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Time-dependent breakdown of fiber networks: Uncertainty of lifetime
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Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the
lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials.
For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed
toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal
strength, which shows a variation of only 4%–10% and a nearly bell-shaped distribution. The fundamental cause
of this large and unique variability of lifetime is not well understood because of the complex interplay between
stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the
material. We have constructed fiber network models, both regular and random, as a paradigm for general material
structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit
relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found
that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network.
Among the factors investigated, geometrical disorders of the network were found to be essential to explain
the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the
distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called
“infant mortality,” which is often predicted by the Weibull approximation of the lifetime distribution, may not
exist for a large system.
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I. INTRODUCTION

Time-dependent failure typically appears in creep and
fatigue, in which the material is subjected to relatively low
levels of loading over time. It is normally characterized by the
time to failure, i.e., the lifetime. However, a common measure
of “strength,” herein called the static strength, is determined
by monotonically increasing the load to the point of final
failure. The latter is intended to predict the former, but practical
experience shows that stronger materials do not necessarily ex-
hibit longer lifetimes. The most important difference between
lifetime and static strength is lifetime’s enormous variability:
static strength typically varies with a coefficient of variation
(COV) of only 4%–10%, whereas lifetime can easily vary
with a COV of 100% or even 200% under nominally constant
mechanical and environmental conditions (e.g., [1–8]).

A natural question is why lifetime variations are so large as
compared with those of static strength, and/or what controls
lifetime variations. Part of the answer for this question has
been given by a seminal work by Coleman ([9–11]) and the
recent work by Christensen (e.g., [12,13]). Coleman derived an
expression for the cumulative distribution function of lifetime
for an arbitrary loading history based on the three postulates:
(1) weakest-link scaling (WLS), (2) an algebraic form of the
probabilistic failure criterion, and (3) damage evolution rules
(exponential or power-law forms). Christensen considered the
time-dependent extension of a single crack, and obtained the
lifetime distribution for creep by assuming that (1) the crack
growth rate is the power-law function of stress, (2) the crack
unsteadily grows at a critical stress intensity, and (3) the
strength measured in a far field follows Weibull distribution.
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They arrived at the following relationship between static
strength variability and creep lifetime variability:

βstrength = (ρ + i)βcreep, (1)

where β refers to Weibull exponent for either static strength
or creep lifetime, ρ is a stress-related exponent for damage
(or crack) growth, and i = 1 for Coleman’s model, and i = 0
for Christensen’s model. (For brittle and quasibrittle cases,
as ρ � 1, both approaches essentially give the same result.)
According to this relation, the seemingly small variability
(i.e., high Weibull exponent) of static strength is due to the
high stress sensitivity of damage growth (high ρ) for brittle
or quasibrittle materials. Although the approaches taken by
Coleman and Christensen are phenomenological, they have
provided a powerful tool for organizing hopelessly-scattered
creep lifetime data. In addition, many of the postulates
included in their formulations are also touching upon some
of the key topics of statistical physics: disorders and damage
growth, size scaling, the validity of Weibull distribution, and
the onset of avalanche failure.

The first basic question is why failure parameters exhibit
statistical distributions. In the case of quasistatic statistical
failure (QSF), where the literature abounds (an extensive
review is found in, e.g., [14]), it is defects and/or disorders
that cause statistical failure. Therefore, it is almost customary
in the literature to start with preexisting defects, such as burned
fuses and broken bonds, and threshold strength distributions.
Without these, static strength is, obviously, deterministic. On
the other hand, when we consider time-dependent statistical
failure (TSF) [1,15,16], we do not necessarily start from
the defects and threshold strength distributions, but from
an underlying stochastic process, i.e., the continual breaking
and reformation of “bonds” due to thermal fluctuations [11].
That is, there is always a nonzero probability of failure
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per unit time when stress is applied, no matter how small
it is. Therefore, without predefining defects and threshold
strength distributions, a failure parameter, such as lifetime,
shows statistical variations. Defects are actually a natural
consequence of damage growth, i.e., the interplay between this
underlying stochastic process and hierarchical and disordered
structures that affect stress distributions [15,17].

The size dependence of distribution functions, hereby called
“size scaling,” is one of the most fundamental and controversial
subjects of strength theories. (Extensive reviews of different
scaling laws are given in the literature, e.g., [18–20].) The most
frequently used scaling law, WLS, is defined by

1 − FN (x) = [1 − W (x)]N, (2)

where FN is the cumulative distribution function (CDF) of x

for the system size N , and W (x) is a function independent
of the system size, often called the characteristic distribution
function. The WLS hypothesis is most frequently used for
brittle and quasibrittle systems, because it presumes that a
dominant damage cluster (or crack) just before failure is
confined in a small volume (representative volume element) as
compared with the system size. However, it is difficult to test
this simple hypothesis experimentally (e.g., [21]), because of
the lack of appropriate equipment to allow testing varying-
size specimens. Therefore, researchers have taken either
numerical approaches or, if possible, analytical approaches,
using simple lattice and network models, such as random
fuse models (RFMs) and fiber-bundle models (FBMs). For
static strength, fiber-bundle models have been extensively used
to investigate size scaling both analytically and numerically
(e.g., [1,4,10,16,17,22–28]). In these FBM studies, the load
released by a failed fiber is shared only in the neighboring
fibers (local-load sharing or extended load sharing) to mimic
brittle and quasibrittle failure. [For those cases of more
ductile and soft materials, global-load sharing in FBMs is
applicable. Extensive reviews are available (e.g., [29,30]).] The
results from Monte Carlo simulations showed that “WLS-like”
scaling does appear when the system size grows, but the
emergence of WLS-like behavior is rather slow. The analytical
studies (e.g., [31]) also supported the observations from
numerical studies that WLS certainly appears asymptotically
as the system size grows. Generally speaking, Monte Carlo
simulations did suggest scaling trends, but it is still difficult to
confirm the exact form of scaling, even with the simple lattice
models and today’s computational capacity [28].

The Weibull distribution has been observed for both static
strength and lifetime for many years in the engineering liter-
ature (a good overview in [32]). The ubiquitous nature of the
Weibull distribution is often attributed to the fact that it is one
of the three limiting distributions of extreme-value statistics
(i.e., Weibull, Gumbell, and Fréchet distributions) [33]. The
most obvious case is a one-dimensional material, such as
fiber, which shows WLS and thus Weibull distribution for
samples of a sufficiently long length [9]. However, it has
been also known that non-Weibull distributions are quite
commonly seen in fiber-bundle systems. Particularly, numer-
ical simulations of the fiber-bundle failure (static strength),
with the local-load sharing rule, consistently showed slightly
heavier, upper and lower tails when strength distributions are
plotted in the Weibull form (e.g., [16,17,26]). Although, in

experiments, it is difficult to detect this non-Weibull behavior
in a statistically significant manner, the deviation is sometimes
noticeable (e.g., [21]). Duxbury and co-workers started, in
the late 1980s, analytical and numerical studies of the static
strength distributions, initially with random fuse model and
later a-chain-of-fiber bundles model, and have derived an
alternative distribution, a double-exponential form [31,34–36].
(We tentatively call it DLB-type distribution by following
the recent literature [37,38].) Although this distribution form
does not look at any of the three extreme-value distributions,
they have demonstrated [31] that it asymptotically approaches,
although extremely slowly, Gumbel distribution. DLB-type
distribution well represents the heavier upper and lower tails
of the distributions which are numerically observed. The recent
scaling studies, together with numerical confirmation with the
random fuse model, have provided further support to this new
distribution form [37,38]. An interesting question is, then,
whether this distribution form is extended to TSF. As argued by
Curtin and Duxbury and co-workers [35,39], if the tail of the
(preexisting) damage cluster size distribution is approximated
by an algebraic form, the resulted static strength distribution is
the Weibull distribution, whereas if it is an exponential form,
it leads to the double-exponential form. Since, in the case of
TSF, the damage clusters naturally evolve, instead of being
predetermined either in the algebraic or exponential forms,
it is interesting to see the consequence of such evolution of
damages to the lifetime distribution.

In our earlier study [40], we performed Monte Carlo simula-
tions of creep failure for a two-dimensional (2D) central-force,
triangular-lattice fiber network. Such system may be regarded
as a paradigm of a broader class of networks, e.g., amorphous
polymers, biological tissues, industrial materials (paper and
nonwoven), and even electrical power grids. We found that
Coleman’s postulates hold even in this 2D system, except
for size scaling, and the system behavior is characterized
by three parameters: the characteristic strength (short-term
strength), a brittleness parameter, and Weibull shape parameter
(related to the creep lifetime distribution). Based on this
formulation, we started investigating the effect of disorders
on lifetime variability. For the type of disorders, we chose
the characteristic strength of fiber (corresponding to threshold
strength for QSF) and elastic stiffness of fiber by drawing the
values from uniform distributions of varying width. For both
cases we observed that

βs � βf , (3)

where βs and βf are Weibull exponents for the system and the
fiber, respectively. The system’s Weibull exponent was always
higher than that of the fiber, even when the disorder of either
threshold strength or stiffness is very strong. This means that,
if the elementary stochastic process is memoryless (Markov
process, βf = 1), then βs � 1. This result raises an interesting
question, why experimental data, as mentioned earlier, almost
regularly show the values of Weibull exponent less than 1.

Based on our previous study, we here examine how these
three material parameters are related to the system size, fiber
characteristics, and network structures. For the system size,
we examine scaling laws, without edge effects, and derive
the characteristic distribution function for the lifetime. We
show that the lifetime distribution for a large system takes a
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double-exponential form, instead of the Weibull form. We
demonstrate that fiber characteristics, particularly fiber
brittleness, have a direct and sometimes dominating influence
on a network’s failure. Lastly, we examine both regular and
random network structures and show that the geometrical
disorder of a network is a critical factor contributing to the
large lifetime uncertainty.

II. CHARACTERIZATION OF TIME-DEPENDENT
STATISTICAL FAILURE

Lifetime distribution depends, not only on load applied at
the time of failure, but more generally on loading histories.
This situation is different from the case of QSF. In this section
we find a possible form of the relationship between the loading
history and the lifetime distribution for a fiber network. This
is for defining characteristic parameters of TSF that can be
extracted from numerical experiments. A fiber network here
is defined as a system of connected fibers at nodes, but the
network geometry is not necessarily specified. We assume that
the time-dependent failure of a fiber is characterized by the fol-
lowing CDF of lifetime, as given by Coleman’s TSF model [9]:

Fi(t) = 1 − exp

{
−A

[∫ t

s=0
fi(s)ρds

]β
}

, (4)

where Fi(t) is the probability that the lifetime of the ith fiber
is less than t , fi(s) is a loading history applied to the ith fiber,
and A, ρ, and β are material constants. When considering the
CDF of a fiber network, this equation restricts the possible
forms of the CDF. For example, Eq. (4) can be rewritten by
changing the variable in the time integration:

Fi(t) = 1 − exp

{
−Atβ

[∫ 1

t̂=0
fi(t̂)

ρdt̂

]β
}

, (5)

where tβ is a global variable, i.e., it is not dependent on the
specific fiber “i” or on a specific network structure, but appears
in the final CDF of the fiber network as is. Therefore, if the
final CDF has an algebraic dependence on time in the form
of tα , then its exponent α must be proportional to β. Another
restriction concerns the dependence on ρ. Suppose the
network receives a time-varying loading history S(t); then, the
corresponding load applied to the fiber “i” may be expressed
as fi(t) = S(t)Ki(t), with Ki(t) as the stress concentration
factor. Inserting this expression into Eq. (4), we obtain

Fi(t) = 1 − exp

{
−A

[∫ t

s=0
[S(s)Ki(s)]ρds

]β
}

= 1 − exp

{
−A

[∫ τ

z=0
[Ki(z)]ρdz

]β
}

, (6)

where dz = S(s)ρds, τ ≡ ∫ t

s=0 S(s)ρds, and τ is assumed to
be a single-valued, monotonically increasing function, with
S(·) as a positive continuous function. Equation (6) shows
that the dependence on the external load is included in the
transformed time variable τ ; this time variable is again a
global variable, which is elevated to the network level across
different structure scales (if any). This result implies that
the effect of a load applied to the network should appear in

the form of Sρ in the network CDF. Note, however, that the
relation fi(t) = S(t)Ki(t) requires that the system should
be elastic (unique) and undergo small deformation (i.e.,
geometrically linear). Based on these criteria, we seek a
possible form of the CDF for a fiber network. First, we recast
the CDF of a single fiber in a nondimensional form:

Fi(t̃) = 1 − exp

⎧⎨
⎩−

[∫ t̃

s=0

(
fi(s)

Tc

)ρf

ds

]βf

⎫⎬
⎭, (7)

where Tc is the characteristic strength of the fiber [Tc =
(t0/A)1/ρf ] and t̃ represents nondimensional time t/t0, with t0
being an appropriate time constant. (We subsequently drop the
tilde with the understanding that time is nondimensionalized.)
We also add a subscript “f ” to denote the material constants
for the fiber. Then, one of the possible forms of the fiber
network CDF, Fs(t), that satisfies the previous two conditions,
is actually the same form as that for a single fiber:

Fs(t) = 1 − exp

{
−

[∫ t

s=0

(
S(s)

Sc

)ρs

ds

]βs

}
, (8)

where Sc, ρs , and βs are the corresponding parameters for the
fiber network. The parameter Sc is the characteristic strength
of the network, the creep load at which the material fails
within a unit time with a probability of 1 − 1/e (= 0.6321),
i.e., a measure of short-term strength. The parameter βs is
a Weibull shape parameter of creep lifetime distribution,
i.e., long-term reliability. From its definition in the damage
evolution law (damage evolution rate ∝f

ρ

i ) [9], ρs is regarded
as a measure of brittleness of the network. An advantage of
this form is that the parameters βs and ρs can be measured in
creep tests independent of the above equation, and such data
are found in the experimental literature. In other words, by
determining these parameters by modeling, we can directly
connect the numerical work to experimental data available in
the literature. The form of Eq. (8) was originally suggested by
Curtin and Scher [15], and our earlier result of load scaling of
the creep lifetime distribution supports their claim [40]. An
important difference between the single-fiber CDF and the
network CDF is that these material parameters are generally a
function of the system size, whereas for the single-fiber CDF,
ρf and βf are independent of the size of the fiber.

From the previous two constraints, we derive the following
relationships between the material constants for the fiber and
network:

ρs = ρf and βs = aβf , (9)

where a is a material constant related to the network.

III. SPRING NETWORK FOR TIME-DEPENDENT,
STATISTICAL FAILURE

A. Model geometry and boundary conditions

The spring network we use is a central-force, triangular-
lattice network (Fig. 1). This model has a long history in the
literature in the context of statistical failure (e.g., [15,41,42]).
The advantage of this model is that, even though the geometry
is highly simplified, the model retains the essential network
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FIG. 1. Schematic of the default central-force, triangular lattice
used in the simulations. The load is applied in the vertical direction.

mechanics (long-range correlation) and rich statistical me-
chanics, equivalent to the full-scale fiber network model we
investigated earlier [43]. Unlike FBM, this model does not
require defining special load-sharing rules, such as global load
sharing and local load sharing. Load sharing is determined
by force equilibrium. Another important point to note is that
the coordination number of this system is 6, larger than 4,
i.e., the isostaticity point in 2D, at which the degree of freedom
and the number of constraints are equal [44–47]. Therefore,
the initial structure of this network is rigid, unlike some of
the percolated network models (e.g., [48]). With this model,
disorders can be introduced into the properties of the element
(fiber), such as stiffness and characteristic strength of fiber,
and also into the network geometry, as will be described
later. In this study we did not introduce so-called “defects”
(missing elements or burned fuses in RFMs) into the network.
This is because this type of disorder simultaneously changes
several important aspects of the network properties, such as
overall rigidity, the threshold strength distribution (i.e., binary
distribution), and local network topology, and thus it is difficult
to interpret results afterward.

Constant tensile force is applied at the top boundary
to simulate creep. The traction-free boundary condition is
employed at the sides. In our earlier study, we found significant
edge effects of the traction-free boundaries on size scaling [40].
However, periodic boundary conditions are not used in this
study to avoid introducing artificial length scales for the failure
phenomena. Instead, the two upper rows and the two side edges
are prevented from failing to avoid instabilities induced by
large rotation of the failed elements and to eliminate typical
edge effects. Each element has the same elastic modulus and
the same length and diameter. In this study we did not introduce
viscoelastic constitutive laws, such as Kelvin or Maxwell
models, for the fiber (e.g., [49]), but focus on the creep induced
by damage evolution. The size of the network is described by
m (the number of stacks) and n (the number of horizontal
fibers), as shown in Fig. 1.

B. Fiber failure model

The fiber is assumed to break according to the time-
dependent failure model, Eq. (7). In this paper we set βf = 1.

The significance of βf = 1 is that the probability of failure per
unit time is given by

h(t) = F ′
f (t)

1 − Ff (t)
=

(
T (t)

Tc

)ρf

. (10)

That is, it is determined only by the force at the current time and
not the force in the past (memoryless, or Markov process). We
choose the element failure rate as memoryless to investigate
the origins of the system’s memory (βs).

The simulations start with applying a dead load, and the
forces acting on individual fibers are calculated. Based on these
forces, random numbers are generated according to Eq. (7),
and the lifetime values for individual fibers are calculated.
The fiber with the shortest lifetime is chosen to break, and the
modulus for this fiber is set to zero (or a small number). Then,
the forces in each fiber are recalculated for the new state of
mechanical equilibrium. Lifetime values of survived fibers are
updated using the following formula:

tB2 − t1 =
(

T (0)

T (t1)

)ρ

(tB1 − t1), (11)

where t1 is the time of the first fiber failure in the system
and tB1 and tB2 are the first and the second estimates of
lifetime of a surviving fiber, respectively. T (0) and T (t1) are
the forces of the surviving fiber before and after the first fiber
failure, respectively. The minimum of the updated lifetimes
of all surviving fibers is then identified; this determines the
second fiber failure. This process continues until avalanche
failure occurs. This algorithm more faithfully reproduces fiber
breaking processes than the earlier method for triangular lattice
models (e.g., [15,41,42]) and is in the same spirit of those used
for fiber bundle models (e.g., [50]). The avalanche failure of
the network is defined by the following two conditions: the
ratio of the current rate to the initial rate of creep exceeds
a certain value r , and this high creep rate (r) is repeated
for a certain number of consecutive time steps n. Within the
parameter space tested, we have found that r = 100 and n = 5
can consistently detect the initiation of avalanche failure.

The stiffness equation of the system was solved using a
truss analysis code [51] together with a MATLAB sparse matrix
library to enable larger-scale simulations. The default set
values used for the fibers (truss elements) in the model are
controlled in order to limit the overall deformation within
a small strain (geometrically linear) range. Denoting the
characteristic strength as Tc, elastic modulus as Ef , cross-
sectional area as A, and the applied load at each node as S0,
we used Tc/S0 = 10/3 and Ef A/S0 = 500/3 as default values
to avoid large deformation. The default value of ρ was 10, and
was later varied from 5 to 200 to accommodate quasibrittle to
brittle failure modes.

In our previous paper [40], we investigated effects of
random distributions of characteristic strength of fiber (Tc)
and fiber stiffness (A) by drawing the numbers from uniform
distributions. Here we focus on structural disorders by com-
paring the regular structure and randomly distorted structures.
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FIG. 2. Lifetime distributions for different system sizes plotted in
Weibull format. N : The total number of fibers. The broken line is an
estimate of the characteristic distribution function. The total number
of repetitions is 1000 for each system size and each load.

C. Determination of material parameters

The material parameters are determined by solving Eq. (8)
for creep [S(s) = S0 = is constant for s � 0]:

Fs(t) = 1 − exp

{
−

(
S0

Sc

)ρsβs

tβs

}
, (12)

and by taking the Weibull transform of the above equation:

ln{− ln[1 − Fs(t)]} = ρsβs ln S0 − ρsβs ln Sc + βs ln t.

(13)

From this Weibull transform, we have determined the material
parameters on the right-hand side using a nonlinear regression,
instead of the maximum-likelihood method (MLM), because
MLM has been found to be not always stable for a wide range
of the parameter space.

IV. RESULTS

A. Lifetime distribution and size effect

We begin our investigation with a 2D fiber network with
an ordered structure (Fig. 1). Lifetime distributions of creep
failure are shown in Fig. 2 for different system sizes, where m

and n denote length and width, respectively (Fig. 1). The data
are plotted in a Weibull format: if the distributions follow

the Weibull distribution, the plots appear as straight lines,
and if WLS appears, then all data points collapse onto one
single curve (or line). First, individual plots are approximately
linear, i.e., they follow the approximate Weibull distribution,
confirming a number of experimental observations in the liter-
ature. Second, as the system size increases, each distribution
has a tendency to move toward a converged curve, i.e., WLS
seems to emerge with increasing system size, although this
asymptotic behavior is rather slow, as expected [28].

Using the data of lifetime distributions at different loads at a
given system size, we can determine three material parameters:
(1) the characteristic strength, Sc, (2) the brittleness parameter,
ρs , and (3) the Weibull shape parameter (long-term reliability
parameter), βs , as described earlier.

Figure 3 shows the size dependence of each parameter. In
this graph, typical error bars for each data point are of the
same size as the plotting symbols. (For example, the standard
error of βs was 5.8526 × 10−3 for an estimate of 2.5586;
thus the relative error was 0.2%. The relative errors for the
two other parameters, Sc/Tc and ρs , were even lower.) The
parameter Sc decreases very slowly with the size N , as shown
by its logarithmic dependence. The parameter ρs maintains
the value corresponding to the fiber (=10) and is independent
of the system size. In other words, the load dependence is
preserved when moving up in the structural hierarchy from
fiber to network. The parameter βs continues to increase with
increasing size N , but relatively slowly, with a logarithmic
dependence. Interestingly, this logarithmic dependence was
predicted by an analytical model of damage evolution by
Curtin and Scher [15]. The increase of the Weibull shape
parameter with the system size has previously been reported
experimentally (in terms of the static strength of concrete [19]
and paper materials [21]) and also numerically by fiber-bundle
models with local load sharing.

These relations are summarized as

ln

(
Sc

Tc

)
= as ln[ln(N )] + bs, (14)

ρs = 9.9942 ≈ ρf = 10, and (15)

βs = abln(N ) + bb, (16)

where as = −0.2116, bs = 0.5261, ab = 0.4536, and bb =
−0.1205. Clearly, these size-scaling relations are different
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FIG. 3. Effect of the size of the system (N: the total number of fibers) on (a) nondimensionalized characteristic strength, Sc/Tc,
(b) brittleness parameter, ρs , and (c) Weibull shape parameter, βs .
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FIG. 4. Schematic of a distorted structure of the triangular lattice.

from those predicted from the traditional Weibull statistics:
ln(Sc) is linearly related to ln(N ), instead of ln[ln(N )], and βs

is constant over scale.
Based on these equations, we estimate a distribution

function that would emerge if WLS arises, i.e., a characteristic
distribution function [16]. We first denote the characteristic
distribution function as W (t). As the emergence of WLS is
rather slow, the best estimate of W (t) may be obtained by using
the conjecture employed by Phoenix and Tierney [26] and
Newman and Phoenix [16]. That is, each Weibull-transformed
curve in Fig. 2 is assumed to form a tangent to [1 − W (t)].
This conjecture leads to the following relation:

[1 − FN (t)](1/N) = [1 − FN+1(t)][1/(N+1)]. (17)

Solving the above equation for N with Eqs. (14)–(16) and
inserting it into Eq. (7), we obtain an expression for W (t):

1 − W (t) ≈ exp{−exp[−pt−1/q + d]}, (18)

or, for a small value of exp{−pt−1/q + d},
W (t) ≈ exp{−pt−1/q + d}, (19)

where p = 3.72 × 103, q = 2.12, and d = −0.0099. The
estimated characteristic distribution is plotted in Fig. 2.
Equation (19) gives a double-exponential form of the lifetime
distribution:

FN (t) = 1 − exp{−rNexp[−pt−1/q]}, (20)

where r = exp{d} ∼= 1. Very interestingly, this form was the
DLB-type distribution for static strength obtained by Duxbury
and co-workers for random fuse model [34] and fiber-bundle
models [31,35,36]. In these studies, the distribution was
obtained by introducing various types of predefined disorders,
such as percolated disorders, threshold strength distributions,
and crack length distributions. In this study, however, we let
damage naturally grow over time according to the underlying
stochastic process [Eq. (7)] without assuming any initial
disorders. In our previous study [40] we observed the same
form of the distribution function even if there exists the natural
edge effect in the traction-free boundaries.

B. Effects of disordered structure

In this section, we tackle the question of how disordered
structures influence the material parameters Sc, ρs , and βs . We
have chosen 100 × 100 as the size of the network, at which
the lifetime distributions start approaching the characteristic
distribution function. The position of each node is distorted
by Gaussian random variables with zero mean and varying
standard deviation (SD) (Fig. 4). The coordination number
(=6) is kept constant so that the initial structure is rigid in
the sense that it is above the isostaticity point (=4). The
brittleness parameter of the fiber is varied on two levels:
ρf = 10 (quasibrittle) and ρf = 50 (brittle).

Figure 5 shows the results for the material parameters. First,
with increasing SD, the characteristic strength, Sc, decreased
almost linearly. Particularly, for ρf = 50, Sc decreased more
rapidly than for ρf = 10. Apparently, for a more brittle system,
(characteristic) strength is more sensitive to the structural
disorder. The parameter ρs remained constant and kept its
corresponding values for the fiber (10 and 50). In other words,
the brittleness parameter ρs is entirely controlled by that of
the fiber and not by the structural disorder. The Weibull shape
parameter, βs , decreased with the degree of distortion, SD.
More brittle fibers (ρf = 50) consistently showed lower βs

values. Interestingly, βs went below unity, which is the value
of βf (i.e., the shape parameter for the fiber). Note that
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FIG. 5. Effect of the distortion of the structure for two cases of the fiber property, ρf , ρf = 10 and ρf = 50, on (a) nondimensionalized
characteristic strength, Sc/Tc, (b) brittleness parameter, ρs , and (c) Weibull shape parameter, βs . SD: standard deviation.
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FIG. 6. Effect of the fiber property, ρf , on (a) nondimensionalized characteristic strength, Sc/Tc, (b) brittleness parameter, ρs ,
and (c) Weibull shape parameter, βs .

all fiber-bundle models proposed for time-dependent failure
(e.g., [16,26,52]) have so far showed βs � βf . Such result is
reasonable because the load-sharing structure of a FBM tends
to suppress the variability of lifetime at the network level,
as seen in the analytical solution for the equal-load-sharing
case (e.g., [16]). Even in our previous case of the two-
dimensional, triangular lattice network [40], we still observed
that βs � βf , for the large variations in the fiber stiffness and
fiber characteristic strength [40]. Experimental data, however,
commonly show less-than-unity values of βs [1–7]. Typically,
the values for fibers and filaments (e.g., glass fiber, carbon
fiber, and graphite fiber) tend to be much less than unity,
whereas those for fiber composites (load-sharing structures)
and fiber networks tend to be higher, being sometimes more
than unity. The result obtained here has, therefore, an important
implication regarding the long-term material uncertainty, as we
will discuss in later sections.

C. Effects of fiber brittleness parameter, ρ f

The brittleness parameter of the fiber ρf also affects the
system’s properties, i.e., Sc, ρs , and βs (Fig. 6). The parameter
is varied from a typical quasibrittle range (e.g., ρf = 10) to a
super-brittle range (e.g., ρf = 200, corresponding to graphite
fiber [5]). With increasing ρf , the characteristic strength, Sc,
sharply increases and reaches a plateau in the high brittleness
range. The parameter ρs is equal to the fiber ρf , as predicted
earlier. The parameter βs decreases sharply with increasing
ρf and plateaus in the high brittleness range. These results
are qualitatively consistent with experimental observations in
the literature: higher brittleness of the component fiber (ρf ) is
often associated with higher (short-term) strength (Sc) but poor
long-term reliability (βs) (or increased uncertainty, e.g., [5,6]).

D. Critical damage cluster

It is known that for a homogeneous elastic continuum,
there is a critical crack length at which unstable crack growth
initiates. Linear-elastic fracture mechanics theory asserts that
the critical crack ac satisfies σ∞

√
ac = C at a given far-field

stress σ∞. The constant C is related to the critical stress
intensity factor, which is, in turn, related to the critical strain
energy release rate. For discrete systems, such as a fiber
network, however, there is no stress singularity, and “cracks”
(i.e., damage clusters) are not necessarily linear or oriented

perpendicular to the loading direction. They are also not
necessarily contiguous or node sharing as a result of pinning
or depinning of the damage growth in the disordered structure.
However, in the case of ordered structures in the quasibrittle
and brittle range (ρ � 5), we have observed a cracklike
damage cluster that triggers the avalanche failure of the entire
system [Figs. 8(a) and 8(b)]. Therefore, we have determined
the critical crack length as the number of damaged elements
in the critical cluster and plotted the crack length against the
brittleness parameter of the fiber ρf (Fig. 7). With increasing
ρf , the average critical length sharply decreased, and only a
very small number of damages were required to trigger the
avalanche. We can also see that with decreasing brittleness the
error-bar size for critical crack length increases, suggesting
that so-called crack is becoming more difficult to define.

In the case of disordered structures, the situation is very
different. Figure 8 shows two snapshots of damage clusters
taken just before the avalanche failure of the network for
each SD value. The value of ρf is set to 10, corresponding
to a quasibrittle case. For the original ordered structure
(SD = 0), we can clearly see a cracklike damage cluster, which
eventually triggers the avalanche failure. However, as soon as
we introduce structural disorders (SD = 0.1 and 0.28), such
crack shape disappears, and the dominant damage clusters
become less defined entities. In other words, for the ordered
structure, the dominant clusters look like cracks, whereas for
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FIG. 7. Number of continuous damaged elements required for
avalanche failure (critical crack length) vs brittleness parameter, ρf .
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FIG. 8. Snapshots of damages just before avalanche failure.
(a) and (b) Standard deviation SD = 0; (c) and (d) SD = 0.1; and
(e) and (f) SD = 0.28.

the disordered structures, they are more like “voids,” as broken
fibers tend to share the same node. It should be noted that,
for these simulations, although we can see extensive fiber
breakages just before the avalanche, the system is still rigid in
terms of “p value” (the probability of finding intact fibers in
the network), p > 0.99, far from the rigidity transition point
(pc 
 0.6602) [48].

V. DISCUSSION

The central question of this study is why time-dependent
failure of many materials often shows enormous variability,
with a COV of more than 100% (or βs � 1). The Weibull
shape parameter of lifetime distribution, βs , is proportional to
the same parameter of the fiber, βf . The proportional constant
varies with the brittleness of the fiber, ρf , but maintains
values greater than unity for ordered networks. For disordered
networks, however, the values can be less than unity, depending
on the degree of the structural disorder. Figure 9 shows a
summary of the effects of different types of disorder on the
Weibull shape parameter of the network, βs . The data for the
strength and stiffness disorders are taken from our previous
study [40]. [The strength disorder was created by varying the
characteristic strength Tc in Eq. (8) according to a continu-
ous uniform distribution function, and the stiffness disorder
was generated by varying the cross-sectional area of fiber
(truss) drawn from the uniform distribution.] Interestingly, the
strength disorder has a rather modest impact on βs , whereas
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FIG. 9. Effects of different types of disorders on βs . SD is the
standard deviation.

the stiffness and structural disorders have a strong negative
impact on the parameter. A natural speculation from this
result is that the system variability may be more influenced by
stress distributions within the structure, rather than “threshold”
strength distributions.

WLS-like scaling of the lifetime distribution emerges
slowly as the network size increases. We have obtained an
explicit form of the characteristic distribution that is not
a Weibull distribution but instead has a double-exponential
form (DLB-type distribution). The implication of this result
with respect to lifetime uncertainty is important. Suppose the
Weibull shape parameter measured for a finite-size specimen
is less than unity. This means an infinite rise of probability den-
sity for short lifetimes according to the Weibull distribution.
However, Eq. (20) suggests that, as the system size increases
and enters the WLS range, the probability density does not
grow to infinity but approaches zero instead. This is a huge
difference from the estimate based on the Weibull distribution.
The situation is, however, different for the material design
based on quasistatic strength where Weibull estimate is merely
a “conservative” estimate. In other words, the implication of
non-Weibull behavior is far more significant for TSF than for
QSF.

A nontrivial result from this study is that ρf = ρs : load
scaling on the fiber level is preserved even at the network
level. The brittleness of the fiber network is controlled by the
brittleness of the fiber. This property is unique to the power-law
form of damage growth, and it was first recognized by Phoenix
and Tierney through their fiber-bundle model [26]. We have
extended it to a general fiber network case and validated it
via numerical experiments. This relation is restricted to the
case in which the system exhibits material and geometrical
linearity (i.e., small elastic deformations). Of course, the
deviation occurs when a matrix material with a high creep
exponent is introduced into fiber-reinforced composites [52].
Nevertheless, the relation indicates the fundamental impact of
fiber brittleness on the brittleness of a fiber network.

VI. SUMMARY AND CONCLUSIONS

We have investigated the reason for large uncertainty of
lifetime and its asymptotic distribution with system size by
numerical simulations of creep failure with a triangular-lattice,
spring network model.
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Coleman’s and Christensen’s models explain why static
strength distribution is much smaller than that of creep lifetime,
at least, on a phenomenological level. For static strength,
monotonic loading, stress sensitivity of damage creation (i.e.,
ρ), and stress enhancement at damage sites, all together
prevent damage evolution from an extensive excursion in
the disordered field, thus reducing much of the uncertainty
[Eq. (1)]. However, for creep failure, the underlying stochastic
failure process (thermal fluctuations) has ample opportunity
of competing and interacting with different types of disorders
in the network. Comparing the three types of disorders:
threshold strength, stiffness (stress), and network geometry,
we have found the largest impact of the geometrical disorder
on uncertainty of lifetime. Particularly, increasing disorder in
the structure alters critical damage clusters from one (or a few)
linear crack(s) to more numbers of irregular-shaped objects.
This lack of a predominant damage cluster (crack) at the time
of cascading failure obviously contributes to the increased
uncertainty of lifetime.

We have found that, with increasing system size, the creep
lifetime distribution asymptotically approaches the DLB-type
distribution, which was earlier shown for static strength by
using a random fuse model [34,38] and fiber-bundle mod-

els [31,35]. The presence of the same form of distribution for
creep lifetime and in the 2D system is intriguing. One possible
reason for the emergence of the DLB-type distribution is that
the problem of lifetime statistics of fiber may be transformed
into an equivalent probability model of fiber failure through
the damage parameter [Eq. (3.15) in [26]]. In other words, one
can recast the lifetime statistics problem to a usual strength
statistics problem. Another reason may come from the damage
size distribution. It was indicated that the physical origin of
the DLB-type distribution is related to the exponential tail
of damage cluster size distribution [35]. Therefore, if the
exponential tail of the damage cluster size distribution is
shown to be universal (e.g., [38,53]), then the emergence of
the DLB-type distribution is expected even for lifetime.
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