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Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids
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A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic
slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary
conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the
elastic waves across the slab thickness. For Atwood number AT = 1, the asymptotic growth rate is found to be
in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998)], and
a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner
slabs. The feedthrough factor is also calculated.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) in accelerated solids that
retain their mechanical properties during the acceleration
process is of great importance in many physical situations
involving high energy density (HED) matter [1–28]. In
particular, it is of relevance for the Laboratory of Planetary
Sciences (LAPLAS) experimental set, which will be a central
piece of the research program on HED physics to be developed
at the Facility for Antiproton and Ion Research (FAIR),
now under construction at the GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt, Germany [11–22].

LAPLAS will be mainly directed to study the thermophys-
ical properties of matter under extreme conditions such as
the ones that could be found in the core of giant gaseous
or Earth-like planets. In these experiments a sample material
will be quasi-isentropically compressed by the implosion of a
cylindrical heavy metal shell (W or Ta) driven by an intense
heavy ion beam with a ring shaped focal spot [21,22,29].

The implosion of cylindrical metallic shells (liners) is also
used in experiments in which the acceleration is driven by
very intense pulsed electrical currents. These experiments are
performed in the framework of the novel magnetic liner inertial
fusion (MagLIF) approach to the inertial fusion [23–28].
Although it has some similarities to MagLIF, LAPLAS will
work in a rather different regime involving considerably lower
aspect ratios and accelerations, as well as a much denser
pusher. Therefore, sufficient mitigation or even suppression of
RTI is expected in LAPLAS to be provided by the mechanical
strength of the heavy metal shell.

In addition, RTI in accelerated slabs has become a current
method to test physical models for the constitutive properties of
matter under very high strain and strain rate conditions. To this
end, experiments with planar slabs accelerated by explosives
or by laser ablation have been performed to evaluate yield
strength Y and shear modulus G of solids at such extreme
conditions [1–10]. More recently, Richtmyer-Meshkov insta-
bility has also been used for similar purposes [30–34].
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The nonlinear character of the constitutive equations for an
elastic-plastic solid has led to the development of approximate
physical models that provide a theoretical description of
the RTI evolution [3,4,35–48]. Exact theories have been
advanced only for the case of RTI in purely elastic (Hookean)
solids [49,50], and although they have great relevance for
testing the quality of the previously mentioned approxima-
tions, they have been found to be too complex to allow a
relatively simple extension that could include the transition to
the plastic regime. Furthermore, most of these studies have
been constrained to an interface between two semi-infinite
media, with the only exceptions being the exact theory of
Ref. [49] for arbitrary thickness and the model reported in
Refs. [3,4] for a very thin layer, both for Atwood number
AT = 1.

On the other hand, the problem of the finite-thickness
effects on RTI in a slab of ideal fluid with a top free surface
was first considered by Taylor [51,52]. These results were
later extended by Mikaelian to consider the presence of ideal
fluids above and below the slab [53,54] and the effect of the
surface tension on both interfaces of the slab [55]. A similar
analysis was more recently presented in order to consider the
presence of magnetic fields on both sides and inside an ideal
fluid slab [56,57]. Some other works were also carried out
in the framework of geophysical and biophysical applications
in which a slab of viscous fluid with a top free surface was
considered. However, these cases were treated by using very
rough approximations [58] or limited to the regime of small
Reynolds numbers [59–62].

More detailed work was instead presented for the case of a
slab of viscous fluid with a top rigid surface [63]. In this case,
the presence of such a rigid surface reduces the number of
boundary conditions and considerably simplifies the problem,
but such a rigid surface boundary condition is not appropriate
for dealing with accelerated slabs that are not confined by
material surfaces.

In this paper we deal with the problem of RTI in a perfectly
elastic solid slab of finite thickness with a top free surface
lying on a semi-infinite ideal fluid. The aim is to present an
approximate theory for the RTI that may later allow for a
relatively simple extension that would include the transition to

2470-0045/2017/95(5)/053108(9) 053108-1 ©2017 American Physical Society

https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1103/PhysRevE.95.053108


S. A. PIRIZ, A. R. PIRIZ, AND N. A. TAHIR PHYSICAL REVIEW E 95, 053108 (2017)

the plastic regime, like what was done in the past for RTI in
semi-infinite media [35,41,42].

In this regard, the consideration of a medium as
semi-infinite is expected to be valid provided that the transit
time tT ∼ h/ce of the elastic waves through the slab thickness
(where h is the thickness of the slab, ce = √

G/ρ is the
propagation velocity of the elastic waves, and ρ is the slab
density) is larger than the characteristic RTI growth time tRT =
γ −1

max (where γmax is the maximum value of the growth rate γ ).
By taking γmax ∼ √

k0g, with k0 = ρg/G, the condition
tT > tRT leads to

k0h > 1, (1)

or p0 > G, where p0 = ρgh is the pressure driving the slab
acceleration. That is, such a condition may not be satisfied
in many experiments using high explosives to accelerate a
heavy metal slab, and certainly, it will not be fulfilled in
the LAPLAS experiments where shells of heavy metal with
G > 100 to 200 GPa are being considered, and the driving
pressures will not be high enough to satisfy Eq. (1), especially
in the initial phases of FAIR operation when full intensity will
not yet be available.

We have shown in the past that relatively simple physical
models can be constructed, with reasonable accuracy, by
adding specific issues resulting from some physical insight
into the problem. In fact, often, a great deal of mathematical
complications stands for only a small part of the physics,
and the identification of some significant physical aspect
of the problem may bring an important simplification of
the mathematical problem, while still capturing the most
relevant features. Such simplifications may also allow for the
consideration of more complex problems that are difficult to
treat by means of exact methods.

Here we will consider the effect of the finite thickness of
an elastic medium on RTI by taking into account that, due to
the finite transit time of the elastic waves across the slab, the
restoring elastic forces that resist deformation caused by the
perturbation growth are produced by the total strain of the slab
rather than by the local strain.

Moreover, we will assume as in Refs. [35–48] that the
velocity field arising from the perturbation evolution of the
unstable interface can be well described by the irrotational and
solenoidal field and that the elastic effects can be effectively
introduced through the boundary conditions at the edges of the
elastic slab. Further discussion is presented in Appendix B.

In Sec. II we first review the derivation of the asymptotic
growth rate for the RTI in a finite-thickness slab of ideal fluid
floating on a less dense semi-infinite ideal fluid. Then, a model
is presented for the case in which the slab consists of a perfectly
elastic medium. The results of the model are discussed in
Sec. III, including the calculation of the feedthrough factor for
the transmission of the perturbation from the bottom to the top
interface. Some conclusions are summarized in Sec. IV.

II. THE ANALYTICAL MODEL

We consider the simplest case shown in Fig. 1 for a perfectly
elastic solid slab of thickness h, density ρ2, and shear modulus
G lying on a semi-infinite ideal fluid of density ρ1 < ρ2 in
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FIG. 1. Schematic of the two-interface system formed by the
elastic slab on top of an ideal fluid.

a uniform gravitational field �g = gey. For y � −h we take
density ρ3 = 0.

We first briefly review the case in which the slab is also an
ideal fluid (G = 0) [51,52].

A. Finite-thickness ideal fluid slab (G = 0)

In this case the velocity field turns out to be irrotational, and
assuming incompressible perturbations, the vertical velocity is
obtained (see Appendix A) as

δv2y = eikx(A+eky + A−e−ky), −h � y � 0,

δv1y = eikxB−e−ky, y � 0, (2)

and pressure perturbations turn out to be

δp2 = −ρ2

k
eikx(Ȧ+eky − Ȧ−e−ky), −h � y � 0,

δp1 = ρ1

k
eikxḂ−e−ky, for y � 0, (3)

where k = 2π/λ is the perturbation wave number (λ is the per-
turbation wavelength) and overdots indicate time derivatives.
In addition, the boundary conditions at y = 0 read

A+ + A− = ξ̇ = B−, (4)

δp1(0) − δp2(0) = (ρ2 − ρ1)gξ, (5)

where ξ = ξ (t) is the instantaneous maximum perturbation
amplitude at y = 0 (Fig. 1). In the same manner at y = −h,
we have

A+e−kh + A−ehk = ξ̇b, (6)

δp2(−h) = −ρ2gξb, (7)

where ξb = ξb(t) is the instantaneous maximum perturbation
amplitude at y = −h. By considering the asymptotic regime
with ξ ∼ ξb ∼ eγ t , where γ is the instability growth rate, the
previous equations yield

γ 2ρ1

k
ξ + γρ2

k
(A+ − A−) = (ρ2 − ρ1)gξ, (8)

A+ + A− = γ ξ, (9)
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A+e−kh + A−ehk = γ ξb, (10)
γρ2

k
(A+e−kh − A−ekh) = ρ2gξb. (11)

The solution of Eqs. (8) to (11) is straightforward, and it reads

A− = A+f = γ ξf

1 + f
, f = γ 2 − kg

γ 2 + kg
e−2kh, (12)

and the instability growth rate turns out to be given by the
following expression [51,52]:

γ =
√

(ρ2 − ρ1)kg

ρ2 + ρ1 coth kh
. (13)

It is easily appreciated that when kh → ∞, the classi-
cal growth rate

√
AT kg is recovered [where AT = (ρ2 −

ρ1)/(ρ2 + ρ1)]. In addition, it is seen that except for AT = 1
(ρ1 = 0) the growth rate is lower for thinner slabs. This is
essentially because the “stable” upper interface presents some
resistance to the deformation that is more effective the thinner
the slab is.

B. Elastic solid slab on the top of an ideal fluid

We consider now that the slab is a Hookean solid charac-
terized by a shear modulus G as shown in Fig. 1. Following
Refs. [35–48], we assume that the effect of the elasticity of
the solid slab can be introduced as a boundary condition at the
top and bottom edges of the slab. Then Eqs. (5) and (7) are
modified by the presence of the forces per unitary surface Sa

and Sb at y = 0 and y = −h, respectively:

δp1(0) − δp2(0) = (ρ2 − ρ1)gξ − Sa, (14)

δp2(−h) = −ρ2gξb − Sb. (15)

Then, Eqs. (8) and (11) are, respectively, replaced by the
following equations when an elastic solid slab is considered:

γ 2ρ1

k
ξ + γρ2

k
(A+ − A−) = (ρ2 − ρ1)gξ − Sa, (16)

γρ2

k
(A+e−kh − A−ekh) = ρ2gξb + Sb. (17)

The forces Sa and Sb are determined by the vertical component
Syy of the deviatoric part of the stress tensor (given by
Hooke’s law), which in the asymptotic regime can be written
as follows [35,36,47]:

γ Syy = 2GDyy, (18)

where

Dyy = ∂(δv2y)

∂y
= k(A+e+ky − A−e−ky). (19)

Dyy is the component of the strain rate tensor normal to the
unperturbed interface, and we have evaluated it by using the
irrotational velocity field given by Eqs. (2).

For the case kh � 1, the previous expressions yield

Sa = Syy(y = 0) = 2kGξ,

Sb = Syy(y = −h → −∞) = 0, (20)

and the problem reduces to the one considered in Ref. [35]
for a single interface between an elastic medium and an ideal
fluid. In the opposite case, when kh < 1, the transit time of
the elastic waves becomes shorter than the characteristic time
of growth of the instability. That is, the elastic forces acting at
the edges of the solid slab will not be determined by the local
strains occurring near the interfaces and are a consequence of
the total strain of the slab. Both extreme cases can be well
accounted for by taking Sa = Sb = S, where S is the result of
the total strain:

γ S = 2G

∫ 0

−h

dDyy = 2G[Dyy(0) − Dyy(−h)]. (21)

It is worth noticing that, because of the decaying mode of the
velocity field δv2y , the case of a single interface for a semi-
infinite elastic medium is retrieved once again for h → ∞.
Therefore, Eq. (21) is actually suitable for all values of kh,
and we will use it in Eqs. (16) and (17).

Then, from Eq. (17) together with Eqs. (9) and (10) we can
get

A− = γ ξf

1 + f
− γ ke−kh

ρ2(1 + f )(γ 2 + kg)
S, (22)

A+ = γ ξf

1 + f
+ γ ke−kh

ρ2(1 + f )(γ 2 + kg)
S, (23)

with f defined in Eq. (12). Thus, by introducing Eqs. (22)
and (23) into Eq. (16), the following equation for the instability
growth rate is obtained in terms of S:

γ 2(ρ2 + ρ1) − (ρ2 − ρ1)kg

= (γ 2 + kg)(ρ2 − ρ1)f − kS

ξ
(1 + f )

×
[

1 + 2γ 2e−kh

(1 + f )(γ 2 + kg)

]
. (24)

It is not difficult to check that when S = 0, the previous
equation for the growth rate reduces to Eq. (13).

On the other hand, in order to calculate S we adopt a further
approximation which produces a simpler expression that is still
pretty accurate. It consists of using the expressions given by
Eq. (12) for A± in Eq. (19), so that Eq. (21) yields

S ≈ 2kGξ

γ 2 + kg

1 − e−2kh

1 + f

(
γ 2 + kg tanh

kh

2

)
, (25)

and after some algebra, the instability growth rate reads as
follows:

γ 2(ρ2 + ρ1 coth kh) − (ρ2 − ρ1)kg

+ 2k2G

γ 2 + kg

(
γ 2 + kg tanh

kh

2

)

×
[

1 + 2γ 2e−kh

(1 + f )(γ 2 + kg)

]
= 0. (26)

In order to solve this equation it is convenient to introduce
the following dimensional magnitudes:

κ = k

k0
, σ = γ√

k0g
, k0 = ρ2g

G
. (27)
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FIG. 2. Asymptotic dimensionless growth rate σ = γ /
√

k0g as
a function of the dimensionless wave number κ = k/k0 for several
values of a = k0h and AT = 1. Dots for a � 1 are calculated with
the theory of Ref. [49], and for a � 1 Ref. [50] has been used.

Then, we have

k0h = ρ2gh

G
≡ a, f = σ 2 − κ

σ 2 + κ
e−2aκ , (28)

and the equation for the dimensionless growth rate σ is written
as follows:

σ 2

(
1 + 1 − AT

1 + AT

coth aκ

)
− 2AT

1 + AT

κ

+ 2κ2

σ 2 + κ

(
σ 2 + κ tanh

aκ

2

)
κ + σ 2 coth(aκ/2)

κ + σ 2 coth aκ
= 0. (29)

III. MODEL RESULTS

A. Instability growth rate

Equation (29) for σ (κ) is a bicubic polynomial that has a
unique real and positive root in the interval 0 � κ � κc, where
κc is the dimensionless wave number beyond which elasticity
completely stabilizes the solid slab. In such an interval we
calculate the dimensionless growth rate σ (κ) and compare
it with the results for AT = 1 reported in Ref. [49]. The
comparison is shown in Fig. 2 for several values of a = k0h

(0.1, 0.25, 0.5, 1, and a � 1). The model reduces to that of
Ref. [35] for the case of a � 1, and as discussed in that work,
it has a maximum difference of 18% from the exact results
of Refs. [49,50]. For a � 1, the present model is in excellent
agreement with the exact results of Ref. [49] and with the
approximate model for a very thin slab reported in Refs. [3,4]
(both for AT = 1). For a � 1 the maximum discrepancy is in
the cutoff wave number κc, which differs less than 7% from
the exact result.

0.1

1

10

0.1 1 10 100

present model
Ref.[49]
Ref.[3]

k
0
h

k
c
/k

0

k
0
 = ρ

2
g/G

A
T
 = 1

k
c
/k

0
= 0.5

(k
0
h)

-1/2

FIG. 3. Dimensionless cutoff wave number κc = kc/k0 as a
function of the dimensionless slab thickness a = k0h for AT = 1.
The solid line is the result of the present model, the dotted line is
given in Refs. [3,4], and the dash-dotted line is obtained from the
theory of Ref. [49].

We can get an analytical expression for κc by taking σ = 0
in Eq. (29):

κc tanh
aκc

2
= AT

1 + AT

. (30)

For a � 1, the previous equation yields

κc = AT

1 + AT

, (31)

in agreement with the exact results obtained in
Refs. [35,49,50]. In the other extreme, for a 
 1, we get

κc =
√

2AT

1 + AT

1

a
, (32)

which differs by a factor of (3/4)1/4 with respect to the results
of Refs. [3,4,49] for AT = 1. Figure 3 shows a comparison of
Eq. (30) for AT = 1 with the exact results of Ref. [49] and with
the approximate result of Refs. [3,4] obtained by extrapolating
the results for a very thin layer to an arbitrary thickness.

It may be worth noting that κc increases for a thinner slab.
That is, the stabilizing effect of the elasticity becomes less
effective as the thickness of the slab is reduced. As we saw
in Sec. II A, the thickness of the slab does not play any role
in determining the growth rate for AT = 1; instead, it has a
stabilizing effect (growth rate reduction) for AT < 1. Then, it
may seem somewhat unexpected that thinner elastic slabs are
less stable than the thicker ones. However, this result can be
easily explained in the framework of the present model as a
consequence of the fact that the stabilizing elastic forces arise
from the effect of the total strain across the slab thickness and
not from the local strains on the interfaces. In fact, at the limit
of an infinitesimally thin slab, local forces on both surfaces
would become practically equal, and the only effect would
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FIG. 4. Asymptotic dimensionless growth rate σ = γ /
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k0g as
a function of the dimensionless wave number κ = k/k0 for several
values of a = k0h and AT = 0.5.

be a vertical translation of the slab, with no effective total
restoring force acting on the slab (S = 0).

For AT < 1, the stabilizing effect of thinner slabs shown
in Eq. (13) becomes operative, and it will be in competition
with the effect of the thickness on the elastic force. Such
a competition can be seen in Fig. 4, where the growth rate
is shown to be lower for the thinnest slabs at the longest
wavelengths (smallest k) when the stabilizing effects of the
elasticity are less important (as in the ideal case). Conversely,
the growth rate becomes larger for the thinnest slabs at the
shortest wavelengths (largest k) when the elastic stabilization
is more effective.

Finally, we can see that the effect of the Atwood number is,
as expected, to reduce the growth rate the smaller AT is. This
is shown in Fig. 5 for the fixed value of a = 0.1 [38].

B. Asymptotic feedthrough factor

We can describe the magnitude at which the perturbation
is transmitted from the naturally unstable interface at y = 0
to the top interface at y = −h by calculating the feedthrough
factor F = ξb/ξ in the asymptotic regime [52]:

F = ξb

ξ
= ξ̇b

ξ̇
. (33)

By using Eqs. (22) and (23) with S given by Eq. (25) and
introducing the dimensionless magnitudes defined in Eq. (27),
we get, after some straightforward algebra, the following
expression:

F = e−aκ + f eaκ

1 + f
− 8

[
κe−aκ sinh aκ

(1 + f )(σ 2 + κ)

]2

×
(

σ 2 + κ tanh
aκ

2

)
. (34)
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FIG. 5. Asymptotic dimensionless growth rate σ = γ /
√

k0g as
a function of the dimensionless wave number κ = k/k0 for several
values of AT and a = k0h = 0.1.

It is not difficult to find the following limits of the previous
equation:

F → 1, κ → 0,

F → −1, κ → κc. (35)

We have represented Eq. (34) in Fig. 6 for AT = 1 and for
several values of a = k0h. As expected, the feedthrough factor
is larger for the thinnest slabs, and at the limit k → 0, it
achieves the value F = 1. More interesting is the value of
F = −1 for κ = κc, indicating that at such a limit both inter-
faces are oscillating at counterphase with the same amplitude,
which could be expected for the respective extremes of a free
oscillator. In fact, for larger values of κ the perturbation sees
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FIG. 6. Feedthrough factor F = ξb/ξ as a function of the dimen-
sionless wave number κ = k/k0 for several values of a = k0h and
AT = 1.
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a relatively thicker slab, so that the feedthrough is reduced
up to the point at which ξb = 0, and no perturbation is
transmitted to the stable interface. A further increase of κ

leads to an additional reduction of such an influence, and the
restoring elastic force at y = −h makes both surfaces oscillate
at counterphase at κ = κc.

IV. CONCLUDING REMARKS

We have developed an analytical model for describing the
linear RTI of a perfectly elastic solid slab that considers the
effects of the slab finite thickness. By following previous
works, the elastic forces are introduced as boundary conditions
at the edges of the slab.

On the other hand, the effects of the finite thickness of
the slab are taken into account by considering that, for a
sufficiently thin slab, the transit time of the elastic waves across
its thickness becomes shorter than the instability growth time,
so that the restoring elastic force at the interfaces is determined
by the total strain of the slab rather than by the local strains
near the interfaces.

The results are in excellent agreement with the exact theory
of Ref. [49] for AT = 1 and reduce to the model of Ref. [35]
for a very large thickness. The model provides a physical
explanation for the seemingly unexpected loss of effectiveness
of the elasticity in providing stabilization for the thinnest solid
slabs. In fact, the thinner the slab is, the shorter the transit time
is between the top and bottom interfaces, and the more uniform
the strain is across the slab, thus reducing the total restoring
force S on the interfaces. This effect is in competition with the
growth rate reduction observed in an ideal medium slab for the
smaller thicknesses.

In addition, it is not difficult to consider that the semi-
infinite light medium is nonideal and/or that it contains a
magnetic field, as done in Refs. [35,44–46] for two semi-
infinite media.

The feedthrough factor F quantifying the magnitude of the
transmission of the perturbation from the naturally unstable
bottom interface to the top one is found to decrease with the
slab thickness, and as expected, it is |F | < 1.

The model is seen to be a good candidate for being extended
to include the effects of the finite thickness on the RTI in
an elastic-plastic slab by considering the transition from the
elastic to the plastic regime, in a manner similar to what was
done in Ref. [42] for a semi-infinite solid.
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APPENDIX A: THE IDEAL VELOCITY FIELD

Equations (2) and (3) are obtained by solving the linearized
equations for momentum and mass conservation:

ρ

[
∂ �v
∂t

+ (�v · �∇)�v
]

= −�∇p + ρ �g, (A1)

∂ρ

∂t
+ (�v · �∇)ρ = −ρ �∇ · �v. (A2)

Assuming that every magnitude ϕ (�v, p, and ρ) can be
written as ϕ = ϕ0 + δϕ, with δϕ being the perturbation and
ϕ0 representing the unperturbed values, the equations for the
perturbations are obtained:

ρ0
∂(δvx)

∂t
= −∂(δp)

∂x
, (A3)

ρ0
∂(δvy)

∂t
= −∂(δp)

∂y
, (A4)

∂(δvx)

∂x
= −∂(δvy)

∂y
, (A5)

where we have taken �v0 = 0 and �∇ρ0 = 0 and we have con-
sidered incompressible perturbations (δρ = 0). The solution
of these equations is straightforward, and it reads [51,52]

δvy = (C+eky + C−e−ky)eikx = −iδvx, (A6)

δp = −ρ0

k
(Ċ+eky − Ċ−e−ky)eikx . (A7)

By taking ρ0 ≡ ρ1 for y � 0 and requiring that δvy ≡ δv1y →
0 and δp ≡ δp1 → 0 when y → ∞, it turns out C+ = 0,
and C− ≡ B−. Similarly, for −h � y � 0, we have ρ0 ≡
ρ2, δvy ≡ δv2y, δp ≡ δp2, C± ≡ A±, and Eqs. (2) and (3) are
obtained.

APPENDIX B: THE EXACT SOLUTION

In order to further check the goodness of the approximate
model, we will outline here the derivation of the exact solution
of the problem. The details will be presented elsewhere.

We start with the linearized equations for incompressible
perturbations. For the heavy elastic medium (y < 0) we have

∂(δv2i)

∂xi

= 0, (B1)

ρ2
∂(δv2i)

∂t
= −∂(δp2)

δxi

+ ∂Sik

∂xk

, (B2)

∂(Sik)

∂t
= 2GDik, Dik = 1

2

[
∂(δv2i)

∂xk

+ ∂(δv2k)

∂xi

]
, (B3)

where Dik is the strain rate tensor. In order to get the velocity
field for y < 0 we adopt the Helmholtz decomposition for
which the velocity field can be expressed as the sum of a
part δ�v φ

2 given by the gradient of a scalar function φ2 plus
another part δ�v ψ

2 consisting of the curl of a solenoidal (zero
divergence) vector ψ2 êz [59,64,65]:

δ�v2 = �∇φ2 + �∇ × (ψ2 êz), (B4)

where êz is the unitary vector in the direction normal to the
(x,y) plane, and by adopting the Bernoulli gauge [65], the
potentials φ2 and ψ2 must satisfy the following equations:

∇2φ2 = 0, γψ2 = G

γ
∇2ψ2, (B5)

where we have assumed that ψ2 ∝ eγ t . By taking

φ2 ∝ e(γ t+qy) sin kx, ψ2 ∝ e(γ t+q ′y) cos kx, (B6)

053108-6



FINITE-THICKNESS EFFECTS ON THE RAYLEIGH- . . . PHYSICAL REVIEW E 95, 053108 (2017)

the previous equations yield

q = ±k, q ′ = ±λ, λ =
√

k2 + γ 2ρ2

G
. (B7)

Then, the velocity field is given by the following equa-
tions [59,64,65]:

δv2y = ∂φ2

∂y
− ∂ψ2

∂x
, δv2x = ∂φ2

∂x
+ ∂ψ2

∂y
. (B8)

It is convenient to take φ2 and ψ2 in the following form:

φ2 = a2 cosh ky + b2 cosh k(h + y)

sinh kh
eγ t sin kx, (B9)

ψ2 = a2 sinh λy + b2 sinh λ(h + y)

sinh λh
eγ t cos kx. (B10)

On the other hand, for the light ideal fluid (y > 0) we have

φ1 = a1e
−kyeγ t sin kx, δv1y = ∂φ1

∂y
, δv1x = ∂φ1

∂x
.

(B11)

Since the tangential stress Sxy must be equal to zero at
y = 0 and y = −h, we get

d2 = − 2k2

λ2 + k2
b2, c2 = − 2k2

λ2 + k2
a2. (B12)

In addition, the continuity of the normal stress −δp + Syy =
−δp + (G/γ )∂(δvy)/∂y at y = −h and y = 0, respectively,
leads to the following dynamical conditions on the moving
interfaces:

∂φ2(−h)

∂t
+ Syy(−h) + gξb = 0, (B13)

∂φ2(0)

∂t
+ Syy(0) + gξ = ρ1

ρ2

[
∂φ1(0)

∂t
+ gξ

]
, (B14)

where the continuity of the vertical velocity at y = 0 has been
used (−a1 = b2 + d2). Equations (B12) to (B14) yield the
following relationships from which the growth rate γ can be
obtained:

a2

(
C − ρ2kg

G

)
+ b2A = 0, (B15)

a2A + b2

[
C +

(
1 − ρ1

ρ2

)
ρ2kg

G
− γ 2ρ1

G

]
= 0, (B16)

where C and A are defined as follows [49]:

C = (λ2 + k2)2 cosh kh sinh λh − 4k3λ cosh λh sinh kh

(λ2 − k2) sinh kh sinh λh
,

(B17)

A = (λ2 + k2)2 sinh λh − 4k3λ sinh kh

(λ2 − k2) sinh kh sinh λh
. (B18)

From the previous equations we can get the cutoff wave
number kc by taking γ = 0. In such a limit we have

Ch2 = x2(2x − sinh 2x)

(sinh x)2
, (B19)

0.1

1

0.1 1 10 100

k
c
/k

0

A
T
 = 1

A
T
 = 0.5

A
T
 = 0.1

k
0
 = ρ

2
g/G

------------- model
- - - - - exact solution

k
0
h

FIG. 7. Dimensionless cutoff wave number κc = kc/k0 as a
function of the dimensionless slab thickness a = k0h for several
values of AT . Solid lines are given by Eq. (30), and dotted lines
are the results of the exact theory outlined in Appendix B.

Ah2 = 2x2(x cosh x − sinh 2x)

(sinh x)2
, (B20)

where x = kch = aκc. Then, from Eqs. (B15) and (B16) we
obtain the following quadratic equation:

a2 + aF1(x) − F2(x) = 0, (B21)

F1(x) = 1 − AT

2AT

Ch2

x
, (B22)

F2(x) = 2(1 + AT )

AT

x1

[
1 −

(
x

sinh x

)2]
. (B23)

Equations (B21) to (B23) give κc as a function of a = k0h

with AT as a parameter. In Fig. 7 we show the solutions for
AT = 0.1, 0.5, and 1 (dotted lines). In the same figure we also
illustrate the approximate calculations by means of Eq. (30)
(solid lines), which are seen to be in excellent agreement with
the exact results for any value of AT . Equation (30) gives the
exact cutoff wave number κc for a � 1, and it approximates
the exact value within an error of around 10% for a 
 1. In
this latter limit Eq. (B21) yields an analytical expression:

1

a1/2κc

=

√√√√1 − AT

3AT

+
√(

1 − AT

3AT

)2

+ 2(1 + AT )

3AT

. (B24)

It can easily be checked that the function of AT on the right-
hand side of the previous equation differs by around 10% from
the corresponding factor in Eq. (32), for which it turns out to
be an excellent approximation of the exact result.

The good results of the model based on the irrotational
velocity field can be explained by the previous analysis. In
fact, from Eq. (B7) we can see that when k2 � γ 2ρ2/G, the
rotational part δ�vψ

2 of the velocity field becomes indistinguish-
able from the irrotational part, although it can be a considerable
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part of the total velocity field δ�v2, and therefore, neglecting the
vorticity would not have a significant effect on the instability
growth rate.

The opposite case, when k2 
 γ 2ρ2/G, corresponds to the
situation in which the shear modulus G becomes relatively
small, and although the rotational component of the velocity
field is well differentiated from the irrotational part, it becomes
a small part of the total velocity field. This latter case is
equivalent to the low Reynolds number flows in viscous fluids,
and it is well known they correspond to the physical realization
of an ideal flow [66].

Then, the maximum departure from the exact results should
be expected for the wave numbers k ∼

√
γ 2ρ2/G (κ ∼ σ ).

That is, even in the worst case the velocity field is not
extremely different from the irrotational part, and therefore, the
results obtained by neglecting the rotational part must always
be reasonably good. An example of a situation with κ ∼ σ

appears in the neighborhood of the maximum growth rate for
k0h � 1 (Fig. 2), where a maximum error of 18% is found [35].
In other cases, the maximum growth rate shifts toward larger
values of κ , and it becomes σ < κ , thus improving the accuracy
of the irrotational approximation.
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