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Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow
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We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders
in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation
of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct
values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes.
The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation
reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in
the system as either periodic boundary conditions or fixed end wall boundary conditions for different system
sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter
space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability
occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the
retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction
of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity,
and torque of the flow with the wavy pattern are explored.
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I. INTRODUCTION

Waves or wavy vortices appear as flow states in wide range
of flow systems including shear flows, atmospheric flows, and
rotating convection [1–4]. Usually these wavy states result
from a hydrodynamic instability of rotationally invariant basic
flow, i.e., the flow undergoes a supercritical Hopf bifurcation
breaking the SO(2) symmetry [5–7]. It is well known that
for the case of the inner cylinder rotating with the outer
cylinder fixed the primary instability consisting of toroidal
Taylor vortices acquires a waviness as the rotational speed
of the inner cylinder increases with the waves propagating
azimuthally in the same direction as the inner cylinder rotation.
For a wide gap scenario the number of azimuthal waves is
typically 2 to 7 [8], depending on the conditions by which
the secondary transition is approached, and their azimuthal
phase speed at mid-gap is about 0.25 to 0.5 times the surface
speed of the inner cylinder [8–16]. (In the narrow gap case,
particularly in the limit η → 1, significantly larger azimuthal
wave numbers can appear [17].)

A recent study [18] for a rotating inner cylinder and fixed
outer cylinder clarified the transition from toroidal vortices in
Taylor vortex flow (TVF) to toroidal wavy vortices in wavy
vortex flow (WVF) for the mid- to narrow gap case (here
radius ratios larger than 0.7). The waviness comes about due
to the axial shear in the azimuthal velocity resulting from
the alternate radial advection of azimuthal momentum by the
Taylor vortices of the underlying Taylor-Couette flow. The
wavy vortex pattern propagates in the direction of the rotation
of the inner cylinder—the waves are prograde [8–16,19].
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There are a few exceptions for which waves display retrograde
propagation. For classical Taylor-Couette flow of a Newtonian
fluid [18], counter-propagating waves have been predicted for
wide gaps, and the transition to this situation always coincides
with a change in the dominant azimuthal wave number as the
radius ratio decreases. In another example, a recent study [20]
detected wave propagation reversal in a complex fluid, a
ferrofluidic flow triggered through an external magnetic field
in which the same azimuthal wave number is maintained. A
related example is that of Taylor-Couette flow with axial and
radial imposed mass flux in which the azimuthal wave number
reverses sign for large radial outflows and large axial flows
so that the helicity of the vortices (not the wave propagation)
changes from opposite that of the base flow to the same as the
base flow [21].

Motivated by these cases, particularly the finding that
in ferrofluidic Taylor-Couette flow the wave propagation
reversal occurs while maintaining the same azimuthal wave
number [20] for periodic boundary conditions, we consider
wide-gap counter-rotating cylinders with a finite length annu-
lus having fixed end walls. Although previous results indicate
prograde wave propagation in a narrow-gap system [19], we
show that continuously varying a single parameter, either
the Reynolds number of the inner cylinder or the Reynolds
number of the outer cylinder, in a wide-gap system reduces
the azimuthal wave speed ω of the wavy instability until it
reaches zero and eventually becomes negative. The overall
angular velocity � of the flow shows qualitatively the same
behavior, but the zero-crossing does not coincide exactly with
that of the wavy instability. With further variation (in the
same direction) in the parameter, the waves start to move in
the opposite direction. In the case of constant outer cylinder
rotation and large enough counter-rotation, the wavy flow goes
from prograde to retrograde to prograde again as the speed of
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the inner cylinder increases. The key points in the present study
of wave propagation reversal are (i) the constant azimuthal
wave number and (ii) the absence of any other additional
applied forces (e.g., through-flow or magnetic forces) that can
trigger the reversal.

The paper is organized as follows. Section II describes the
basic equations and numerical method used in the present
study. Section III presents numerical results starting with
an introduction to the WVF states that were considered.
Investigating the bifurcation scenario via Rei, we study the
variation in flow dynamics and spatial-temporal characteristics
that coincides with the wave propagation reversal. Finally,
Sec. IV provides a discussion and conclusions.

II. GOVERNING EQUATIONS

Consider the flow driven in the annular gap between two
independently rotating cylinders [22,23] of length L. The inner
cylinder of radius Ri rotates at angular speed �i and the outer
cylinder of radius Ro rotates at angular speed �o. The end walls
enclosing the annulus are stationary. The fluid in the annulus
is assumed to be Newtonian, isothermal, and incompressible
with kinematic viscosity ν. Using the gap d = Ro − Ri as
the length scale and the radial diffusion time d2/ν as the time
scale, the non-dimensional Navier-Stokes equations governing
the flow are

∂tu + (u · ∇)u = −∇p + ∇2u, ∇ · u = 0, (2.1)

where u = (u,v,w) is the velocity in cylindrical coordinates
(r,θ,z) and the corresponding vorticity is ∇ × u = (ξ,η,ζ ).
The system is governed by four independent non-dimensional
parameters:

Inner Reynolds number: Rei = �iRid/ν,

Outer Reynolds number: Reo = �oRod/ν,

Radius ratio: Ri/Ro,

Aspect ratio: 
 = L/d.

(2.2)

In the present study we fix the radius ratio to 0.5 (wide gap)
and the aspect ratio to 
 = 10 while varying only the inner
and outer Reynolds numbers.

Further, we consider non-rotating fixed endplates resulting
in no-slip-fixed boundary conditions (FBC) with zero velocity
at z = ±
/2, which breaks the O(2) axial symmetry of the
(infinite) periodic Taylor-Couette system. The boundary con-
ditions are u(ri,θ,z,t) = (0,Rei,0), u(ro,θ,z,t) = (0,Reo,0),
and u(r,θ, ± 
/2,t) = (0,0,0), where the non-dimensional
inner and outer radii are ri = Ri/d and ro = Ro/d, with
ro − ri = 1.

The governing equations and the boundary conditions are
invariant under arbitrary rotations Rα about the axis, reflections
Kz about the annulus mid-plane z = 0, and with respect to
time translations φt0 , generating the symmetry group SO(2) ×
Z2 × R, where the first two factors consist of the purely spatial
symmetries, while the third factor corresponds to the temporal
symmetries generating the one-dimensional translation group

R. The actions of the three symmetries on the velocity field are

Rα(u,v,w)(r,θ,z,t) = (u,v,w)(r,θ + α,z,t), (2.3a)

Kz(u,v,w)(r,θ,z,t) = (u,v, − w)(r,θ, − z,t), (2.3b)

φt0 (u,v,w)(r,θ,z,t) = (u,v,w)(r,θ,z,t + t0). (2.3c)

A. Numerical method and classification

The Navier-Stokes equations (2.1) are solved using a
second-order time-splitting method with consistent boundary
conditions for the pressure [24,25]. Our code G1D3 [26] is
a combination of a finite differences method in the radial
and axial directions and a Fourier-Galerkin expansion in the
azimuthal direction with a decomposition

f (r,θ,z,t) =
∑
m

fm(r,z,t) eimθ (2.4)

of all fields f ∈ {u,v,w,p}.
In order to characterize the different flow structures we

consider two different quantities. First, as a global measure of
the flow, we use the total modal kinetic energy

Ekin =
∑

Em = 1

2

∑
m

∫ 2π

0

∫ 
/2

−
/2

∫ ro

ri

umu∗
mrdrdzdθ,

(2.5)

where um is the mth Fourier mode of the velocity field. For
the axisymmetric cases circular Couette flow (CCF) and TVF,
only E0 is nonzero.

Second, as a measure more closely related to the vortices
and corresponding azimuthal and axial wave numbers, we
use the azimuthal decomposition [Eq. (2.4)] of the radial
velocity field. We perform an axial Fourier analysis of the mode
amplitudes um(z,t) at mid-gap, r = r1 + d/2. We then identify
for m = 2 and m = 3 the largest contribution in the axial
Fourier spectrum of um(z,t) for the patterns with k = 3.148
and k = 3.769. The oscillation of the corresponding complex
Fourier amplitudes describe the frequencies ωm,k . It is this
quantity that describes the wavy instability, and a change in its
sign reflects the wave propagation reversal.

We identify the specific flow structures by the abbreviation
(m,k). These modes reflect the symmetry properties of the
vortex structures. Thus, e.g., the Fourier spectrum of the TVF
solution contains a dominant (0,k) mode and its complex
conjugate (0, − k). The spectrum of wavy vortex flow with
two waves corresponding to azimuthal wave number m = 2
(designated WVF2) is dominated by (2,k) and its complex
conjugate (−2, − k) as well as the underlying axisymmetric
components (0,k) and (0, − k). Similarly, for WVF3 the
dominant components are (0, ± k) and (3, ± k).

For visualization purposes, we found the azimuthal vorticity
component,

η = (∇ × u) · eθ = ∂zu − ∂rw, (2.6)

to be an adequate and convenient means to identify and
recognize the geometry of complex vortex structures via
iso-vorticity surfaces [12,27].

In addition to ωm,k , which reflects the instability, we also
consider the global mean angular velocity � = 〈v/r〉r,θ,z
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(nondimensionalized by �i), which can be different from the
azimuthal wave speed ωm,k of the wavy instability. However, it
is the sign of ωm,k that determines the direction of wave prop-
agation (positive for prograde and negative for retrograde). It
is also helpful to visualize isosurfaces azimuthal velocity after
subtracting the local azimuthal velocity for circular Couette
flow, v − vCCF, to show the deviation from stable flow.

III. RESULTS

A. Wavy flow states

Before discussing the wave propagation reversal, we briefly
describe the different wavy patterns that can occur for the range
of parameters that we consider: wavy flows WVF2 and WVF3,
which have either twofold or threefold azimuthal periodicity,
as illustrated in Fig. 1. As we show later, either state can exist
with prograde or retrograde characteristics. The azimuthal
symmetry of the states is most obvious in the contours of the

FIG. 1. Prograde flow states WVF2 and WVF3. Flow states at
Reo = −145 for WVF2 (top at Rei = 223) and WVF3 (bottom
at Rei = 200). Both wavy flows are prograde in the sense of
following the inner cylinder rotation (arrows below the images).
Shown are (a) radial velocity u(θ,z) on an unrolled cylindrical
surface in the annulus at mid-gap [red (yellow) color indicates in
(out) flow], (b) isosurfaces of azimuthal vorticity η [red (yellow)
color indicates positive (negative) vorticity], (c) isosurface of zero
azimuthal velocity after subtracting the local azimuthal velocity
for circular Couette flow, v − vCCF, and (d) the azimuthal velocity
component v in (r,θ ) plane at mid-height (viewed from the bottom)
[red (yellow) color indicates positive (negative) velocity]. (See also
corresponding dominant mode amplitudes in WVF2Ri223Ro-145.avi
in Supplemental Materials [28].)

azimuthal velocity component v in (r,θ ) plane at mid-height
[Fig. 1(d)] and also visible in the contours of the radial
velocity u(θ,z) on an unrolled cylindrical surface at mid-gap
[Fig. 1(a)]. The isosurfaces of azimuthal vorticity η give an
impression of the flow structures of both wavy states. The
spatio-temporal character of WVF2 can be seen, for instance,
in WVF2Ri223Ro-145.avi in the Supplemental Materials [28].
For the parameters in Fig. 1 (WVF2 at Rei = 223 and WVF3

at Rei = 200, both with Reo = −145) both flow states have
prograde wave propagation in that the waves follow the inner
cylinder rotation (indicated by the arrows below the images).
However, the two wavy states differ in that they have different
axial wave numbers k (wavelengths λ) due to different numbers
of vortex pairs in the annulus. WVF2 has five vortex pairs
resulting in an axial wave number k = 3.148 (λ = 1.996),
while WVF3 has one additional vortex pair (in total six), which
results in an axial wave number k = 3.769 (λ = 1.667).

B. Flow pattern reversal

Given this context, we can now examine the wave propa-
gation reversal in more detail. For this we focus on the WVF2

case, setting the outer cylinder rotation at Reo = −145 and
varying only Rei starting with the condition shown in the top
panels of Fig. 1. The mechanism for the wave propagation
reversal of WVF3 is similar.

1. Flow dynamics and spatio-temporal behavior

Figure 2 illustrates four snapshots of WVF2 for fixed outer
Reynolds number (Reo = −145) and increasing Rei from
left to right. After its appearance via a supercritical, SO(2)
symmetry-breaking, Hopf bifurcation from TVF5 (that is,
TVF with five vortex pairs) at Rei ≈ 197.4 the WVF2 flow
pattern first follows the rotation of the inner cylinder—it
is prograde [Fig. 2(a)]. As Rei increases, the rotation of
the wave pattern stops at Rei ≈ 224.8. Above this value
for Rei, the wave pattern rotates in the opposite direction
so it is retrograde [Fig. 2(b), 2(c)]. Further increasing Rei

for WVF2 eventually results in prograde wave propagation
for Rei = 350 [Fig. 2(d)] with the change occurring at
Rei ≈ 348.9. Although the isosurface snapshots indicate that
the flow becomes more complex with increasing Rei, the
twofold symmetry is maintained, as is obvious in the cross-
section plots of the azimuthal velocity components (bottom in
Fig. 2). Moreover the increase of waviness, i.e., the amplitude
of the axial variation of the vortices, is visible in the snapshots
of the flow. The waviness appears strongest for retrograde case
at Rei = 330. For the higher Rei = 350, for which the wave
propagation is prograde again, the waviness weakens. The
spatio-temporal flow behaviors at different Rei can be viewed
as movies in the Supplemental Materials [28] (movieA1.avi,
movieA2.avi, movieA3.avi, movieA4.avi, movieA5.avi, and
movieA6.avi). Note that with increasing Rei, the vortex
structures start close to the inner cylinder but move toward
the outer cylinder with increasing Rei.

The WVF3 case behaves in the same way as WVF2 for
the change to retrograde wave propagation (but for different
values of Rei). Figure 3 illustrates the flow state WVF3

in the retrograde wave propagation regime at Rei = 218
with Fig. 3(d) clearly highlighting the threefold azimuthal
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FIG. 2. Flow pattern reversal for WVF2 with Reo = −145 for
prograde (ω > 0) and retrograde situations (ω < 0) at different Rei

as indicated. Top row: isosurfaces of azimuthal vorticity η [red
(yellow) color indicates positive (negative) vorticity]. Middle row:
isosurfaces of zero azimuthal velocity after subtracting the local
azimuthal velocity for circular Couette flow, v − vCCF . Bottom row:
Contours of azimuthal velocity component v in the (r,θ ) plane at
mid-height (viewed from the bottom) [red (yellow) color indicates
positive (negative) velocity].

symmetry of WVF3. Since the distance from the flow pattern
inversion point is relatively small, the flow pattern looks very
similar to the prograde one shown in Fig. 1 (bottom). As is the
case for WVF2, the strength of waviness, i.e., the azimuthal
modulation amplitude, is larger in retrograde situation. Unlike
the WVF2 case, the WVF3 case does not return to prograde
wave propagation as Reo increases, as it becomes unstable at
Rei ≈ 218.6, after the first change in its propagation direction.

2. Bifurcation scenario

The bifurcation scenarios with Reo = −145 and increasing
Rei for both WVF2 and WVF3 are presented in Fig. 4.
Figure 4(a) shows the dominant radial flow field amplitudes
|um,k| at mid-gap and mid-height. The lowest Rei in the figure
corresponds to the stable base state with only Ekman vortices

FIG. 3. Retrograde flow state for WVF3 at Rei = 218 and Reo =
−145. The wave propagation is retrograde (ω < 0) in that it is
opposite that of the inner cylinder rotation (arrows below the images).
Shown are (a) radial velocity u(θ,z) on an unrolled cylindrical surface
in the annulus at mid-gap [red (yellow) color indicates in (out) flow],
(b) isosurfaces of vorticity η [red (yellow) color indicates positive
(negative) vorticity], (c) isosurface of zero azimuthal velocity after
subtracting the local azimuthal velocity for circular Couette flow,
v − vCCF and (d) the azimuthal velocity component v in (r,θ ) plane
at midheight (view from the bottom) [red (yellow) color indicates
positive (negative) velocity].

(Ek) at the endwalls [26]. As Rei increases, first TVF appears
at Rei ≈ 168.3. Stable TVF can have either five or six vortex
cells, denoted as TVF5 (k = 3.148) and TVF6 (k = 3.769),
respectively. With increasing Rei both TVF conditions lose
stability against wavy vortex flow solutions, which appear
as a supercritical Hopf bifurcation. Specifically, TVF6 loses
stability to WVF3 at Rei ≈ 187.6, and TVF5 loses stability to
WVF2 at Rei ≈ 197.4 [marked by x’s in Fig. 4(a)]. Note that
beyond these points, TVF only exists as unstable solutions
(dashed lines) for higher Rei, based on calculations in the
axisymmetric m = 0 subspace. As Rei increases, the |u0,k|
mode of the wave solution continues to increase, while the
|u2,3.148| begins to grow for WVF2 and the |u3,3.769| begins
to grow for WVF3. WVF2 exists over the entire parameter
regime that was investigated (up to Rei = 400), while WVF3

only exists in a relatively narrow range just above transition
from TVF6. At Rei ≈ 218.6, WVF3 becomes unstable and
moves toward the WVF2 solution [indicated by the vertical
arrows in Fig. 4(a) for both the |u0,3.769| mode and the |u2,3.769|
mode]. The only remaining stable solution above Rei ≈ 218.6
is WVF2 which includes the |u0,3.148| and the |u2,3.148| modes.
Starting with WVF2 at large values of Rei and decreasing Rei,
the flow ends up in TVF5 and never returns to the WVF3

state. [Arrows along the curves in Fig. 4(a), 4(b) highlight
the existence of states with increasing and decreasing Rei,
respectively]. This results in a region of bistability for WVF2

and WVF3. The gray shaded regions highlight the range of Rei

for which the retrograde behavior occurs for WVF2 (224.8 �
Rei

rev � 348.9) and WVF3 (210.5 � Rei
rev � 218.6). Clearly,

the retrograde behavior does not coincide with the transitions
from one vortical state to another and therefore does not
involve a change in the azimuthal wave number.

The bifurcation scenarios for the modal kinetic energy Ekin

[Eq. (2.5)] with changing Rei for both WVF2 and WVF3 are
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FIG. 4. Bifurcation behavior with Rei. Variation with Rei of
(a) moduli |um,k| of the dominant axial Fourier amplitudes of the
azimuthal modes um(z,t) [Eq. (2.4)] of the radial flow at mid-gap
and the corresponding frequencies, (b) the modal kinetic energy Ekin

[Eq. (2.5)], and (c) ωm,k for the flow states, TVF5, TVF6, WVF2, and
WVF3 (symbols primarily distinguish different structures, but do not
represent the resolution of the calculations, which varies depending on
the proximity with respect to the wave propagation reversal). Solid
(dashed) lines with filled (open) symbols refer to stable (unstable)
states. The x’s mark the onset of WVF2 and WVF3 from TVF5 and
TVF6, respectively. Thick lines indicate retrograde wave propagation
(ω < 0) for WVF3 and WVF2, respectively. Outer Reynolds number
is fixed: Reo = −145. For comparison, the dashed line with open
squares in (c) shows the frequency for simulations with periodic
boundary conditions for k = π , which corresponds to 
 = 2.

shown in Fig. 4(b). Here it is evident that the TVF5 flow is
more energetic than the TVF6 flow, leading to WVF2 being
more energetic than WVF3 until WVF3 loses stability to WVF2

flow at Rei ≈ 218.6 (vertical arrow).
To confirm that the wave propagation reversal is intrinsic to

the system and not induced by the fixed boundary conditions
(FBC, corresponding to non-rotating end walls, which neces-
sarily force Ekman pumping), we also carried out simulations
with periodic boundary conditions (PBC) instead of fixed
(non-rotating) end walls, which is equivalent to infinitely long
cylinders. To do so, we set the axial wave number to k = π

which is fairly close to the value k = 3.148 that is naturally
selected by the system for WVF2 at 
 = 10. Note, that we
do not force an azimuthal wave number. This dominant
m = 2 azimuthal periodicity is natural selected by the system.
Qualitatively, the dynamics is the same for PBC and FBC,
as demonstrated for Reo = −145 in Fig. 4(c) illustrating
the corresponding frequencies ωm,k of the dominant axial
Fourier amplitudes um(z,t). The flow is retrograde (negative
frequency) for a similar range of Rei for both PBC (dashed
curve with open squares) and FBC (solid curve with filled
squares), but prograde (positive frequency) both below and
above this range for m = 2 (gray shaded region). In both
cases, upon increasing Rei from a low value, the frequency
changes sign indicating that the wave propagation is now in
opposite direction (retrograde), and at higher Rei a second
reversal in the pattern propagation direction occurs (back to
prograde). However, the reversal points are shifted to slightly
lower values of Rei for PBC: Rei

rev,1(PBC) ≈ 218.2 and
Rei

rev,2(PBC) ≈ 346.2. This is compared to the values for fixed
end walls: Rei

rev,1(FBC) ≈ 224.8 and Rei
rev,2(FBC) ≈ 348.9.

The slightly different values Rei
rev,1 for PBC compared to

FBC may result from the slightly different wave numbers but
are well within the accuracy of previous studies comparing
experiments and numerics [26]. It is worth mentioning that
we also performed simulations with other aspect ratios,

 = 8,12,14, and observed the same qualitative behavior of
flow reversal.

Similar to flow state WVF2, WVF3 also changes its wave
propagation direction [zero-crossing in the corresponding
frequency ω3,3.769 in Fig. 4(c), gray shaded region]. However,
above Rei ≈ 218.6 the wavy flow WVF3 becomes unstable and
evolves gradually to the other solution branch, the stable wavy
flow state WVF2. As the latter is still prograde for this Rei, this
change is also accompanied with a wave propagation reversal.
But here it results from switching between different solution
branches (cf. [18]) and is likely unrelated to the reversal via
continuous variation of a single parameters, Rei or Reo. We
assume that searching across the parameter space one might
also find similar reversal dynamics for wavy vortices with even
higher azimuthal wave numbers.

3. Wavy instability and angular velocity

To this point, we have fixed the outer Reynolds number at
Reo = −145. Figure 5 shows the dependence of the frequency
ω describing the wavy instability and the global mean angular
velocity � on Rei for three different values of Reo. All curves
show qualitatively similar behavior: with increasing Rei, ω

first decreases, reaching a minimal value ωmin, and then it
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FIG. 5. Variation with Rei of wavy instability ω and angular
velocity � for WVF2. Variation with Rei of (a) wavy instability
frequency ω, characterizing the rotation of the wave pattern, for WVF2

at Reo as indicated. Also shown is the corresponding (b) global mean
angular velocity � representing the overall azimuthal flow. Vertical
dotted lines indicate the minima ωmin and �min, respectively.

increases again. Depending on Reo the curve can extend below
ω = 0, which indicates retrograde flow. It is interesting that the
minimum value ωmin occurs at values of the Reynolds number
ratio −Rei/Reo near two for the parameter regime investigated
here, as will be discussed shortly. The curves for the angular
velocity � in Fig. 5(b) show qualitatively the same behavior.
In fact, they differ only slightly in the values for zero-crossing
Retrograde propagation based on ω appears for Reo = −145
at Rei

rev,1 = 224.8, Rei
rev,2 = 348.9 and for Reo = −125 at

Rei
rev,1 = 228.8, Rei

rev,2 = 285.6. Note that for Reo = −120
the flow is always prograde with no zero-crossing. The
corresponding angular velocities � for retrograde propagation
are slightly different, appearing for Reo = −145 at Rei

rev(� =
0) = 220.4, Rei

rev(� = 0) = 347.8 and for Reo = −125 at
Rei

rev(� = 0) = 230.1, Rei
rev(� = 0) = 284.7.

This highlights that the propagation of the wavy instability
is closely linked to the overall azimuthal flow.

4. Parameter space

Figure 6 presents the parameter space spanned by the inner
and outer Reynolds numbers Rei and Reo for which the wavy
flow shows retrograde wave propagation behavior for WVF2.
For Reo � −123, the wave propagation is prograde (ω > 0),
regardless of Rei. This corresponds to situations like that
shown in Fig. 5 for Reo = −120. For Reo � −124, the wave
propagation is retrograde (ω < 0) for a broadening band of
Rei as Reo decreases, corresponding to the situation shown
in Fig. 5 for Reo = −125 and Reo = −145. The value of Rei

for which ωmin occurs increases monotonically with decreasing
Reo. Note the narrow band of values for which ω < 0 for WVF3

below the large shaded area for WVF2. The striped region at the
right end of the line symbolizes that WVF3 becomes unstable
such that we could not follow this solution further.
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FIG. 6. Parameter space diagram (Rei,Reo). Parameter space
diagram illustrating stability and rotation direction of wavy flows
pattern. Gray colored regions indicate wavy flow patterns of WVF3 (I )
and WVF2 (II ) with retrograde (ω < 0) behavior. The curve with
squares ( ) highlights where ω = 0 in the laboratory frame. The
analogous curve with diamonds ( ) illustrates the where ω = 0 for
WVF3. Below this curve WVF3 is prograde and above it retrograde.
The striped region at the right end of the curve indicates that WVF3

becomes unstable, and we could not follow this solution further. The
dotted curve indicates the loss of stability for WVF3 with increasing
Rei. The lowest curve with circles ( ) indicates the onset of wavy
flows, independent of their azimuthal wave number; below this curve
only stable TVF exists. The dashed line with open squares ( ) depicts
the minima ωmin in case of WVF2. The vertical arrow (a) indicates
the parameter range of the bifurcation diagrams of Fig. 4.

It is worth noting that the region of wave propagation
reversal surrounding the line Rei = −2Reo, which corresponds
to equal and opposite cylinder surface speeds, �iRi = �oRo,
for a radius ratio Ri/Ro = 0.5. Well above this line, one
would expect the inner cylinder to dominate the overall flow
such that � > 0. Just as the wave propagation tends to be in
the same direction as the overall flow for standard WVF with
a rotating inner cylinder and fixed outer cylinder [8–16,19],
wave propagation is prograde (with the inner cylinder) when
� > 0 for the counter-rotating cylinders here. Around the line
Rei = 2Reo and below it, it is reasonable to expect the outer
cylinder to dominate the flow (hence, � � 0, as shown in
Fig. 5(a) and 5(b)). This leads to retrograde wave propagation,
since, again, the wave propagation tends to be in the same
direction as the overall flow.

The question is why does the wave propagation (and �)
return to prograde for well below the line Rei = −2Reo?
The answer may be in the nature of the instability, which
is associated with the inviscidly unstable region near the
inner cylinder. Since the unstable region for counter-rotating
cylinders is nearer the inner cylinder [29], it is reasonable that
its propagation coincides with the flow near the inner cylinder
and is −2Reo in which the retrograde propagation of the
instability can occur. This point is supported by the location
of the vortex structures for different Rei. While they are close
to the inner cylinder at lower Rei (Fig. 1, bottom row) they
move outward with increasing Rei toward the outer region
(Fig. 2, bottom row). Furthermore, above the transition from
TVF5 to WVF2 at Rei ≈ 197.4, the angular velocity �, grows
more positive with increasing Rei, reaching a maximum at
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FIG. 7. Variation in angular momentum for WVF2 and WVF3.
Angular momentum L(r) = r〈v(r)〉θ,z/Rei versus the radius r for
wavy solutions with increasing Rei as indicated for (a) TVF5 and
WVF2 and (b) TVF6 and WVF3. Outer Reynolds number is fixed at
Reo = −145. The insets show the variation with Rei of minimum of
slopes δ = ∂L/∂r .

Rei ≈ 205 and decreasing again [see inset in top panel in
Fig. 5(b)] to eventually become negative at the Rei where the
retrograde propagation occurs.

5. Angular momentum transport

To attempt to characterize the wave propagation reversal
phenomenon, we examine the behavior of the angular momen-
tum and torque for a variety of flow conditions that are both
prograde (ω > 0) and retrograde (ω < 0). Figure 7 shows the
mean (axially and azimuthally averaged) angular momentum
L(r) = r〈v(r)〉θ,z/Rei, as a function of the radius r for different
Rei. Figure 7(a) shows profiles for TVF5 and WVF2; Fig. 7(b)
shows profiles for TVF6 and WVF3. All curves have a similar
shape. In general, the profiles indicate typical behavior in that
positive angular momentum decreases outward from the inner
cylinder and negative angular momentum decreases inward
from the outer cylinder with a region of nearly zero angular
momentum in between. With increasing Rei the profiles flatten
a bit in the middle of the annular gap to form a horizontal
plateau, which tends to be slightly closer the inner cylinder than
the outer cylinder. In general the angular momentum curves
follow a monotonically varying trend. The curves spread
near the outer cylinder, but this is simply a consequence of
non-dimensionalizing with Rei. Further, we can compare the
curves for prograde and retrograde propagation of the waves.

For TVF5 and WVF2 [Fig. 7(a)], the angular momentum
for Rei = 223, which has prograde propagation of the vortex
waves, nearly overlays the curve for Rei = 226, which has
retrograde propagation, indicating no substantial differences
in the angular momentum for prograde and retrograde wave
propagation. Strictly speaking, the angular momentum curves
for Rei = 223 and Rei = 226 do not follow the monotonically
varying trend evident more generally. The insets in Fig. 7
show the variation with Rei for minimum of slopes δ = ∂L/∂r

for TVF5, TVF6, WVF2, and WVF3, respectively. There is a
general decrease of the minimum slopes with Rei, with of non-
monotonic behavior at the reversal points. The latter is most
evident for the change in WFV2 from prograde to retrograde,
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FIG. 8. Variation of dimensionless torque for WVF2 and WVF3.
Variation of the dimensionless torque G = νJ ω (see text for details)
versus the radius r for wavy solutions with increasing Rei as indicated.
(a) TVF5 and WVF2 and (b) TVF6 and WVF3. Outer Reynolds
number is fixed at Reo = −145. (c) Dependence of the total torque
Gtotal on Rei for evolution of TVF5 and WVF2.
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but a slight change in the minimum value of δ is also apparent
for its reversal back to prograde and the reversal in WVF3.

The curves for angular momentum close to the wave
propagation reversal from retrograde wave propagation
Rei = 330 back to prograde wave propagation at Rei = 350
are also similar. The same similarity in the angular
momentum at the wave propagation reversal from prograde
to retrograde wave propagation is also evident for TVF6 and
WVF3 [Fig. 7(b)] for Rei = 200 (prograde) and Rei = 218
(retrograde). Note that the curves for TVF5 and TVF6
are almost identical. Thus, it appears that there is no clear
correlation between the change from prograde to retrograde
wave propagation, or vice versa, and the average angular
momentum of the flow.

Figure 8 shows the corresponding variation of the dimen-
sionless torque G = νJω within the annulus. In calculating
the torque we used the fact that for a flow between infinite
cylinders the transverse current of the azimuthal motion,
Jω = r3[〈uω〉A,t − ν〈∂rω〉A,t ] (with 〈· · · 〉A ≡ ∫

rdθdz
2πrl

), is a
conserved quantity [30]. With increasing Rei the “parabola-
like” curvature of the torque profiles in the mid-gap region
becomes more pronounced. As with the angular momentum,
the profiles of G(r) show a generally monotonically varying
trend as Rei increases with very little difference between the
curves just above and just below the prograde-to-retrograde
and retrograde-to-prograde changes. Again one might argue
that the curves for Rei = 223 and Rei = 226 do not strictly
follow this monotonically varying trend, though the differ-
ences between the two curves is small. The result of this is
also evident in the total torque Gtotal, which increases linearly
with Rei [Fig. 8(c)] except at the values for Rei corresponding
the reversal of the pattern. Around these values Gtotal has a
small plateau. Nevertheless, the changes are so slight that it is
hard to infer much about the physics from this.

IV. SUMMARY

We have identified conditions of supercritical wavy vor-
tex flow in a relatively wide gap between counter-rotating
cylinders in which the wave propagation reverses upon the
variation of a single system parameter while maintaining
the azimuthal wave number. This wave propagation reversal

occurs for both wavy flow states, WVF2 and WVF3, which
have twofold and threefold azimuthal symmetry, respectively,
upon changing either the inner or outer cylinder rotation speed.
The prograde wave propagation slows down with continuously
increasing Rei, becomes zero, and restarts motion in the
opposite direction to become retrograde. Upon increasing the
angular velocity of the inner cylinder further, the azimuthal
speed of the wavy instability of the retrograde waves becomes
more negative, but eventually reverses its trend, and finally
vanishes a second time returning to prograde wave propagation
again. This is different from previous studies in which
the propagation of the waviness changes direction [18] in
that wave propagation reversal here does not coincide with
changes in the dominant azimuthal wave number in the wavy
state.

The wave propagation reversal instead coincides with the
reversal of the global mean angular velocity. This suggests
that the propagation of the waviness is directly connected
to the overall azimuthal mean flow. As the unstable region
for counter-rotating cylinders is nearer the inner cylinder, it
is reasonable that its propagation initially coincides with the
flow the inner cylinder after transition from TVF to WVF and
is thereby prograde. However, in the region around the line
Rei = −2Reo in which �iRi = �oRo for a radius ratio
Ri/Ro = 0.5, retrograde propagation of the instability can oc-
cur. Here the vortices fill the annulus, and the wave propagation
is driven by the outer cylinder rotation. As Rei increases well
above this line, the inner cylinder dominates so the waves
revert to prograde propagation with the inner cylinder.

The flow pattern propagation reversal is intrinsic to the
system in that simulations with periodic boundary conditions
in place of a finite length annulus also result in the wave
propagation reversal. Hence, the wave propagation reversal
is not induced by end-wall effects, such as Ekman pumping.
Moreover, simulations for other aspect ratios (
 = 8,12,14)
further illustrate that the wave propagation reversal is inherent
general to the system, though the values for the appearance
of wave propagation reversal depend on the aspect ratio. It is
possible that by searching over a wider parameter range one
might find similar reversal dynamics for wavy vortices with
higher azimuthal wave numbers. This might provide further
insight into the mechanism for wave propagation reversal.
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