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Evidence for equivalence of diffusion processes of passive scalar and magnetic fields
in anisotropic Navier-Stokes turbulence
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The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is
investigated by using the field theoretic renormalization group technique in the one-loop approximation of
a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the
scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and
it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic
field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the
corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent
environments.
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It was shown recently in the framework of the model of a
passive scalar field advected by the Navier-Stokes turbulent
velocity field with the presence of strong uniaxial small-scale
anisotropy that the anisotropically driven turbulent environ-
ments can have serious impacts on the diffusion processes of
the scalar field [1], where the dependence of the isotropic
part of the turbulent Prandtl number, i.e., the ratio of the
turbulent kinematic viscosity of the fluid to the corresponding
coefficient of turbulent diffusivity [2], on the parameters which
describe the form of the uniaxial anisotropy was investigated
using the field theoretic renormalization group (RG) technique
in the first-order perturbation approximation (the one-loop
approximation in the field theoretic language). In addition, a
few years ago it was also shown in the two-loop approximation
in the framework of the field theoretic approach [3] that
the turbulent magnetic Prandtl number of the passive weak
magnetic field in the kinematic magnetohydrodynamic (MHD)
turbulence without any symmetry breaking is equal to the
turbulent Prandtl number of passively advected scalar field by
the fully symmetric isotropic turbulent velocity field driven by
the stochastic Navier-Stokes equation [4,5]. In this respect, let
us also note that at the leading one-loop level of approximation
this equivalence between diffusion processes in these two
models for arbitrary space dimensions d > 2 was known for
a long time (see, e.g., Refs. [6,7] as well as recent Refs. [8]).
In addition, it is also well known that in two dimensions these
two problems are equivalent beyond any approximation (see,
e.g., Refs. [9] and references cited therein).

It means that the diffusion processes in these two physically
different turbulent environments are in fact completely
equivalent. However, this conclusion is valid only for fully
symmetric isotropic turbulent systems because, as was shown
in Ref. [10] in the framework of the two-loop field theoretic RG
approximation, when the spatial parity violation (helicity) is
present in these turbulent environments then the corresponding
turbulent Prandtl numbers, and therefore also the correspond-
ing diffusion coefficients, become different. Thus, it seems that
symmetries (more precisely their violation) play significant
roles in diffusion processes in various turbulent systems.

The following question immediately and naturally arises:
Is there any difference between diffusion processes of scalar
and magnetic fields passively advected by the corresponding
anisotropic turbulent environments, e.g., with the presence
of the simplest uniaxial small-scale anisotropy, in the same
sense as in the case with the presence of the spatial parity
violation? The answer on this, in fact, nontrivial question is
the aim of the present paper. As we shall see, the answer is
quite surprising, namely, that there is no difference between
these two diffusion processes, i.e., that all anisotropic turbulent
Prandtl numbers, and therefore also all anisotropic diffusion
coefficients, are the same in both models. This result means
that the internal tensor structure of admixtures plays no role as
for the properties of diffusion processes of passive scalar and
magnetic fields advected by the corresponding anisotropically
driven stochastic Navier-Stokes equations.

Thus, let us consider a passive solenoidal magnetic field
b ≡ b(x) [x ≡ (t,x)] in the framework of the kinematic MHD
turbulence described by the following system of stochastic
equations:

∂tb = ν0u0�b − (v · ∂)b + (b · ∂)v + fb, (1)

∂tv = ν0�v − (v · ∂)v − ∂P + fv, (2)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , � ≡ ∂2 is the Laplace operator,
ν0 is kinematic viscosity coefficient (subscript 0 always
denotes bare parameter of the unrenormalized theory), ν0u0 =
c2/(4πσ0) represents the magnetic diffusivity, u0 is dimen-
sionless reciprocal magnetic Prandtl number, c is the speed
of light, σ0 is the conductivity, P ≡ P(x) is the pressure,
and v ≡ v(x) is a solenoidal (owing to the incompressibility)
velocity field. Thus, both v and b are divergence-free vector
fields: ∂ · v = ∂ · b = 0.

Random noises fv and fb in Eqs. (1) and (2) simulate the
kinematic and magnetic energy pumping into the dissipative
turbulent system to maintain its steady state. We shall
suppose that the magnetic energy pumping is realized by a
transverse Gaussian random noise fb = fb(x) with zero mean
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and the correlation function in the following form:

Db
ij (x; 0) ≡ 〈

f b
i (x)f b

j (0)
〉 = δ(t)Cij (|x|/L), (3)

which represents the source of the fluctuations of the magnetic
field. In Eq. (3), L is an integral scale related to the
corresponding stirring and Cij is a function finite in the limit
L → ∞. Its detailed form is not important in what follows.
The only condition which must be satisfied is that Cij decreases
rapidly for |x| � L.

The statistics of the random force fv = fv(x) in Eq. (2) is
also taken in a Gaussian form with zero mean and with the pair
correlation function (see, e.g., Refs. [11–13] for all details)

Dv
ij (x; x ′) ≡ 〈

f v
i (x)f v

j (x ′)
〉

= δ(t − t ′)
∫

ddk
(2π )d

g0ν
3
0k4−d−2εRij (k)eik·(x−x′),

(4)

where d denotes the spatial dimension of the studied system,
g0 plays the role of the coupling constant of the present model,
i.e., it is a formal small parameter of the ordinary perturbation
theory and is related to the characteristic ultraviolet (UV)
momentum scale � (or inner length l ∼ �−1) by relation
g0 	 �2ε, and the physical value of formally small parameter
0 < ε � 2 is ε = 2. The geometric properties of the energy
pumping (4) are completely determined by the form of the
transverse projector Rij (k) and it is taken in the following
form:

Rij (k) =
(

1 + α1
(n · k)2

k2

)
Pij (k) + α2Pis(k)nsntPtj (k),

(5)

which represents the simplest special case of a general
anisotropic transverse tensor structure for considering
the uniaxial anisotropy presented at all scales (see, e.g.,
Refs. [14–17]). Here, Pij (k) = δij − kikj /k2 is the ordinary
transverse projector, ni is the ith component of the unit vector
n, which defines the direction of the axis of the uniaxial
anisotropy, and the anisotropy parameters α1 and α2 must
satisfy inequalities α1 > −1 and α2 > −1 to have positively
defined correlation function (4). The summations over dummy
indices is understood.

For completeness, let us note that in Eq. (4) the necessary IR
regularization is performed by the restriction of the integration
from below, i.e., k � m, where m represents another integral
scale. In what follows, it is always supposed that L � 1/m.

Note also that due to the vector character of both random
forces fv and fb it is possible to introduce the mixed correlator
between them even in the pure isotropic case, which is
not possible in the case of the model with the passively
advected scalar quantity where the mixed correlator can be
constructed only when anisotropy is present [18,19]. However,
for simplicity and for the correspondence with the analysis
performed in Ref. [1], we shall not consider the presence of
this mixed term here.

Using the well-known theorem [20], the stochastic problem
given by Eqs. (1) and (2) corresponds to the field theoretic
model with double set of fields 
 = {v,b,v′,b′} and with the

action functional

S(
) = 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(t1,x1)Dv
ij (t1,x1; t2,x2)v′

j (t2,x2)

+ b′
i(t1,x1)Db

ij (t1,x1; t2,x2)b′
j (t2,x2)

]
+

∫
dt ddx{b′[−∂t − v · ∂+ν0u0(�+τ10(n · ∂)2)]b

+ ν0u0τ20n · b′� n · b + b′(b · ∂)v

+ v′[−∂t − v · ∂ + ν0(� + χ10(n · ∂)2)]v

+ ν0 n · v′[χ20� + χ30(n · ∂)2]n · v}, (6)

where Dθ
ij (x1; x2) and Dv

ij (x1; x2) are the correlation functions
given in Eqs. (3) and (4) for the random forces fb and fv, respec-
tively. Besides, to make the field theoretic model with the pres-
ence of the small-scale anisotropy multiplicatively renormal-
izable, it is necessary to enlarge the model by additional terms
with new unrenormalized (bare) parameters τ10, τ20, χ10, χ20,
and χ30, which are not present in the original stochastic prob-
lem defined by Eqs. (1) and (2) (see, e.g., Refs. [15,16] for de-
tails, where the anisotropically driven MHD turbulence in the
weak anisotropy limit and the Navier-Stokes turbulence with
the presence of strong uniaxial anisotropy were investigated,
respectively).

The necessity of introduction of new terms to the action
functional (6) with all aforementioned bare parameters means
that, in the case when the energy pumping into the system is
driven by the correlator (4) with the presence of the small-scale
uniaxial anisotropy in the form (5), the original stochastic
equations (1) and (2) must be taken in the following enlarged
form:

∂tb = ν0u0[�b + τ10(n · ∂)2b + τ20n �(n · b)]

− (v · ∂)b + (b · ∂)v + fb, (7)

∂tv = ν0[�v + χ10(n · ∂)2v + χ20n �(n · v)

+χ30n (n · ∂)2(n · v)] − (v · ∂)v − ∂P + fv, (8)

from which the action functional (6) is directly ob-
tained. Physically, the introduced dimensionless parameters
χ10, χ20, χ30, τ10, and τ20 in Eqs. (7) and (8) describe the
relative impact of the different anisotropic tensor structures on
the viscous dissipation processes and on the turbulent diffusion
of the passive magnetic field, respectively.

Note also that the pressure term −∂P in Eqs. (2) and (8)
is omitted in the action functional (6) due to the transverse
character of the auxiliary field v′.

The field theoretic model defined by the action func-
tional (6) is self-consistent for which the standard Feynman
diagrammatic technique can be introduced with the following
new bare propagator (in the frequency-momentum representa-
tion):

〈b′
i(ω,k)bj (ω,k)〉0 = 1

L1

[
Pij − L2PisnsntPtj

L1 + L2
(
1 − ξ 2

k

)
]
, (9)
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where ξ 2
k = (n · k)2/k2 and

L1 = iω + ν0u0k
2 + ν0u0τ10(n · k)2, (10)

L2 = ν0u0τ20k
2. (11)

The explicit form of the other two important propagators,
which are related to the velocity field, can be found,
e.g., in Ref. [1] (see Eqs. (8) and (9) in Ref. [1]). At
the same time, the model contains two interaction ver-
tices of the forms b′

i(−vj∂jbi + bj∂jvi) = b′
ivjVijlbl and

−v′
ivj ∂j vi = v′

ivjWijlvl/2, where Vijl = i(kj δil − klδij ) and
Wijl = i(klδij + kj δil) (again in the momentum-frequency
representation).

The general RG analysis [13] shows that the model contains
two superficially divergent one-irreducible Green’s functions,

namely, 〈v′v〉1−ir and 〈b′b〉1−ir , and all divergences can
be removed by multiplicative renormalization of the bare
parameters g0, u0, ν0, τi0, i = 1,2, and χj0,j = 1, 2, 3 in the
following form:

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (12)

τi0 = τiZτi
, χj0 = χjZχj

, (13)

where parameters g, u, ν, τi , and χj are dimensionless renor-
malized counterparts of the bare parameters, μ is the so-called
renormalization mass, and Zy = Zy(g,u,τi,χj ; d; ε) for y =
ν, g,u, τi, χj are the corresponding renormalization constants
which absorb all divergences and which can be expressed
through a set of seven independent renormalization constants
Zi, i = 1, . . . ,7 of the renormalized action functional

SR(
) = 1

2

∫
dt1 ddx1 dt2 ddx2

[
v′

i(t1,x1)Dv
ij (t1,x1; t2,x2)v′

j (t2,x2) + b′
i(t1,x1)Db

ij (t1,x1; t2,x2)b′
j (t2,x2)

]
+

∫
dt ddx{b′[−∂t − v · ∂ + νu(Z5� + τ1Z6(n · ∂)2)]b + νuτ2Z7n · b′� n · b + b′(b · ∂)v

+ v′[−∂t − v · ∂ + ν(Z1� + χ1Z2(n · ∂)2)]v + ν n · v′[χ2Z3� + χ3Z4(n · ∂)2]n · v}, (14)

in the following way:

Zν = Z1, Zg = Z−3
1 , Zu = Z5Z

−1
1 , (15)

Zτi
= Zi+5Z

−1
5 , Zχj

= Zj+1Z
−1
1 , (16)

where again i = 1,2 and j = 1,2,3. Finally, in the framework
of the one-loop approximation, which we are interested in,
and in the minimal substraction (MS) scheme [13,21], the
renormalizetion constants can be expressed as follows:

Zi = 1 + g
zi

ε
+ O(g2), i = 1, . . . ,7, (17)

where the coefficients zi ≡ z
(i)
11 are determined by the calcu-

lation of the corresponding one-loop Feynman diagrams (see,
e.g., Ref. [22]).

The known coefficients zi , for i = 1, . . . ,4, which are
related to the 1-irreducible Green’s function 〈v′

ivj 〉1−ir , can
be written in the following integral form:

z1 = −1

8

Sd−1

(2π )d (d2 − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

(M1M2M3)3
b1, (18)

zj+1 = −1

8

Sd−1

(2π )d (d2 − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

(M1M2M3)3

bj+1

χj

, (19)

for j = 1,2,3, where Sd = 2πd/2/�(d/2) denotes the surface
area of the d-dimensional unit sphere, �(x) represents the
Euler’s � function, Mi,i = 1,2,3 are defined as

M1 = 2(1 + χ1x
2) + (χ2 + χ3x

2)(1 − x2), (20)

M2 = 1 + χ1x
2 + (χ2 + χ3x

2)(1 − x2), (21)

M3 = 1 + χ1x
2, (22)

and the explicit form of huge coefficients bi, i = 1, . . . ,4 can
be found in Appendix I in Ref. [17].

On the other hand, the one-loop coefficients zi, i = 5, 6, 7,
for the remaining renormalization constants Zi, i = 5, 6, 7
in Eq. (17), related to the 1-irreducible Green’s function
〈b′

ibj 〉1−ir of the magnetic field, are unknown and therefore
must be determined. The calculation of the corresponding
one-loop diagram finally gives

z5 = − 1

4u

Sd−1

(2π )d (d − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

M
b5, (23)

z5+i = − 1

4u

Sd−1

(2π )d (d − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

M

b5+i

τi

, (24)

where i = 1,2,M = M1M2M3N1N2N4N5, and

b5 = −2α2M2M3N1N2N5x
2(x2 − 1) + N4N5

(
(d − 1)M1M2N1R1 + (x2 − 1)

{
M3

2 R1 − M3(M3 + N3)R2R3x
2

+M2
2 R1(M3 + R2x

2) + M2R1[M1N3 + (2M3 + N3)R2x
2]

}) − τ2ux2(1 − x2)
(
M1M

2
2 (M2 + N7)R1

+M3
2 R1R2(x2 − 1) + 2M2

2 M3R1R2(x2 − 1) − M3
(
M2

3 + N3N6 + M3N7
)
R2R3(x2 − 1) + M2R1

{
2M2

3 R2(x2 − 1)

−N7R
2
2(x2 − 1)2 + M3[2N3N6 + 3N7R2(x2 − 1)]

})
, (25)
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b6 = τ2u(1−3x2 + 2x4)
(
2α2M2M3N2N5(x2−1) − M1M

3
2 R1 − M2

(
M2

2 + 2M2M3 + 2M2
3

)
R1R2(x2 − 1) + M3

3 R2R3(x2 − 1)

−M3N3N6[2M2R1 − R2R3(x2 − 1)] − N7
{
M1M

2
2 R1 − R2(x2 − 1)

[
M2

3 R3 − M2R1(3M3 + R2 − R2x
2)

]})
+N4N5

(−R2
[
M2

2 R1 + M2(2M3 + N3)R1 − M3(M3 + N3)R3
]
(d − 3 + 2x2) + 2α2M2M3N2(x2 − 1)[1 + d(x2 − 1)]

+ (dx2 − 1){−M1M2R1(1 + N3 + R2 + χ1x
2 − R2x

2) + R2(x2 − 2)[M3(M3 + N3)R3

−M2R1(3M3 + N3 + R2 − R2x
2)]}), (26)

b7 = −(d − 2)τ2u(1 − x2)2[M4
2 R1 − M3

(
M2

3 + N3N5 + M3N6
)
R2R3x

2 + M3
2 R1(M3 + N6 + R2x

2)

+M2
2 R1[N6R2x

2 + M3(N6 + 2R2x
2)] + M2

(
M1N3N4R1 + x2

{−2α2M3N2N5 + R1R2
[
2M2

3 + M3(3N3 + 2N6)

+N3(N6 + R2 − R2x
2)

]})]
, (27)

with

N1 = M2 + N3, N2 = M3 + N3, (28)

N3 = u(1 + τ1x
2), N4 = M2 + N3 + N8, (29)

N5 = M3 + N3 + N8, N6 = N3 + N8, (30)

N7 = 2N3 + N8, N8 = uτ2(1 − x2), (31)

R1 = 1 + α1x
2, R2 = χ2 + χ3x

2, (32)

R3 = −R1 − α2(1 − x2). (33)

In addition, Mi, i = 1,2,3 are defined in Eqs. (20)–(22).
The infrared (IR) scaling properties of the present model

are driven by the corresponding IR-stable fixed point of the
RG equations, the coordinates of which are given by the
requirement of simultaneous vanishing of all RG β functions
of the model, i.e.,

βi(g∗,χj∗,u∗,τl∗; α1,α2,d,ε) = 0, i = g,χj ,u,τl, (34)

where j = 1,2,3 and l = 1,2. Here, variables with asterisks
(*) represent coordinates of the fixed point and the β functions
are defined as follows:

βg ≡ μ∂μg = −2g(ε + gz1), (35)

βχi
≡ μ∂μχi = 2gχi(zi+1 − z1), i = 1,2,3, (36)

βu ≡ μ∂μu = 2gu(z5 − z1), (37)

βτi
≡ μ∂μτi = 2gτ (zi+5 − z5), i = 1,2, (38)

where functions zi, i = 1, . . . ,7 are given in Eqs. (18), (19),
(23), and (24). Note also that the fixed point is IR stable if and
only if all eigenvalues of the matrix of the first derivatives of
the β functions have positive real parts (see, e.g., Ref. [13] for
all details of the RG technique).

The technique for finding the IR-stable fixed points of the
model under consideration is based on the analysis of the so-
called flow RG equations related to the β functions (35)–(38)
and is described, e.g., in Refs. [1,16,17]. In our case, the system
of flow equations for running variables ḡ, χ̄i , ū, τ̄j , i =
1, 2, 3, j = 1, 2 as functions of the scale parameter t = k/�

reads

t
dḡ

dt
= βg(ḡ,χ̄j ; α1,α2,d,ε), (39)

t
dχ̄i

dt
= βχi

(ḡ,χ̄j ; α1,α2,d,ε), i = 1,2,3, (40)

t
dū

dt
= βu(ḡ,χ̄j ,ū,τ̄l ; α1,α2,d,ε), (41)

t
dτ̄i

dt
= βτi

(ḡ,χ̄j ,ū,τ̄l ; α1,α2,d,ε), i = 1,2, (42)

where j = 1, 2, 3, l = 1, 2, the initial conditions are taken
in t = 1, and the IR-stable fixed point (if exists) is ob-
tained in the limit t → 0, i.e., {ḡ,χ̄1,χ̄2,χ̄3,ū,τ̄1,τ̄2}|t→0 =
{g∗,χ1∗,χ2∗,χ3∗,u∗,τ1∗,τ2∗}.

The numerical analysis of the system of differential
equations (39)–(42) gives three important facts: (i) the region
of the anisotropy parameters α1 and α2 where the stable
Kolmogorov scaling regime exists is the same as in the case of
the anisotropic pure Navier-Stokes turbulence [1,17], (ii) the
coordinate τ2∗ of the IR-stable fixed point is always equal
to zero, i.e., τ2∗ = 0 for all possible values of α1 and α2

for which the IR-stable fixed points exist, and (iii) all the
other coordinates of the IR-stable fixed point of the system of
Eqs. (39)–(42) are completely the same as in the case of the
passively advected scalar quantity studied in detail in Ref. [1]
(of course, when parameter τ1 is changed to τ because τ1 in the
present problem corresponds to τ in the scalar problem studied
in Ref. [1]). The last result also follows from the fact that the
quantities b5 and b6 in Eqs. (25) and (26), respectively, are
reduced to the corresponding quantities for the scalar problem
for τ2 = 0 (see Eqs. (31) and (32) in Ref. [1]).

It means, however, that the diffusion processes of the pas-
sive magnetic field in the Navier-Stokes conductive turbulent
environment with the presence of the uniaxial small-scale
anisotropy are completely equivalent to the diffusion processes
of passive scalar quantities advected by the corresponding
Navier-Stokes turbulence [1], i.e., all diffusion coefficients
(isotropic and anisotropic) as well as the corresponding
dimensionless Prandtl numbers are the same in both models.
It also means that the universality of diffusion processes in
these two models which holds in fully symmetric isotropic
cases even in the two-loop approximation [3–5] remains valid
in the situation when the corresponding turbulent systems are
anisotropic. For example, in Fig. 1 the well-defined isotropic
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FIG. 1. The turbulent magnetic Prandtl number Prm,t = 1/u∗
as the function of the anisotropy parameters α1 = α2 for three-
dimensional case d = 3 and ε = 2.

part of the turbulent magnetic Prandtl number Prm,t ≡ 1/u∗ is
shown as the function of the anisotropy parameters α1 = α2,
which is completely the same as the corresponding isotropic
part of the turbulent Prandtl number in the scalar problem (see
Fig. 6 in Ref. [1]).

It is important to stress that this is a rather surprising result
because, as was already mentioned, it is known that when,
for example, the spatial parity violation (helicity) of turbulent
environments is supposed, the diffusion processes of passive
scalar and magnetic fields become essentially different [10].

Let us also note that, due to the strong nonlinearity of the
studied problem with respect to the anisotropy parameters, the

crucial mathematical result of the present analysis, namely,
that τ2∗ = 0 always holds for the IR-stable fixed points, from
which the universality of diffusion processes follows, cannot
be obtained without performing calculations; i.e., it is not
obvious at the first sight.

Finally, it is still necessary to bear in mind that all
conclusions are made on basis of the one-loop approximation
only; therefore there still exists a possibility that higher-loop
corrections will destroy this perfect one-loop equivalence be-
tween anisotropic diffusion processes of the passive scalar and
magnetic fields. Nevertheless, we do not believe this scenario
because when the strong small-scale anisotropy is considered,
as in the present paper, the nontrivial nonlinear anisotropy
corrections are already included at the one-loop level of
approximation; i.e., in this case, the one-loop approximation
does not mean that only linear anisotropy corrections are taken
into account. As a result, it is hardly possible that this kind of
equivalence between these two models is accidental and holds
only at the one-loop level of approximation. Nevertheless, for
ultimate verdict in this question, of course, at least two-loop
calculations are needed. But this kind of calculations is
enormously complicated and was not performed yet even
in the much simpler weak small-scale uniaxial anisotropy
limit where only linear anisotropy corrections are taken into
account.
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