).

The characteristic units for time τvis, length Lvis, and
velocity Uvis are based on the height of the bottom layer and the
characteristic time of viscous equilibration across this layer:

Lvis = d (1), τvis = (d (1))2

ν(1)
, Uvis = ν(1)

d (1)
, (1)

with ν(1) being the kinematic viscosity in layer 	(1). The lateral
aspect ratios in x and y directions are always equal: lx = ly .
The appropriate temperature unit � is chosen to represent the
maximum temperature appearing at pure conduction in the
middle layer [18]:

� = Q(2)(d (2))2

8λ(2)
= j 2

0 (d (2))2

8λ(2)σ
(2)
e

, (2)

where Q(2) = j 2
0 /σ (2)

e is the volumetric Joule dissipation rate
[measured in J/(s m3)] in the middle layer and λ a thermal
conductivity. Also, j0 is the constant current density and σe

is the electrical conductivity. Dimensionless temperatures are
thus given by T = (T̃ − T ∞)/� where T̃ is the physical

TABLE II. Derived nondimensional parameters and parameter
ratios which are used for the DNS of the nonlinear evolution. All
ratios follow from (4). Parameter ξ is given by (31). Parameters that
depend on layer heights and electrical current density are computed
with d (1) = d (2) = d (3) = 20 mm and j0 = 3 kA/m2.

Quantity Symbol Value

Grashof number G −3.97 × 106

Marangoni number Ma −310.02
Prandtl number Pr(1) 0.0127

Pr(2) 7.24
Pr(3) 0.0268

Layer height d21 1
d31 1

Thermal conductivity λ21 0.0253
λ31 3.48

Mass density ρ21 0.159
ρ31 0.048

Kinematic viscosity ν21 10.66
ν31 5.14

Thermal diffusivity κ21 0.019
κ31 2.44

Thermal expansion β21 2.59
β31 1.63

Interfacial tension ξ 2.57
Electrical conductivity σe,21 2.396 × 10−4

σe,31 3.841
Velocity unit Uvis 6.46 × 10−6 m/s
Time unit τvis 3097 s
Length unit Lvis 20 mm
Temperature unit � 6.59 K

temperature. In Sec. III A, the case of pure conduction is
solved for the present three-layer problem. It will turn out
that a zero heating rate in the top and bottom layers provides a
good approximation to the exact conduction solution since
the electrical conductivity of the middle molten salt layer
is considerably lower than in the outer liquid metal layers.
Furthermore, the unit of temperature in Eq. (2) will be a good
estimate for the maximum temperature in the cell. Finally, the
unit for pressure is given by

Pvis = ρ
(1)
ref U

2
vis = ρ

(1)
ref (ν(1))2

(d (1))2
. (3)

From now on, we will consider dimensionless units only.
The ratios of material parameters φ ∈ {ν,κ,σ,λ,βT , . . .} are
denoted by the following abbreviation:

φij = φ(i)

φ(j )
. (4)

They are summarized in Table II. This will simplify the
notation of the set of equations which are discussed next.

B. Equations and boundary conditions

In the following, we list the balance equations of momen-
tum, mass and energy in nondimensional form. These equa-
tions have been successfully used to simulate Rayleigh-Bénard
or Marangoni convection in other configurations [19,20].
Since the magnitudes of all material parameters are related
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to those of the bottom layer, material parameter ratios appear
additionally. The transport of momentum is described by the
incompressible Navier-Stokes equations in the Boussinesq
approximation [19,20]:

∂tu(1) = −(u(1) · ∇)u(1) − ∇p(1) + ∇2u(1) − GT (1)ez, (5)

∂tu(2) = −(u(2) · ∇)u(2) − 1

ρ21
∇p(2) + ν21∇2u(2)

−Gβ21T
(2)ez, (6)

∂tu(3) = −(u(3) · ∇)u(3) − 1

ρ31
∇p(3) + ν31∇2u(3)

−Gβ31T
(3)ez, (7)

with the Grashof number

G = gβ
(1)
T (d (1))3�

(ν(1))2
= gβ

(1)
T j 2

0 (d (1))3(d (2))2

8(ν(1))2λ(2)σ
(2)
e

. (8)

Here g = (0,0,−g) is the vector of acceleration due to gravity,
and βT is the thermal expansion coefficient. The mass balance
is given by

∇ · u(i) = 0, (9)

with i = 1,2,3. The variable u denotes the velocity field.
The energy balance reduces to a transport equation for the
temperature field in each layer:

∂tT
(1) = −(u(1) · ∇)T (1)

+ 1

Pr(1)

[
∇2T (1) + 8λ21σe,21

d2
21

]
, (10)

∂tT
(2) = −(u(2) · ∇)T (2) + κ21

Pr(1)

[
∇2T (2) + 8

d2
21

]
, (11)

∂tT
(3) = −(u(3) · ∇)T (3)

+ κ31

Pr(1)

[
∇2T (3) + 8λ23σe,23

d2
21

]
. (12)

The last term in each of the previous equations describes the
nondimensional volumetric heating rate. The Prandtl number
of the layer (i) is given by

Pr(i) = ν(i)

κ (i)
. (13)

The Prandtl number of the middle layer is comparable to water,
whereas the metal layers have very small Prandtl numbers of
order 10−2; see Table II.

No-slip and isothermal boundary conditions are imposed
for the solid walls at the bottom and top:

T (3) = 0, u(3) = 0 for z = d31 + d21, (14)

T (1) = 0, u(1) = 0 for z = −1. (15)

The matching conditions at the lower planar interface I at z = 0
are as follows:

u(1)
x = u(2)

x , u(1)
y = u(2)

y , (16)

u(1)
z = u(2)

z = 0, (17)

∂zT
(1) = λ21∂zT

(2), (18)

T (1) = T (2), (19)

Ma

Pr(1) ∂xT
(1) = − μ21∂zu

(2)
x + ∂zu

(1)
x , (20)

Ma

Pr(1) ∂yT
(1) = − μ21∂zu

(2)
y + ∂zu

(1)
y , (21)

with the dynamic viscosities μ(i) = ρ(i)ν(i). At the upper planar
interface II at z = d21, the matching conditions are as follows:

u(2)
x = u(3)

x , u(2)
y = u(3)

y , (22)

u(2)
z = u(3)

z = 0, (23)

∂zT
(2) = λ32∂zT

(3), (24)

T (2) = T (3), (25)

Ma ξ

Pr(1) μ21
∂xT

(2) = − μ32∂zu
(3)
x + ∂zu

(2)
x , (26)

Ma ξ

Pr(1) μ21
∂yT

(2) = − μ32∂zu
(3)
y + ∂zu

(2)
y . (27)

These conditions (16)–(27) enforce the continuity of velocity
components across the interfaces I and II, the balance of the
tangential stresses with interfacial tension gradients, and a
planar interface, which is an approximation to a more general
normal-stress balance. The variation of interfacial tension with
temperature is given in dimensional form by

σ I = σ I
ref + σ I

ref αI
T [T̃ (1)(z = 0) − T ∞], (28)

σ II = σ II
ref + σ II

ref αII
T [T̃ (2)(z = d21) − T ∞], (29)

with αI
T and αII

T being the interfacial tension coefficients at both
interfaces. The Marangoni number is defined with respect to
interface I and given by

Ma = αI
T j 2

0 σ I
ref(d

(2))2d (1)

8μ(1)κ (1)λ(2)σ
(2)
e

. (30)

The ratio of interfacial tension change with temperature
between the upper and the lower interface is quantified by

ξ = σ I
ref αI

T

σ II
ref αII

T

, (31)

such that MaII = ξMa. Table II summarizes all parameter
values and ratios. The lateral boundary conditions are periodic,
which is required by expanding the solution into a sum of
Fourier modes. Simulations are typically started with small
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random velocity and zero temperature fields, representing the
sudden switch-on of an electrical current.

C. Estimation of interfacial tension

Most of the material properties required for our model
are well documented. The appropriate references are given
in Sec. I. However, the interfacial tension, a property that
represents the molecular interaction between particles in the
electrode and the molten salt [21], is unknown for the particular
case. Laboratory measurements of interfacial tension between
liquid metals and molten salts are to the best of our knowledge
not existent for the present configuration.

To obtain interfacial tension, the method of Girifalco and
Good [17] is employed here. It calculates interfacial tension as
the sum of the well-known surface tensions of each component
and subtracts the energy of the intermolecular bonds across the
interface. Formally, it reads

σ I = σ (1) + σ (2) − 2�I
√

σ (1)σ (2), (32)

σ II = σ (2) + σ (3) − 2�II
√

σ (2)σ (3), (33)

with the exchange parameter � � 1. Values of � smaller
than one account for molecular interactions that are different
from dispersion-type forces [22]. In particular, for the present
combination of ionic and metallic bonds, this parameter can
be considerably different from unity. For the interface of
aluminum and a salt mixture � = 0.42 has been noted by
Roy and Utigard [23]. In the following, we take a value of
� = 0.7.

The following surface tension values σ (i) of each phase
at an operating temperature of 500 ◦C are extracted from
the references in Sec. I. The particular values are σ (1) =
0.387 N/m [∂T σ (1) = 7.99 × 10−5 N/(mK)] for Pb-Bi, σ (2) =
0.1327 N/m [∂T σ (2) = 8.26 × 10−5 N/(mK)] for LiCl-KCl,
and σ (3) = 0.3493 N/m [∂T σ (3) = 1.6 × 10−4 N/(mK)] for Li
in the top electrode. With these values and Eqs. (32) and (33) all
free parameters in Eqs. (28) and (29) can be calculated (see also
Table I). Note also that the decrease of interfacial tension with
temperature is in line with the fact that the mutual solubility of
salt and liquid metal typically increases with temperature [1].

D. Numerical method

The numerical method is based on a pseudospectral
algorithm using a Fourier expansion of all fields in the
x and y directions with Nx and Ny modes, respectively.
No-slip boundary conditions at the top and bottom as well as
nonpenetrative boundary conditions at the interfaces require
a Chebyshev polynomial expansion with respect to the z

direction with a polynomial degree of N (i)
z in each layer 	(i).

For the polynomial degrees, we use only powers of two because
of the fast Fourier transformations. The time-stepping scheme
is a combination of the implicit Euler backward formula for
linear terms and the Adams-Bashforth formula for nonlinear
terms. The algorithm is a straightforward extension of the
solver developed in Refs. [24,25], and [11]. The time step size
is adapted such that the Courant-Friedrichs-Lewy number is
in the range from 0.1 to 0.2.

The main difference to our former simulations [25,26]
is that now three instead of two layers are coupled. After
discretization with respect to the horizontal x and y directions
as well as with respect to time, each individual Fourier
mode of a hydrodynamic field satisfies a one-dimensional
inhomogeneous Helmholtz equation(

d2

dz2
− γ (i)

)
q(i)(z) = f (i)(z) (34)

with γ (i) being a real number, f (i)(z) a given complex-
valued given function, and q(i)(z) an unknown complex-valued
function. These three coupled equations (for i ∈ {1,2,3}) are
solved directly with the Chebyshev tau method [27] in the
same way as described for two layers in Ref. [24]. The
solver is written in the C language and parallelized using the
Message Passing Interface library. The actual resolutions used
are specified below.

The solver is validated by comparing with simple test
cases, i.e., steady conduction and the Poiseuille flow that is
driven by a homogeneous volume force in x direction. Further
checks were done by reproducing the stability threshold for the
case treated in Ref. [28]. We also reproduced the simulation
results of Ref. [10], which, however, could be compared only
qualitatively, because of different lateral boundary conditions.
Nevertheless, flow structures were found to be rather similar.
Furthermore, we checked that the kinetic energy balance holds
and successfully reproduced the linear stability thresholds of
convection, which are both discussed in more detail in Sec. III.

III. LINEAR STABILITY ANALYSIS

In the following, we will investigate the linear stability of
the stationary pure conduction state. The closed form of the
stationary temperature distribution is detailed in the following
Sec. III A. Thereafter, the linear stability problem is formulated
(Sec. III B), its solution procedure is discussed, and critical
Marangoni and Grashof numbers for the present reference
system are calculated (Sec. III C).

A. Temperature profile of pure conduction

The case of pure conduction (u = 0) with initial conditions
T (i)(t = 0) = 0 converges to a time-independent solution for
t → ∞ and can be found analytically. To further simplify
the present problem, we neglect the Joule dissipation in the
liquid metal electrodes and proceed with the assumption
σ (1)

e = σ (3)
e = ∞, which will be justified later by comparison

of the stability predictions with DNS of the fully nonlinear
equations of motion. The steady state temperature distribution
is a solution of Eqs. (10)–(12) and given by

T
(1)

cond(z) = 4λ21B

d21A
(1 + z), (35)

T
(2)

cond(z) = 4B

Ad21
(λ21 + z) − 4z2

d2
21

, (36)

T
(3)

cond(z) = 4(d21 + 2λ21)(d31 + d21 − z)

Ad21
, (37)

where we introduced the abbreviations A = d21λ32 + λ31 +
d31, B = d21λ32 + 2d31. This temperature distribution is
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FIG. 2. The stationary temperature profile of the reference case
with the parameters taken from Table II. In the pure conduction state
one sets Ma = G = 0. The profile is a plot of the solution (35)–
(37). The profile is compared with the solution of a direct numerical
simulation of the Boussinesq equations at the same parameters.

plotted together with the numerical solution that accounts for
Joule dissipation in the liquid metal layers in Fig. 2. One can
readily observe that the top layer has higher conductivity than
the lower one, resulting in a smaller temperature gradient in
	(3). Numerical and analytical solutions agree perfectly.

The temperature at both interfaces is given by

T I
cond = 4B

d21A
λ21, (38)

T II
cond = T I

cond

(
1 + d21

λ21

)
− 4. (39)

In the reference case, which is displayed in Fig. 2, the interfa-
cial temperatures are T I

cond = 0.0995 and T II
cond = 0.0296. The

maximum temperature appears in the middle layer. It is not
exactly at z = 0.5, but shifted slightly towards the layer with
lower thermal conductivity. It occurs at

zmax = d21B

2A
, (40)

with a value of

T max
cond = 4B

d21A
(λ21 + zmax) −

(
B

A

)2

. (41)

For the reference case, this results in zmax = 0.49 and Tmax =
1.06.

B. Linearized equations and solution method

We proceed now with an extension of the linear stability
analysis of Rayleigh-Marangoni convection to a three-layer
model. Former studies with a temperature difference applied
between the boundaries can be found in Refs. [19,29,30]. The
vertical velocity component and the temperature perturbation

are expanded into normal modes [31]:

u(j )
z (x,t) = w(j )(z,t) exp(ikxx + ikyy), (42)

T (j )(x,t) = θ (j )(z,t) exp(ikxx + ikyy) + T
(j )

cond(z). (43)

Quantities kx,ky are components of the horizontal wave num-
ber vector with magnitude k = (k2

x + k2
y)1/2. The governing

temperature equations are linearized around the basic state
Tcond(z). Furthermore, by applying the curl two times to the
linearized Navier-Stokes equations, the following system of
linear equations [19] is derived:

∂t [(D
2 − k2)w(1)] = (D2 − k2)2w(1) + Gk2θ (1), (44)

∂t [(D
2 − k2)w(2)] = ν21(D2 − k2)2w(2) + Gβ21k

2θ (2), (45)

∂t [(D
2 − k2)w(3)] = ν31(D2 − k2)2w(3) + Gβ31k

2θ (3). (46)

Here D = d/dz. For the temperature it follows that

∂tθ
(1) = − w(1)DT

(1)
cond + 1

Pr(1) (D2 − k2)θ (1), (47)

∂tθ
(2) = − w(2)DT

(2)
cond + κ21

Pr(1) (D2 − k2)θ (2), (48)

∂tθ
(3) = − w(3)DT

(3)
cond + κ31

Pr(1) (D2 − k2)θ (3). (49)

The matching and boundary conditions at z = 0 are given by

θ (1) = θ (2), (50)

Dθ (1) = λ21Dθ (2), (51)

μ21D
2w(2) − D2w(1) = − MaI

Pr(1) k
2θ (1), (52)

w(1) = w(2) = 0, (53)

Dw(1) = Dw(2) (54)

and at z = d21 by

θ (2) = θ (3), (55)

Dθ (2) = λ32Dθ (3), (56)

μ32D
2w(3) − D2w(2) = − MaII

Pr(1) μ21
k2θ (2), (57)

w(2) = w(3) = 0, (58)

Dw(2) = Dw(3). (59)

The boundary conditions at the no-slip walls are as follows.
For z = −1

θ (1) = w(1) = Dw(1) = 0, (60)

and at z = d21 + d31

θ (3) = w(3) = Dw(3) = 0. (61)

Furthermore, we set MaI = Ma and MaII = ξMa in Eqs. (52)
and (57), in order to study the effect of Marangoni convection
on both interfaces separately.

053114-6



THERMAL RAYLEIGH-MARANGONI CONVECTION IN A . . . PHYSICAL REVIEW E 95, 053114 (2017)

The resulting linear stability problem takes the form

M∂tq(t,z) = Lq(t,z), (62)

where the column vector q consists of the independent
fields {w(3),w(2),w(1),θ (3),θ (2),θ (1)} and the linear differential
operators M and L encode the bulk equations and the
boundary conditions. A general solution can be expressed by
the exponential of the operator (M−1 L) [32], which can be
further analyzed to derive several properties of the solution.
Also, one can expand the q(z,t) into the eigenfunctions q̂i(z)
of (M−1 L) by q = ∑

i q̂i(z) exp(tsi) with complex growth
rates si . We are interested in the marginal stability properties
only where si = 0. Then, the system can be rewritten as an
eigenvalue problem with one control parameter.

For the analysis of the onset of Marangoni convection, i.e.,
marginal stability, Eq. (62) with ∂t = 0 is discretized with
the Chebyshev collocation method [33,34] and rearranged
thereafter to an eigenvalue problem with respect to the
Marangoni number Ma. The result is a generalized eigenvalue
problem with quadratic matrices A and B of dimension
6(N + 1) × 6(N + 1), which follows to

MaAq = Bq. (63)

Here N is the degree of the Chebyshev polynomials, which
are used to discretize the vertical direction in each layer. It is
usually set to N = 32.

For a given set of parameters, the critical Marangoni number
Mac is the eigenvalue to Eq. (63) with the minimal magnitude
over all wave numbers k of the perturbations. Note that we
only consider situations for which density and interfacial
tension decrease with increasing temperature. This is equiv-
alent to Ma � 0 and G � 0. Eigenvalues are calculated with
Matlab.

C. Results of linear stability analysis

1. Pure Marangoni instability (Ma �= 0, G = 0)

The neutral stability curve for the reference case with the
parameters taken from Table II is displayed in Fig. 3(a). We
find a critical value of MaI

c = −76.39 at a wave number
of kc = 2.10. The marginal values of MaI (note that the
coupling MaII = ξMaI applies here implicitly) were calculated
for different polynomial degrees N = 32,64,96. The critical
value does not change up to the fourth digit.

According to the critical value MaI
c, two nonlinear simu-

lations are performed at MaI = −76 (LS01) and MaI = −77
(LS02), respectively (see Table III). Their root mean square
(rms) velocity, which is defined by

u(2)
rms(t) =

√
〈u(t)2〉	(2) , (64)

is plotted in Fig. 3(b) as function of time, successfully verifying
the prediction from the eigenvalue calculation. In Fig. 4 the
eigenfunctions (crosses) at the critical parameters kc,MaI

c

are plotted together with the respective simulation profiles
(solid lines). Pointwise differences between two snapshots are
compared. Eigenfunctions have been rescaled to have a range
of values which is comparable with the simulation results.
Convection is caused at both interfaces since the temperature
perturbation amplitude is nonzero there. At a given horizontal
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FIG. 3. Linear stability analysis of the pure Marangoni convec-
tion (MC) case at G = 0 for the reference parameters of Table II. (a)
Neutral stability curve Ma(k). (b) Root mean square velocity in the
middle layer for simulation runs LS01 and LS02.

position, the temperature may be locally increased at the
upper interface [θ (z = d21) > 0] causing a lower interfacial
tension which drives a divergent flow at this point, i.e., a flow
directed towards the interface with ∂zw(d21) < 0. At the same

TABLE III. List of full nonlinear DNS runs to verify the
eigenvalues and eigenvectors of the numerical solution of the linear
stability analysis. Grashof and Marangoni numbers as well as spectral
resolutions are listed. All other parameters not listed here correspond
with those listed in Table II.

Case d21 G ξ Ma lx Nx Ny N (1)
z N (2)

z N (3)
z

LS01 1 0 2.57 −76 12 128 128 32 64 32
LS02 1 0 2.57 −77 12 128 128 32 64 32
LS03 1 −1.29 × 104 0 0 12 128 128 32 64 32
LS04 1 −1.30 × 104 0 0 12 128 128 32 64 32
LS05 0.3 0 2.57 −229 12 128 128 32 64 32
LS06 0.3 0 2.57 −230 12 128 128 32 64 32
LS07 0.3 −3.75 × 105 0 0 6 128 128 32 64 32
LS08 0.3 −3.85 × 105 0 0 6 128 128 32 64 32
LS09 0.1 −2.30 × 106 0 0 6 128 128 32 64 32
LS10 0.1 −2.40 × 106 0 0 6 128 128 32 64 32
LS11 1 −1.3314 × 104 2.57 −10.16 6 128 128 32 64 32
LS12 1 −1.3314 × 104 0 0 6 128 128 32 64 32
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FIG. 4. Comparison of eigenmodes from stability analysis and
full numerical simulation. (a) The difference of the profiles of
temperature, T (x = 0,y = 0,z,t = 10) − T (x = 0,y = 0,z,t = 3),
is plotted. Values from the eigenvalue calculation with k = 2.15 and
the simulation LS02 are shown. (b) The difference of the profiles
of vertical velocity component, uz(x = 0,y = 0,z,t = 10) − uz(x =
0,y = 0,z,t = 3) is displayed. Again, values from the eigenvalue
calculation with k = 2.15 and the simulation LS02 are shown.

horizontal position, interfacial tension is then increased on
the lower interface, and the flow is directed away from the
interface. At both interfaces work is performed on the liquid
metal phases.

However, the upper interface II induces a stronger flow than
the lower interface I as seen in the bottom panel of Fig. 4.
To understand the impact of each interface separately, we
calculated the critical Marangoni number for each interface
by disabling the effect of the other. When the lower interface
is disabled, i.e., MaI = 0, the value of MaII

c = −233.55 is
obtained which corresponds with MaII

c /ξ = −90.87, at a
critical wave number kc = 2.2 which is very close to the value
for both interfaces being active. When the upper interface
is disabled, i.e., MaII = 0, one obtains MaI

c = −106.88 at
kc = 2.25. The latter case of MaII = 0, is also verified by
two DNS, one at MaI = −105, showing decay and MaII =
−110, showing a growth of perturbations. Consequently, both
interfaces collectively contribute to the instability. Moreover,
the eigenfunctions with one active interface (not displayed)
look similar to the eigenfunctions that result from two active
interfaces.
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FIG. 5. Linear stability analysis of Rayleigh-Marangoni convec-
tion (RMC) case at Ma 
= 0 and G 
= 0. (a) Critical Marangoni
number Mac as a function of the Grashof number G. (b) Critical
wave number corresponding to the analysis in the top panel.

2. Rayleigh-Marangoni instability (Ma �= 0, G �= 0)

Next, a closer look at the impact of buoyancy effects with
G 
= 0 is taken. In order to do so, we calculate the critical
Marangoni number MaI

c as a function of the Grashof number
G. Figure 5(a) shows this computed relation as crosses, while
Fig. 5(b) displays the corresponding critical wave number. The
magnitude of the critical Marangoni number decreases as |G|
is increased. In what follows, the relation MaII = ξMaI will
always hold. Thus, we will continue with the single Marangoni
number Ma ≡ MaI only. An approximately linear trend of the
form

Mac

M̃ac

= 1 − G/G̃c, (65)

is observed, where M̃ac and G̃c are the critical numbers
in absence of the correspondingly other physical process.
Such linear scaling has been already observed in the one-
layer case [35] when both, the Marangoni and the Rayleigh
instability, destabilize the system.

The particular value of the critical Grashof number G̃c is
calculated from an eigenvalue problem similar to (63) but now
for Grashof instead of Marangoni number. We find a critical
value G̃c = −1.2937 × 104 with a critical wave number of
kc = 3. The eigenfunctions of the pure Rayleigh-Bénard case
are displayed in Fig. 6. They show a similar flow structure as in
the Marangoni case, though now, caused by the downwelling
of colder fluid in the upper half of the midlayer. The flow in
the top layer is caused by viscous friction at the interface. In
this layer, temperature perturbations are negative which result
in a stabilization.

Again we compared these findings to two DNS, namely,
DNS runs LS03 and LS04. After a decay of initial perturba-
tions, the unstable modes start to develop in the supercritical
case LS04 while perturbations decay in the subcritical case
LS03.

The middle layer Rayleigh-Bénard mode leads to eigen-
functions that are qualitatively equal to those of Marangoni
convection. As a consequence, Rayleigh-Bénard (RC) and
Marangoni convection (MC) act together to destabilize the
system at hand. The case, when both sources for convection are
present, will be denoted by Rayleigh-Marangoni convection
(RMC). The Rayleigh and Marangoni modes act together in
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FIG. 6. Eigenfunction profiles across the full battery height for
pure Rayleigh-Bénard convection at Ma = 0, G̃c = −1.2937 × 104,
and kc = 3, respectively.

the middle layer of the present three-layer system as in the
single-layer case. The actual thresholds can be calculated by
Eq. (65).

3. Middle layer thickness

While a change in the electrical current density magnitude
and the overall system height at fixed ratios d21 and d31 is
accounted for in the Marangoni and the Grashof numbers,
respectively, the stability threshold is changed when the
midlayer thickness d21 becomes smaller compared to the
outer layer, i.e., d21 < 1 in our notation. Therefore, we
also computed the stability thresholds for both convection
mechanisms as a function of the middle layer height d21.

Figure 7 shows how the magnitude of M̃ac grows with de-
creasing layer height, which is depicted with the compensated
plot of M̃ac d21 as a function of d21. In this case, G = 0 was
taken. For example, the threshold values for d21 = 0.3 are
Mac = 229.2 and kc = 6.3. For this case, we verified again

d21
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d
2
1
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−80
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−70

−65

−60

FIG. 7. Linear stability analysis of Marangoni convection (MC)
for varying middle layer heights d21. The compensated critical
Marangoni number M̃ac d21 as a function of the middle layer height
d21 is displayed.
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−15000

−10000

−5000

0

FIG. 8. Plot of the compensated critical Grashof number G̃c (d21)3

as a function of the middle layer height d21.

by two DNS, namely, LS05 and LS06, that this Marangoni
number is indeed critical.

The magnitude of the critical Grashof number (Ma = 0)
increases as well with decreasing middle layer height. The
critical Grashof number which is compensated with the
third power of d21 is shown in Fig. 8. In this compensated
representation, one observes that the Grashof number increases
less than the third power of d21. For the shallowest layer
d21 = 0.1 one observes a particularly strong decrease of
G̃c (d21)3.

An inspection of the corresponding eigenfunctions reveals
how the velocity perturbation changes with d21. The results are
shown in Fig. 9. For a shallow middle layer with d21 = 0.3,
the upper layer, which is initially coupled by viscous shear
only, gets active and develops internal convection rolls. This
is because the coupling of layers by viscous stresses and
heat transport are not mutually “compatible” due to the
much higher thermal diffusivity in the liquid metal top layer.
For d21 = 0.1, convection in the upper-layer layer domi-
nates. A corresponding upper layer Rayleigh number can be
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FIG. 9. Eigenfunctions at Ma = 0 of velocity perturbation w(z)
for three midlayer heights corresponding to the critical parameters.
The relative thickness of the middle layer height is indicated in the
legend.
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FIG. 10. Simulation of convection slightly above the threshold
with G = −1.33 × 104, which corresponds to the material parameters
derived in Table I but a shallower layer of d (i) = 6.4 mm (simulation
runs LS11 and LS12). Root-mean-square velocity in the middle layer
as function of time is displayed.

calculated by

Ra(3) = GPrT IId31
3

κ31ν31βT,31
= gβ

(3)
T (d (3))3(T̃ II − T ∞)

ν(3)κ (3)
(66)

with T II = (T̃ II − T ∞)/� [see Eq. (8)]. For the calculated
threshold (d21 = 0.1) of Gc = −2.37 × 106, kc = 2.55, this
number equals Ra(3) = −1290.4. This should be compared
to the classical linear stability analysis in one layer where
the critical Rayleigh number ranges from Rac = 120 with
adiabatic temperature (Dθ = 0) and free-slip velocity (w =
D2w = 0) boundary conditions to a value of Rac = 1707.76
with isothermal temperature (θ = 0) and no-slip velocity
(w = Dw = 0) boundary conditions [36]. Hence for shallow
middle layers a fourth regime of convection can be expected
that is similar to the classical Rayleigh-Bénard convection
caused by the linear temperature gradient in the upper layer.
Note also that we probed successfully the stability threshold
for d21 = 0.1,0.3 with DNS runs LS07 to LS10 (see again
Table III).

Finally, it is investigated how both effects work together,
in the same way as in the previous Sec. III C 2. It is found
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FIG. 11. Contour-vector plots of temperature and velocity of the simulations of convection near the threshold. (a) Simulation snapshot of
LS12 with Ma = 0 at t = 30 shows a vertical cut at y = 0 with temperature contours and velocity field vectors. (b) Velocity and temperature
for the same data at the upper interface II. (c, d) The same quantities as (a, b) for LS11 at t = 20.
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that relation (65) can be applied up to d21 � 0.2. However,
for d21 = 0.1, we found two different behaviors of Gc(Ma):
first, for |Ma| < 400, the Marangoni effect counteracts the
upper layer RC, such that the critical Grashof number grows
in magnitude with increasing |Ma|. Second, for |Ma| > 400,
the middle layer RC is dominant, thus, |Gc| is decreasing with
increasing |Ma|.

4. Convection patterns near the threshold values

The characteristic structures of convection near the onset
threshold are shown in two DNS, which are denoted LS11
and LS12, respectively. Here we used the reference current
j0 = 3 kA/m2, but adapted the height to the threshold of
the onset of Rayleigh-Bénard convection. Therefore, all three
layer heights are set to d (1) = 6.4 mm, which results in an
overcritical Grashof number (see DNS run LS11 in Table III).
Moreover, a simulation LS12 with Ma = 0, but otherwise the
same parameters as LS11 was conducted.

The rms velocity u(2)
rms(t) for the two simulations are shown

in Fig. 10. The solid line represents Rayleigh-Bénard convec-
tion and the dashed line Rayleigh-Marangoni convection. We
observe that the Marangoni effect accelerates the growth of
the rms velocity amplitude and thus of convection. The larger
growth rate is expected from our former results. The flow
structures of these simulations are visualized in Figs. 11(a)–
11(d). We show vertical cuts at y = 0 with the temperature
and velocity for RC in panel (a) of the figure and RMC in
panel (c). Furthermore, the interfacial temperature and velocity
vectors at the same time instant are displayed in panels (b)
and (d). A nearly hexagonal and stationary convection pattern
appears with an outflow in the center of cells. This is similar to
observations for one layer with internal convection [18,37]. In
conclusion, the former results that the Rayleigh and Marangoni
effect act together in the exemplary configuration are hereby
again confirmed.

IV. NONLINEAR EVOLUTION

In the following section we will present a series of DNS,
listed in Table IV, that investigate the full nonlinear and
turbulent evolution of the RMC in the three-layer battery
model. Several parameters will be varied for this purpose.
Runs H1 to H6 are conducted at d21 = 1 and fixed j0, but
different dimensional heights d (1). An increase of d (1) is in
line with an increasing Grashof number. In the series JM1 to
JM4, we fix the physical height of the bottom layer d (1) = 20
mm as well as d21 = 0.5 while varying j0 (J = varying current
density, M = medium middle-layer height). The same holds
for the series JS1 to JS5 where d21 is further decreased to 0.3
in comparison to the JM series (S = small). Finally, the runs
JXS1 and JXS2 set d21 to 0.1 (XS = extra small).

A. Dynamics of the reference case H4

As in the reference case, we take the configuration with
each layer having a height of 20 mm and a current density of
3 kA/m2 (see case H4 in Table IV). All other parameters are
given again in Table II. Although for commercial applications
shallower middle layers are preferable to decrease Ohmic
losses in the separator, a thicker middle layer helps us here
to reveal flow properties in the cell center and at the interfaces.
To separate the different convection mechanisms from each
other, we performed three simulations (1) RC at Ma = 0, (2)
MC at G = 0, and (3) RMC. Table IV also lists the critical
Marangoni and Grashof numbers as well as the corresponding
critical wave numbers which allow us to estimate the relative
contribution of the effects. One finds a factor of supercriticality
of G/G̃c = 308 for buoyancy-driven convection compared to
Ma/M̃ac = 4 for interfacial tension-driven convection.

The rms velocity in each of the three layers is plotted in
Fig. 12 for RC (top panel), MC (middle panel), and RMC
(bottom panel). After the onset of convection, all systems

TABLE IV. List of full nonlinear simulation runs with different electrical current densities j0 and/or layer heights d (1). For each case
displayed, an additional simulation with the Marangoni effect disabled is performed. Again Nx = Ny and lx = ly . The runs with superscript
“+” are found to be linearly stable.

Case d21 G G̃c kRC
c Ma M̃ac kMC

c Nx(=Ny) lx(=ly) N (1)
z N (2)

z N (3)
z d (1) [mm] j0 [kA/m2]

H1+ 1 −3.88 × 103 −1.29 × 104 3 − 4.84 − 76.4 2.10 128 6 32 64 32 5 3
H2 1 −1.24 × 105 −1.29 × 104 3 − 38.75 − 76.4 2.10 128 6 32 64 32 10 3
H3 1 −9.42 × 105 −1.29 × 104 3 − 130.79 − 76.4 2.10 128 6 32 64 32 15 3
H4 1 −3.97 × 106 −1.29 × 104 3 − 310.02 − 76.4 2.10 256 6 32 64 32 20 3
H5 1 −3.01 × 107 −1.29 × 104 3 − 1.05e3 − 76.4 2.10 256 6 64 128 64 30 3
H6 1 −1.27 × 108 −1.29 × 104 3 − 2.48e3 − 76.4 2.10 512 6 64 128 64 40 3

JM1 0.5 −1.10 × 105 −9.23 × 104 5.75 − 8.61 − 138.8 3.75 128 3 32 64 32 20 1
JM2 0.5 −9.92 × 105 −9.23 × 104 5.75 − 77.50 − 138.8 3.75 128 3 32 64 32 20 3
JM3 0.5 −2.76 × 106 −9.23 × 104 5.75 − 215.29 − 138.8 3.75 256 3 64 128 64 20 5
JM4 0.5 −1.10 × 107 −9.23 × 104 5.75 − 861.16 − 138.8 3.75 256 3 64 128 64 20 10

JS1+ 0.3 −3.97 × 104 −3.81 × 105 9.30 − 3.1 − 229.2 6.25 128 2 32 32 32 20 1
JS2+ 0.3 −3.57 × 105 −3.81 × 105 9.30 − 27.91 − 229.2 6.25 128 2 32 32 32 20 3
JS3 0.3 −9.92 × 105 −3.81 × 105 9.30 − 77.50 − 229.2 6.25 128 2 32 32 32 20 5
JS4 0.3 −3.97 × 106 −3.81 × 105 9.30 − 310.01 − 229.2 6.25 256 2 64 64 64 20 10
JS5 0.3 −1.59 × 107 −3.81 × 105 9.30 − 1240.1 − 229.2 6.25 256 2 64 64 64 20 20

JXS1+ 0.1 −1.76 × 106 −2.37 × 106 2.55 − 137.78 − 647.9 19.25 128 6 64 32 64 20 20
JXS2 0.1 −4.81 × 106 −2.37 × 106 2.55 − 24.80 − 647.9 19.25 128 6 64 32 64 40 3
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FIG. 12. Convection in the reference configuration H4 of
Table IV. Root mean square velocities in each of the three layers
versus time are shown for RC (a), MC (b), and RMC (c).

run into a statistically stationary state. For the MC case the
flow velocity is weakest. The differences in the rms velocity
between RMC and RC remain small, but become better visible
when plotting the x,y- and time averaged vertical profiles,√〈u2〉x,y,τav

, which is done in the top panel of Fig. 13. The
profiles are averaged over a time interval τav , which is at least
10 convective time units long.

For RC and RMC, the primary flow structure is caused by
buoyant convection in the middle layer. Interestingly for the
RMC case, the rms velocities are smaller in the outer layers
than for RC. For MC, the flow is driven by interfacial tension
gradients and therefore rms velocity amplitudes are largest at
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FIG. 13. Convection in the reference configuration H4 of
Table IV. Vertical profiles of the x,y-averaged rms velocity in cases
RC, MC, and RMC, respectively, are shown in panel (a). x,y-averaged
temperatures are shown in panel (b). All data are also averaged in
time. Furthermore, we plot the vertical temperature profile of the
pure conduction state for comparison.

the interfaces. The lower interface contributes less because
of the ratio ξ = 2.57 = MaII/MaI. For these three cases,
the middle layer velocity has on average always the highest
amplitude while the rms velocity in the bottom electrode is
always smallest. In cases RMC and RC, the small rms velocity
magnitude is most probably caused by the stable density
stratification in the lower layer. In case of MC, the upper-layer
and middle-layer rms velocity are of similar magnitude, which
is also in line with the specific driving mechanism, namely, that
interface II between molten salt and upper electrode is the main
source for Marangoni convection.

The impact of convection on the x,y- and time-averaged,
vertical temperature profiles is displayed in the bottom panel
Fig. 13. The temperature is smallest in the case of RMC and
highest in the case of MC. In connection to this observation,
we measure the global transport of heat by the Nusselt number
in the following way. Following the works on convection with
internal heating in a single layer by Goluskin and van der
Poel [38], we define a Nusselt number Nu by the maximum of
the x,y-averaged temperature, Tmax. It is given by

Tmax(t) = max{〈T 〉xy(z,t) : −1 � z � d21 + d31}. (67)
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FIG. 14. Convection in the reference configuration H4 of
Table IV. Nusselt number Nu as defined in Eq. (68) versus time
for runs RC, MC, and RMC. Line styles agree with those in Fig. 13.

Furthermore, one takes the maximum temperature for pure
conduction T con

max which is given by Eq. (41) and arrives at the

definition

Nu = T con
max

Tmax
(68)

of the Nusselt number, which will be used in the following.
Figure 14 shows the Nusselt number as a function of time for
the three convection cases. The difference between the three
cases supports our observation for the temperature profiles in
Fig. 13. The initial drop is caused by the initialization with
zero temperature everywhere. The three-layer system requires
a finite time to heat up. This heating time can be estimated
from the balance between the time derivative of temperature
and the heating rate in Eq. (11), which provides a heating
period of about Pr(1) d21

2/(8κ21) ≈ 0.1 The reason of why
RMC transports the heat more efficiently than RC can be
answered by an examination of the typical flow structures,
which is done next.

In Figs. 15, 16, and 17, we display snapshots of the flow and
temperature from different perspectives for cases RC, MC, and
RMC, respectively. All figures are taken at time t = 0.3. In the
contour plots at the upper interface II as well as in the vertical
cuts at y = 0, we kept the same temperature range in all three
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FIG. 15. Rayleigh-Bénard convection (Ma = 0) in the reference configuration H4. Temperature and velocity distributions at t = 0.3 are
shown. Temperature is displayed as a contour plot, velocity by arrows projected into the corresponding plane. (a) Temperature and velocity at
the upper interface II. The length of the reference velocity arrows is always in units of Uvis. (b) Temperature and velocity at the lower interface
I. (c) Vertical cut at y = 0. (d) Isosurface of temperature at T = 0.37.
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FIG. 16. Marangoni convection (G = 0) in the reference configuration H4. See Fig. 15 for details. Here the temperature isosurface in (d)
is taken at T = 0.5.

cases. The differences were too large for the lower interface I
such that we had to take different contour level intervals here.

Case RC is organized in irregular cells with an upwelling
hotter fluid in the center and a downwelling colder fluid at the
cell boundaries, as seen in all three two-dimensional cuts in
Fig. 15. The downwelling colder fluid appears in form of sheets
and jets, which sometimes carry fluid all the way down to the
lower interface I across the middle layer 	(2). In the vertical
cut at y = 0, one also observes that the upper and lower layers
are coupled by the viscous stresses to the midlayer since the
velocity fields are aligned. The isosurface of T (2) = 0.37 in the
bottom right panel completes the description of the convection
structures. Grooves are formed by downwelling cold fluid.
They resemble the typical patterns which are visible in the
temperature at the upper interface, T II(x,y,d21,t = 0.3).

Case MC which is displayed in Fig. 16 shows slightly
different flow structures at the same time. The temperature
distribution at the upper interface II depicts convection cells
that are driven by the increase of interfacial tension from the
cell center (hot) to the cell boundary (cold). The Marangoni
effect also determines the flow behavior at the lower interface,
i.e., the fluid streams from hotter to colder regions. However,
the structures across the middle layer are strongly influenced
by the convection cell patterns that are formed at the upper
interface. The isosurface of T = 0.5 in the bottom right panel
Fig. 16 encloses hotter fluid. It is seen how fluid is transported

from the center of the middle layer to the upper interface where
it cools down. The vertical cut of the figure complements the
view on the convection structure in this case.

Case RMC resembles mostly case RC, which can be seen by
the similar composition of temperature distributions in the top
left panel of Fig. 17. However, there are some slight differences
visible. The convection cells in the top left panel have a smaller
typical length scale. This is the reason for the enhanced heat
transport and the higher Nu which was shown in Fig. 14.
Moreover, downwelling fluid appears preferentially in form of
stronger jets rather than sheets. These structures couple the top
and bottom electrode directly. The more frequent jets are also
visible by the hot spots in the lower interface in the top right
panel and in the isosurface in the lower right panel. This is
because cold regions, the source of downwelling jets, have a
tendency now to merge by the Marangoni effect. In conclusion,
the flow pattern of RMC is of smaller length scale than the one
for pure RC. This decrease of length scales is to our view
the reason for the enhanced Nusselt number since the heat
can be carried along a larger number of up- and downwelling
structures.

B. Variation of the layer height in H1 to H6

After the detailed description of the reference case H4, we
turn in the following to the variation of the layer heights. In the
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FIG. 17. Rayleigh-Marangoni convection in the reference configuration H4. See Fig. 15 for details. Here, the temperature isosurface in the
lower right panel is taken at T = 0.37 also.

simulation series H the ratios d21 and d31 will be kept to unity
and the electrical current density remains fixed to 3 kA/m2

(see cases H1–H6 in Table IV). The physical height d (1) will
be changed. For case H1 with d (1) = 5 mm layer, the system is
linearly stable and all initial infinitesimal perturbations decay
with respect to time. As already discussed in Sec. IV A, the
simulations run always at least 10 convective time units for
any statistical analysis. In addition to each of the RMC cases,
which are given in Table IV, corresponding RC runs are also
conducted.

Figure 18 displays the rms velocity in each of the three
layers. As already described for the reference case, the
strongest flow is observed in the middle layer, except in
case H6. For the tallest system, the upper layer shows the
highest magnitude of rms velocity. The reason lies in the
unstable stratification in the upper layer. It is strong enough to
develop an additional large-scale convection cell (in the sense
of Rayleigh-Bénard convection) that contributes dominantly
to the rms magnitude. This behavior can also be rationalized
by the Rayleigh number Ra(3) for the upper layer 	(3) which
takes values of −193 for H4, −1469 for H5, and −6192 for
case H6, respectively. As is visible from Eq. (66), case H6 is
far beyond any linear instability threshold. Thus, a significant
convective fluid motion can be expected to exist for this case
only.

We also indicate a power law scaling of G0.45 in Fig. 18
that matches the data for the rms velocities in the molten salt
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FIG. 18. Root-mean-square velocities as a function of the mag-
nitude of the Grashof number, which is directly connected to the
variation of the reference height d (1). Solid lines are for RMC and
dashed lines for RC. Each of the three layers is indicated in the plot.
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layer very well. All computed values are also listed in Table V
in the Appendix. The Reynolds number is a measure for the
global transport of momentum in turbulent convection flows.
The definition for each of the three layers in the present liquid
metal battery model is given by

Re(1) = 〈
u(1)

rms

〉
τav

, (69)

Re(2) =
〈
u(2)

rms

〉
τav

d21

ν21
, (70)

Re(3) =
〈
u(3)

rms

〉
τav

d31

ν31
. (71)

Thus, the Reynolds numbers will exhibit exactly the same
trend as the rms velocities in Fig. 18 and are therefore not
shown. Only the relative amplitudes with respect to each other
vary since the liquid metal has lower kinematic viscosity
than the molten salt. In classical turbulent Rayleigh-Bénard
convection with no-slip and isothermal walls for air [39] or
liquid metals [40] as working fluids, the Reynolds numbers
obey nearly the same scaling with increasing Grashof number.
The scaling deviates slightly from the exponent of 1/2. The
trends for the Reynolds numbers in both liquid metal electrodes
vary stronger and cannot be fitted by a power law. The reason
for this behavior can most probably be attributed to the more
complex boundary conditions at the interfaces which couple
the motion between separator and electrode.

The scaling of the Nusselt number, the measure for the
global transport of heat, with respect to the Grashof number is
displayed in Fig. 19. A power law exponent of 0.2 as suggested
for Rayleigh-Bénard convection with internal heat sources by
Goluskin and van der Poel [38] fits the present simulation data
well. RMC has generally a slightly higher Nusselt number
in comparison to RC, which is a result of the additional
Marangoni effects. The values for the Nusselt numbers are
also listed in Table V in the Appendix. Note also that the
Marangoni number varies as Ma ∝ G3/5 for the present cases
of variable layer height. Figure 20 shows a vertical cut through
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are plotted.

the three-layer system of case H6. The temperature contours
indicate a strong temperature gradient at the interface II. It can
also be seen that the thermal boundary layers at both interfaces
have different thicknesses.

The variation of the convection pattern with height is rep-
resented by the vertical gradient of the temperature ∂zT

(2)(z =
d21) at the upper interface as seen in Fig. 21. We use this
quantity because it displays a larger contrast between inflow
and outflow regions in comparison to a plot of the interfacial
temperature. At the bright temperature contour areas one
observes inflow and at the darker temperature contour areas
outflow of the fluid from the interface. With increasing Grashof
number, the cellular pattern is fragmented into ever finer
substructures such that a larger amount of heat can be carried
across the layer.

C. Joint variation of the middle-layer size and the electrical
current density

In the present subsection, we will vary the relative thickness
of the middle layer, d21. It will be reduced to 10 mm, which
corresponds to d21 = 0.5 in series JM, to 6 mm (d21 = 0.3) in
series JS, and to 2 mm (d21 = 0.1) for series JXS. The outer
electrode heights will remain unchanged at a value of 20 mm.
Moreover, for each of these three geometries, different current
densities j0 were taken as summarized in Table IV.

Let us start with the medium sized middle layer at d21 = 0.5.
All four cases JM1–JM4 are unstable to Rayleigh-Bénard
convection, which is readily predicted by a comparison of
G with the corresponding critical Grashof numbers G̃c in
Table IV. Again, we simulated the cases of RMC as listed
in the table together with corresponding RC simulations with
Ma = 0 in order to emphasize the effects of the interfacial
tension better.

With a further reduction of the thickness of the middle
layer 	(2) the corresponding Rayleigh-Bénard and Marangoni
modes are damped to the subcritical range as they rely on
convection in this layer. Thus a higher current density of j0 =
5 kA/m2 and consequently a higher heating rate are required
to sustain convection (see also Table IV). The case JXS1 with
the shallowest middle layer remains stable although the current
density is increased to a value as high as j0 = 20 kA/m2. Only
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FIG. 21. Vertical temperature gradient at the upper interface I. Contours of ∂zT
(2)(x,y,z = d21) for simulation runs with variable middle

layer height are shown: (a) case H2 at t = 0.5; (b) case H3 at t = 0.3; (c) case H5 at t = 0.2; (d) case H6 at t = 0.04.

when the outer layer sizes are increased to d (1) = 40 mm, the
system becomes unstable again and shows the upper layer
Rayleigh mode (case JXS2).

The observations from these three additional series of
simulation runs are as follows. Figure 22 (top panel for JM
and bottom panel for JS) shows the Reynolds numbers Re(i)

as a function of the Grashof number magnitude |G|. The
data for both series follow again a similar power law trend
as in the previous parameter study for H1 to H6 with an
exponent that is close to 1/2. The Reynolds numbers Re(3)

for cases with the largest Grashof numbers (JM4 and JS5)
show a significant enhancement. This large amplitude of the
Reynolds number is caused by the strong Rayleigh-Bénard
mode, which is established in the upper liquid metal electrode.
The corresponding Rayleigh number Ra(3), which is defined
in Eq. (66), is Ra(3) = −1092 for JM4 and Ra(3) = −2673 for
JS5.

Figure 23 shows the Nusselt numbers for simulation series
JM and JS. It is seen that Nu is systematically larger for
the shallower middle layer at d21 = 0.3 when plotted against
the Grashof number. Also, RMC has a consistently higher

value of Nu than RC. An approximately universal scaling
relation for the turbulent heat transfer, for which all data points
collapse to a single line in a double-logarithmic plot, can be
obtained when the original Grashof number is substituted by
the relative Grashof number Gr . It is defined as the actual
Grashof number divided by the corresponding critical value
Gr = G/G̃c. This relation is shown in the bottom panel of
Fig. 23 for all simulation cases in series JM and JS. The data
are fitted well again by the power law of Nu ∝ G0.2 that was
discussed in Sec. IV B. This particular scaling of the turbulent
heat transfer seems to be very robust in our parametric studies.

V. DIFFERENT CONVECTION REGIMES

As the full nonlinear simulations in the present three-layer
model showed, there are four different modes for thermal
convection that we have already discussed, and an additional
one not discussed so far. These are (1) the Rayleigh-Bénard
mode due to internal heating in the middle layer, (2) the
standard Rayleigh-Bénard mode in the upper layer due to the
hot interface II and the cold top, (3) the Marangoni mode at
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FIG. 22. Reynolds number scaling versus Grashof number for
shallower middle layers and different electrical current densities with
RMC (solid line) and RC (dashed line). (a) Reynolds numbers Re(i)

for series JM; (b) Reynolds number for series JS. As a guide to the
eye, we also plot Re ∼ |G|0.5 as a dash-dotted line.

the upper interface II, (4) the Marangoni mode at the lower
interface I, and (5) an anticonvection mode in the middle
layer and bottom electrode that has not been discussed so
far. On the one hand, these modes are partly coupled to each
other, and on the other hand, they are partly insignificant for
particular parameter sets. They contribute differently to the
global transfer of heat and momentum. The following section
will discuss and summarize these different mechanisms and
how their appearance can be predicted.

A. Rayleigh-Bénard mode in molten salt layer

The primary mechanism for convection in the investigated
system is the unstable temperature distribution between the
maximum temperature close to z = d21/2 and the interfacial
temperature at the upper interface II, causing buoyant con-
vection. In a classical study, Sparrow et al. [41] investigated
the stability of a single fluid layer under internal heating,
with no-slip and isothermal boundary conditions at the top
and bottom. These results of Ref. [41] for one layer can be
translated to the present three-layer system. In addition to the
formal linear stability of a layer with no-slip and isothermal
boundaries, they found that the threshold of convection can
be described by a single Rayleigh number criterion if the
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FIG. 23. Nusselt number scaling versus Grashof number for
shallower middle layers and different electrical current densities.
(a) Nusselt numbers for JM and JS series; (b) all Nusselt numbers
replotted as a function of the relative Grashof number Gr = G/G̃c.

interface temperatures do not differ too much. The relevant
Rayleigh number Ra(2) relates the difference of the temperature
maximum and the upper interfacial temperature and their
distance. Formally one can thus define the Rayleigh number
as follows:

Ra(2) = g�
(
T max

cond − T II
cond

)
β

(2)
T

(
d (2) − d (2)B

2A

)3

ν(2)κ (2)
, (72)

where the distance of the temperature maximum to the
interface is expressed with the help of (40). In terms of this
Rayleigh number (72), Ref. [41] showed that the threshold
for the linear instability falls in a range of Ra(2) = 560–595
(depending on the temperature difference between top and
bottom of the single layer, which they denoted by a parameter
Ns). Later, Char and Chiang [42] studied the linear stability
of a single layer subject to internal heating with different
boundary conditions for the linearized Boussinesq equations.
The authors derived a critical Rayleigh number for a free-slip,
isothermal and free-slip, thermally insulated upper boundary,
respectively (the lower boundary is isothermal and rigid). They
found a critical Rayleigh number of Ra(2) = 296.20 (112.64)
for the isothermal (thermally insulated) case. Which boundary
conditions are better suited to account for layer (3) is unclear.
A hint for the best thermal boundary condition might be given
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by the ratio of thermal conductivities λ32 = 137.54. This ratio
suggests an isothermal rather than an thermally insulating
boundary condition.

To check the relevance of this newly defined Rayleigh
number Ra(2), the calculated critical Grashof numbers can
be transformed to critical Rayleigh number for a fixed set
of material parameters and geometry. For the four different
geometries which are given in Table IV, one obtains a
critical Rayleigh number of R̃a

(2)
c = −290.7 for d21 = 1,

R̃a
(2)
c = −281.7 for d21 = 0.5, R̃a

(2)
c = −276.9 for d21 = 0.3,

and R̃a
(2)
c = −92.7 for d21 = 0.1. Obviously, for the thick

middle layer the critical Rayleigh number fits thus well to
the prediction of Char and Chiang [42] of an isothermal upper
interface. When the middle layer thickness is reduced, the
upper-layer Rayleigh-Bénard mode gets more involved and
reduces the stability threshold. For a shallow middle layer, the
internal convection mode becomes insignificant. At this point
we recall that the separator layer should be thin to keep the
Ohmic losses at a minimum.

Finally, let us note that in the present case, the number
of parameters in the marginal stability analysis, which can
be varied independently of each other in the nondimensional
equations, is actually less than 18. The stability problem in
Sec. III B can be rescaled to a new velocity w+ = w Pr. By
doing this, one observes that only the product Ra = G Pr
appears in the linearized equations for perturbations with a
growth rate of zero. Furthermore, the conductivities of the
outer layer can be regarded as infinite as is done in the solution
for pure conduction. Overall, this results in a reduction to 15
essential parameters that govern the linear stability threshold.

B. Rayleigh-Bénard mode in upper liquid metal electrode

The top electrode has a linear temperature profile, and thus
its stability to buoyant convection can be estimated by the
Rayleigh number Ra(3) which was introduced in Eq. (66).
For the simulated geometries, this Rayleigh-Bénard mode was
the primary source for convection in the series of the very
shallow cases, JXS. According to our stability calculation the
critical Rayleigh number for d21 = 0.1 is Ra(3)

c = −1290.4.
For thicker middle layers, the convection mode is observed for
higher electrical current densities only. The Rayleigh number
for which this was observed is Ra(3) = −2673 for JS5, −1092
for JM4 and a value of −6192 for H6. In summary, if shallow
middle layers are combined with thicker layers for the upper
electrode, this specific Rayleigh-Bénard mode can become
the primary source for convection in the three-layer system.
If the internal convection mode in the molten salt layer is
active additionally, this Rayleigh-Bénard mode leads to a
considerable increase of the velocity fluctuations in the top
layer. This parameter regime would be an example where both
RC flows dominate the global transport.

C. Marangoni modes at the liquid metal-molten salt interface

The general requirement for the existence of stationary MC
can be inferred from the stability theory of two layers by
Sternling and Scriven [43]. The respective interface is prone
to MC if heat is transferred from the phase with lower thermal

diffusivity into the phase with higher one, given that interfacial
tension decreases with temperature. Formally, the requirement
for the respective interfaces in the present system is that κ (2) <

κ (1) and κ (2) < κ (3). For the present liquid metal battery model
both inequalities hold. Also, we can expect that this ratio of
diffusivities is typical for the compound system of a liquid
metal and a molten salt in general since the diffusivity of the
molten salt is by two orders of magnitude lower than that of
the liquid metals in the electrodes.

In some of our cases, linearly unstable MC modes could
grow, but the Rayleigh-Bénard mode due to internal heat
sources was usually amplified stronger. We demonstrated that
the main reason for the appearance of MC, as a part of the RMC
regime, is a reduction of the length scales of the cellular flow
patterns which is in line with an increase of the Nusselt number.

The stability threshold of MC depends crucially on the
ratio of transport coefficients of the adjacent phases. Thus, a
threshold based on simple parameters, as in the case of the RC
modes in the middle and upper layers, respectively, cannot be
provided. It might be possible that MC is the primary mecha-
nism for other sets of material parameters. This is stated in view
of the missing experimental data for the interfacial tension of
liquid metal–molten salt interfaces as a function of the temper-
ature. What can certainly be stated here is that MC is damped
by a reduction of the middle layer thickness (cf. Fig. 7), by
a reduction of the temperature difference and by an increased
viscous friction, respectively. Thus a relevant Marangoni
number should remain proportional to (d (2))3 as suggested
by Fig. 7(a). The scaling with the third power of thickness is
due to our choice of temperature scale. Finally, we note that a
closed expression for the stability threshold of pure MC with
the generalized temperature profile of Eqs. (35)–(37) might be
derived similar to the case of linear temperature profiles [29].

D. Anticonvection mode in the lower liquid metal alloy electrode

The fifth source of convection concerns the bottom and
the middle layer and was not discussed so far. Owing to the
low Prandtl number Pr(1) = 0.012 in the bottom layer, the
diffusive transport of the temperature field dominates in this
layer over advection for almost all simulated cases, which is
readily estimated by the Péclet number Pe = Re(1) Pr(1) < 1.
This circumstance and the rather low heat capacity of the Pb-Bi
layer will generate a diffusive transport into the bottom layer
that is initiated at the localized hot spots due to RC mode in the
middle layer. This can be seen in Fig. 20 around x = 2. The
resulting horizontal temperature gradients cause a flow where
denser colder fluid tends to displace hotter fluid. And indeed,
the work that is done by gravity on the lower layer and which
is proportional to 〈−β

(1)
T T (1)u(1)

z 〉xyz is found to be positive for
all simulated cases.

Anticonvection has been classically described for two
layers heated from above [44–46]. In this regime, which is
noted as “stably stratified,” buoyant convection is neverthe-
less possible when the fluid mass density decreases with
temperature, as it is usually the case. The requirement for
the anticonvection regime is that material parameters of both
layers are in a certain proportion to each other as discussed
by Welander [44]. His prediction for a system with two layers
heated from above can be transferred to the lower and middle
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FIG. 24. Anticonvection observed in a simulation for parameters
of JM4, but with Ma = 0 and β21 = β31 = 0. A vertical cut y = 0
with velocity vectors and temperature contours at a time of t = 0.145
is shown. This is shortly after the onset of anticonvection.

layers in our case. We found that anticonvection would be
possible if the thermal expansion coefficient of the middle
layer is smaller than the one used for simulations. For a value
of βT,21 = 0.25 instead of 2.59 anticonvection should become
possible.

To demonstrate that this mode can indeed play a role in our
case of internal heating in the middle layer, we performed a
simulation with the parameters of run JM4 but suppress all
sources for convection, i.e., we set Ma = 0 as well as β21 =
β31 = 0. The only physical mechanism which is kept is the
change of fluid density and the resulting buoyancy effect in
the lower layer. Figure 24 demonstrates that indeed, though
the lower layer is stably stratified, convective fluid motion sets
in. In the middle layer, temperature perturbations are generated
which heat the interface and produce an upwelling flow in the
bottom layer. However, in the real system, the buoyancy in the
middle layer counteracts while the Marangoni effect concurs
with anticonvection since the Marangoni flow is from the hot
to cold regions. For the chosen parameters, the present system
develops a state of chaotic pulsating and translating convection
cells. The time-averaged flow amplitude is considerable. One
gets values of u(1)

rms = 56.8, u(2)
rms = 36.97, and u(3)

rms = 9.86,
respectively.

VI. INTERFACIAL DEFORMATION

The present model neglects effects of the deformation of
the interfaces. We, therefore, need to verify the consistency
of this assumption. To this end, we estimate the flow-induced
deformation of the interface from the equilibrium shape.

The shape of the interface is essentially governed by the
balance of normal stresses at the interface. This condition was
replaced by assuming zero vertical velocity. For a material
interface, the normal-stress-balance by Edwards et al. [47]
holds at any point on the interface. For the upper interface, it
is given by

2Hσ II = p̃(2) − p̃(3) + n · (2μ(3)Ê(3) − 2μ(2)Ê(2)) · n. (73)

where all quantities carry a physical dimension here. Three
new quantities have to be defined. First, the interface normal

n is pointing from phase (2) to phase (3) which is required by
sign convention. This surface normal can be determined from
a height function h(x,y,t) that represents the distance of the
interface from the unperturbed level namely,

n = −∂xhex − ∂yhey + ez√
1 + (∂xh)2 + (∂yh)2

. (74)

Second, the mean curvature H encodes the deformation
of the interface. It can be calculated by means of the height
function h(x,y,t) and is given by

H =
[(

1 + h2
y

)
hxx − 2hxhyhxy + (

1 + h2
x

)
hyy

]
2
(
1 + h2

x + h2
y

)3/2 , (75)

where hx and hy denote partial derivatives of h with respect to
x and y.

Third, the rate of strain tensor in the respective layer, Ê(i),
is given by

Ê(i) = 1
2 [∇ũ(i) + (∇ũ(i))T ], (76)

where ũ(i) = u(i)Uvis. The rate of strain tensor accounts for
the normal viscous stresses at the interface. Without loss of
generality, we restrict the discussion to the upper interface
since velocities have a higher amplitude there and density
stratification is less significant. Further calculations are done
using dimensional quantities.

In the present framework, we assumed a planar interface,
i.e., h = 0 results in H = 0, which is appropriate if the
interface is pinned at the edges and if the right hand side
of Eq. (73) remains small. Small should be understood in the
sense that only deformations δh of the interface are considered
that are small compared to any length scale of the flow.
A formal way to estimate the deformation is to perform a
perturbation expansion of Eq. (73) with respect to h as done in
Ref. [19] (see pp. 13 therein). This requires the calculation of
the pressure from the zero-order solution of the Navier-Stokes
equations.

Here, we will take a simpler approach by estimating a
typical interface deformation as follows. Let us consider a
fluid parcel that moves downwards into the bulk of the middle
layer away from the interface with velocity U . Simultaneously
a column of denser liquid is present due to a temperature
reduction by a magnitude of δT in the top layer at this position.
This causes a pressure difference which can be estimated by

δ(p̃(2) − p̃(3)) ∼ − 1
2ρ(2)U 2 − gρ(3)β

(3)
T δT LV , (77)

where LV is the typical vertical variation scale. This process
forces the interface to bulge downwards by δh thus causing
a negative curvature δH . Simultaneously, the “hydrostatic
contribution” to the pressure at the interface would rise
by gδh(ρ(2) − ρ(3)). Now, one can relate these contributions
via Eq. (73) and use the scaling relation for the viscous
contribution, which is given by Eq. (76), and the curvature
from Eq. (75) to obtain

2σ II
ref

δh

L2
H

≈ − 1

2
ρ(2)U 2 − gρ(3)β

(3)
T LV δT

+ gδh(ρ(3) − ρ(2)) − μ(2) U

LV

, (78)
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where the curvature term Eq. (75) is estimated with the help
of a horizontal length scale LH and the viscous contribution
as well as the density contribution by means of a vertical
length scale LV . The viscous contribution from layer 3 is
also neglected, see Table I (due to μ(3) � μ(2)). Finally, the
interfacial deformation is estimated by rearranging (78). One
obtains

δh = −
1
2ρ(2)U 2 + ρ(3)β

(3)
T LV gδT + μ(2) U

LV

2σ II
ref

L2
H

+ g(ρ(2) − ρ(3))
. (79)

In order to estimate the deformation, we will adopt typical
values of case H6. The velocity in the middle layer is U ∼
3 mm/s (see Table V), the length scales LV ∼ LH ∼ 10 mm as
seen in Fig. 21. A typical temperature perturbation is T II� ≈
1 K. We note that the length unit for H6 is 40 mm. Inserting
those values in Eq. (79) yields a δh ≈ −1.22 μm which is
considerably smaller than the smallest flow structures. In this
view, the plane interface approximation is indeed appropriate,
and its errors should be insignificant compared to the other
physical processes which have been neglected. For instance,
vibrations acting on the system could trigger gravity waves.

Finally, we employ the simpler estimate of the interface
deformation in Ref. [7] [see their Eq. (5.7)] that equates the
simulated kinetic energy with an increase in potential energy.
This leads in our case to an estimate of

|δh| =
1
2ρ(2)U 2

g(ρ(2) − ρ(3))
= 0.66 μm. (80)

Thus we can conclude that no relevant dynamic interface
deformation is triggered by thermal convection. The density
difference between the layers is strong enough that any
deformation is limited to a tiny magnitude. Furthermore, for
an LMB application, the size of the middle layer for H6 is
comparatively large and would cause a high voltage drop.
Thus no higher velocities from the internal convection modes
are to be expected. However, in systems with a tall upper
layer and a strongly amplified RC mode, the deformation
might become considerable again. In this case, we do not have
reliable estimates of the velocity. Similar conclusions have
been drawn by Ref. [8] for thermal convection and Ref. [7] for
magnetohydrodynamic effects.

A curved equilibrium shape, which appears if the contact
angle differs from 90◦, can have a particular influence on ther-
mal convection. Such wall effects should be studied together
with the particular vessel geometry since the thermal properties
of the battery vessel may induce horizontal temperature
gradients, which in turn will induce Marangoni convection.

VII. SUMMARY AND CONCLUSIONS

We have numerically studied thermal convection, induced
by a uniform resistive heating, in a system of three liquid
layers which serve as a simplified model for a liquid metal
battery. Our model comprised the flow induced by interfacial
tension gradients and gradients in density, both of which are
due to temperature gradients. The present LMB model has
been simplified by disregarding electrochemical effects, the
transport of mass across the separator layer, and the interaction
with a vessel wall, respectively. Furthermore we exclude

magnetohydrodynamic effects in connection with the current
density in the cell. Our main conclusions can be summarized
as follows.

(1) In the three-layer system Li||LiCl–KCl||Pb–Bi, driven
by resistive heating, four main modes can drive convection. A
fifth mode of anticonvection can appear as a secondary effect.
The primary source for convection is the Rayleigh-Bénard
convection mode due to internal heating in the molten salt
layer. It obeys similar properties as a single convection layer
subject to internal heating [38]. This process acts together
with the second potential source of convective motion, namely
the Marangoni convection at the upper interface. The typical
thermal diffusivity ratios between a molten salt and a liquid
metal lead to the appearance of Marangoni convection at the
upper as well as at the lower interface of the separator to the
electrodes since heat is transported from the middle layer with
significantly lower thermal diffusivity to the electrodes. The
fourth source for convection is the unstable stratification in
the upper electrode which causes a turbulent convection flow
that is comparable to classical Rayleigh-Bénard convection.
Finally, anticonvection can increase the convective motion
in the lower layer. For a fixed temperature drop, all modes
will be damped when the thickness of the molten-salt layer
is decreased, except the Rayleigh-Bénard convection mode in
the top electrode.

(2) The exact linear stability thresholds for the onset
of convection have been calculated for different system
geometries and electrical current densities. By comparison
with a full nonlinear DNS, it was found that those linear
stability predictions indeed describe the conditions for the
onset of convection well. The most unstable mode in almost all
of the simulated cases is the internal-heating Rayleigh-Bénard
mode. The stability threshold of this mode can be estimated by
the middle layer Rayleigh number Ra(2). Only for a particularly
shallow middle layer, specifically for d (2)/d (1) = 0.1 in our
study, the classical Rayleigh-Bénard mode in the upper layer
can become the main source for the onset of convection. The
threshold for this mode can be determined by the Rayleigh
number Ra(3).

(3) Several of our simulated configurations are also unstable
with respect to Marangoni convection. Although this process
is not the dominant mechanism of instability, it contributes
significantly when both physical effects, Rayleigh-Bénard and
Marangoni effects, are jointly enabled. The characteristic scale
of the cellular flow patterns changes to a smaller length scale
and the Nusselt number is increased simultaneously. The
impact of the Marangoni effect on flow velocities is twofold.
On the one hand, it is found that MC leads to a decrease of the
velocity in the upper layer once the upper RC mode is active.
On the other hand, for shallower middle layers, MC leads to a
considerable increase of flow velocity in the lower and middle
layers, respectively. To conclude, although thermal MC turns
out not to be the main source for convection, it affects the flow
structures considerably. Further studies of convection in LMB
should to our view include MC effects.

We also expect that a number of changes will result from
the presence of lateral walls, in particular when the aspect ratio
of the cell (diameter/height) is small. Small aspect ratios will
affect the cellular pattern formation and can thus suppress the
heat transfer. This is known from RC [48]. A finite thermal
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TABLE V. Statistical quantities which are averaged over the time interval τav . We list root mean square velocities in all three layers as well
as the Nusselt number. The values in column RMC and RC (Ma = 0) belong to the DNS which are listed in Table IV. The last column gives
the velocity unit for a system with dimension listed in Table IV.

u(1)
rms u(2)

rms u(3)
rms Nu Uvis

Case RMC RC RMC RC RMC RC RMC RC (10−6 m/s)

H2 4.26 3.80 32.37 31.46 10.92 9.97 1.49 1.45 12.9
H3 15.32 15.26 87.14 86.56 31.20 31.05 2.22 2.12 8.6
H4 31.40 37.14 163.23 165.05 56.13 62.26 2.88 2.67 6.5
H5 38.86 35.81 380.43 385.30 226.43 170.53 4.45 4.61 4.3
H6 81.07 92.44 704.04 709.52 1180.94 1359.30 6.13 6.04 3.2
JM1 2.60 2.06 14.18 13.26 4.81 4.19 1.07 1.08 6.5
JM2 7.44 6.67 67.12 65.17 17.32 15.84 1.46 1.42 6.5
JM3 13.94 13.86 111.51 108.37 31.27 30.25 1.79 1.69 6.5
JM4 19.09 29.47 208.71 210.72 58.32 141.46 2.48 2.15 6.5
JS3 6.88 6.30 51.79 48.57 13.19 11.56 1.19 1.16 6.5
JS4 11.72 8.78 113.57 104.54 26.20 20.48 1.48 1.39 6.5
JS5 43.63 26.71 281.00 218.57 478.55 582.28 2.10 1.79 6.5

conductivity of the side walls will amplify the heat transfer,
e.g., by a more pronounced thermal plume formation at the
side walls [49]. Resulting horizontal temperature gradients can
also drive buoyant as well as Marangoni convection. Finally,
the wetting behavior of the liquid phase governs the interface
geometry near the vessel walls. Additional corner modes could
thus be amplified in connection with the heat transport through
the walls.

In future studies, the foundations of the physical model as
well as the practical setup of prototypes will require significant
advances. The coupling between electrochemical reactions
and the related ion transport has to be combined with the
thermal convection processes in order to obtain a more precise
and complete picture of the dynamical turbulent processes in
LMBs. Furthermore, the assumption of a homogeneous current
has to be relaxed since electrode geometries [50] are employed
in LMB prototypes that can lead to heterogeneous electrical
currents. Moreover, the gradients in the composition of the
lower electrode could lead to additional gradients in the surface
tension since lithium is transferred across the interfaces. This
might be an additional source for a stable density stratification.
As we have discussed, some unknown material parameters,

such as the interfacial tension, or resulting uncertainties limit
the predictability of the importance of different convection
processes. The measurement of those properties requires
further experimental studies in the near future.
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APPENDIX: ROOT-MEAN-SQUARED VELOCITY AND
NUSSELT NUMBERS

In Table V in this appendix, we list the root mean square
velocities and Nusselt numbers of the series H, JM, and JS,
respectively. They have been discussed in Sec. IV. We exclude
those runs which were linearly stable as well as the series JXS.
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