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Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated
interactions, displacements, and rotations
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Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance,
for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical
inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques
are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions
respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads
to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the
inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate
the displacements and rotations of the inclusions from the externally imposed or induced forces and torques.
Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and
rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the
resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion
configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to
the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present
the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method
will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to
accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.
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I. INTRODUCTION

It is safe to say that elastic composite materials are of huge
technological importance. This statement is backed by the
fact that concrete, the most abundant manmade material on
Earth [1], is frequently composed of a cement matrix supported
by more rigid particulate inclusions [1–5]. Understanding the
mutual interactions between the inclusions as well as between
the inclusions and the matrix is crucial to understanding the
overall material performance.

While hardened concrete is a relatively rigid substance,
polymeric gel matrices or biological tissue can provide softer
elastic environments. Then, larger-scale displacements and
rotations of embedded inclusions can be observed when forces
and/or torques are externally imposed or induced. Magnetic
microrheology observes the displacements of probe particles
caused by externally applied magnetic field gradients [6–9].
For instance, the mechanical response of the cytoskeleton
[6–10] was analyzed in this way. Similarly, the rotational
motion of magnetic rods under externally imposed magnetic
torques can be used for microrheological purposes [11–13].
The same is true for tracking the relative displacements
between particles that respond to mutual magnetic forces
induced between them [14].

Thinking of rigid inclusions embedded in a soft elastic
polymeric gel matrix, artificial soft actuators represent a
natural type of application [15–18]. Different approaches are
possible. On the one hand, a net external force or torque
can be imposed onto the inclusions. For example, magnetic
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particles are drawn toward external field gradients [19], while
anisotropic particles may experience a torque under an external
electric or magnetic field [20–23]. In these cases, the externally
imposed forces or torques are transmitted by the inclusions to
the embedding matrix and lead to overall deformations. On
the other hand, genuinely electrostrictive or magnetostrictive
effects can be exploited when external electric or magnetic
fields induce mutual attractions and repulsions between the
embedded inclusions and, in total, lead to macroscopic defor-
mations [24–26]. In addition to that, the overall mechanical
properties can be tuned from outside by external fields in such
materials. This allows, during application, reversibly adjusting
from outside the elastic properties to a current need. Examples
are the magnitudes of the elastic moduli [15,27–33], nonlinear
stress-strain behavior [23,34], or dynamic properties [35–39],
allowing, for instance, for the construction of tunable soft
damping devices [40–42].

In all these situations, for a theoretical characterization and
quantitative description of the material behavior, it is necessary
to determine the induced displacements and rotations of the
rigid inclusions. This is a many-body problem. The inclusions
are enclosed by the elastic matrix and transmit the forces and
torques to their embedding environment. As a consequence,
the matrix gets deformed. The other inclusions are exposed
to these induced deformations of their environment. As a
consequence, they are additionally displaced and rotated.
Moreover, the inclusions are rigid and resist deformations
that would result from the induced matrix deformations. This
resistance leads to further stresses on the embedding matrix
and in turn to additional matrix-mediated interactions between
the inclusions.

One can address this problem using simplified represen-
tations of the surrounding matrix, e.g., in elastic-spring [43]
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or elastic-rod [44,45] models. Alternatively, one can directly
perform complete finite-element simulations [46–49] or apply
related schemes of simulation [23,34] to explicitly cover the
matrix behavior.

Here, for rigid spherical particles embedded with stick
boundary conditions in the elastic matrix, we explicitly solve
the problem analytically. Following the above cause-and-effect
principle, we start from the forces and torques acting on the
embedded particles. We then calculate the resulting coupled
displacements and rotations of all particles, including the
described matrix-mediated interactions between them. Our
analytical results are given in terms of displaceability and
rotateability matrices that, when multiplied with the forces
and torques, lead to the caused displacements and rotations.
These expressions solely depend on the configuration of
the inclusions and implicitly contain the role of the elastic
environment. As a strong benefit, the deformations of the
elastic environment do not need to be calculated explicitly
anymore. Therefore, in the future, one can directly calculate
analytically the resulting displacements and rotations of the
inclusions, without needing to resolve the induced elastic
matrix deformations any longer. (To avoid confusion, we note
that the term “matrix” is used both for the elastic environment
as well as for the mathematical representation of second-rank
tensors.)

Our approach is based on the fact that for the static
linear elasticity equations a Green’s function is available
[50]. We then adapt a method from low-Reynolds-number
hydrodynamics, called the method of reflections [51,52].
There, hydrodynamic interactions, i.e., fluid flows induced
by suspended particles, play the role of the matrix-mediated
interactions in our case. In hydrodynamics, the approach
turned out to be extremely successful in characterizing the
behavior of suspensions of colloidal particles [53–60], i.e.,
nano- to micrometer-sized objects, and of self-propelled
microswimmers [61–64]. We expect similar benefits for the
characterization of elastic composite materials in the future.
In contrast to the hydrodynamic case, compressible elastic
matrices are readily described as well.

Technically, the method corresponds to an iterative proce-
dure in orders of the inverse separation distance between the
rigid inclusions. We here proceed to the fourth order in this
inverse distance, but in principle one can proceed to arbitrary
order. Parts of our results were presented before (for instance,
the elastic Faxén laws [65,66], see below, the derivation of
which we here, however, present by explicit calculation in
analogy to the hydrodynamic procedure in Refs. [52] and
[67]). Mostly, in the very few previous approaches on this
subject, the displacements were used as a starting point, and
expressions for the forces and torques necessary to achieve
these displacements were then derived [65,68]. Here, we
follow the converse route, i.e., the forces and torques are
used as known input, and we then calculate the resulting
displacements and rotations. This is in agreement with the
cause-and-effect chain that usually applies in experiments.
Our presentation has two main purposes. First, we provide
more explicitly the steps of derivation outlined already in
Ref. [14] for the displaceability matrix. Second, we amend
this procedure by the rotational component, so that now
also the influence of imposed torques and the couplings

between translational and rotational degrees of freedom are
included.

We start in Sec. II with a brief overview on the underlying
equations of linear elasticity theory, including the correspond-
ing Green’s solution. In Sec. III, we review the multipole
expansion (a Taylor expansion) of the Green’s solution around
the center of a rigid inclusion. Subsequently, the calculation
of the displacement field around a finite-sized sphere subject
to an external force or torque is explicitly described in
Secs. IV and V, respectively. In Sec. VI, the derivation of
the translational and rotational Faxén laws of elasticity is
presented explicitly; these expressions describe how a single
spherical inclusion is displaced and rotated in a given, imposed
matrix deformation. The Faxén laws enable us in Secs. VII–IX
to calculate the mutual matrix-mediated interactions between
spherical inclusions in elastic media. They contribute to the
displaceability and rotateability matrices defined in Sec. VII,
which allow to directly calculate from given forces and torques
on all inclusions their coupled displacements and rotations.
We explicitly calculate the components of these matrices to
fourth order in inverse inclusion separation distance. For this
purpose, we first restrict ourselves to two-sphere interactions
in Sec. VIII and after that include three-sphere interactions
in Sec. IX. Parts of our results are briefly illustrated by
considering simplified and idealized example situations in
Sec. X. Brief conclusions and a short outlook follow in Sec. XI,
while several technical details are added in the Appendices to
render the presentation fully self-contained.

II. GREEN’S FUNCTION IN LINEAR ELASTICITY
THEORY

Throughout, we consider an isotropic, homogeneous, and
infinitely extended elastic matrix. Displacements of the volume
elements of the elastic matrix are described by the displace-
ment field u(r). We consider a point force F acting on the
matrix at position r0. If the deformations are restricted to the
linear regime, then u(r) obeys the Navier-Cauchy equations
[69] of linear elasticity theory,

∇2u(r) + 1

1 − 2ν
∇∇ · u(r) = − 1

μ
Fδ(r − r0), (1)

with ν the Poisson ratio connected to the matrix compressibil-
ity, μ the shear modulus, and δ(r) the Dirac delta function.

At positions different from r0, three relations arise from
Eq. (1) that will prove to be useful in subsequent sections.
First, taking the divergence of Eq. (1), we obtain (for r �= r0)

∇2∇ · u = 0. (2)

Second, working on Eq. (1) with ∇2 therefore leads to

∇4u = 0, (3)

which is referred to as biharmonic equation. The third relation
is obtained by taking the curl of Eq. (1), resulting in

∇ × ∇2u = 0. (4)

The general solution of Eq. (1) can be expressed by a
Green’s function,

u(r) = G(r,r0) · F, (5)
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with G(r,r0) a tensor of rank 2 (we mark second-rank tensors
and matrices by an underscore). Due to the homogeneity and
isotropy of the material, G(r,r0) is a function of the vector r −
r0 only. For completeness, we briefly reproduce its derivation
(see, e.g., Ref. [70]).

The generalized Hooke’s law [50] of linear elasticity theory
reads

σkp = λkpimuim, (6)

with σkp and uim the components of the stress and strain tensor,
respectively. λkpim summarizes the elastic coefficients, and the
Einstein summation rule is applied. For isotropic materials,
the tensor of elastic coefficients takes the form [50]

λkpim = λδkpδim + μ(δkiδpm + δkmδpi), (7)

with

λ = 2μν

1 − 2ν
, (8)

whereas the linearized strain tensor [50] reads

uim = 1
2 (∇ium + ∇mui). (9)

We assume an arbitrary simply connected volume V of the
elastic material. The only force acting on this material is our
point force F at position r0. In equilibrium, this point force is
balanced by the forces resulting from the surface stress:∫

∂V

dSpσkp + Fk = 0. (10)

Using the Gaussian divergence theorem, the surface integral
can be converted into a volume integral. Therefore, inserting
Eqs. (5), (6), and (9) yields the expression∫

V

dV [λkpim∇m∇pGij (r − r0) + δjkδ(r − r0)]Fj = 0. (11)

Since the above equation must hold true for any arbitrary
volume and point of attack r0, the Green’s function Gij (r − r0)
must satisfy the equilibrium condition

λkpim∇m∇pGij (r − r0) + δjkδ(r − r0) = 0. (12)

This equation can be solved by Fourier forth and back
transformation, see Appendix A, resulting in

G(r) = 1

16π (1 − ν)μ

[
3 − 4ν

r
Î + rr

r3

]
, (13)

with Î the identity matrix and rr a dyadic product. A graphical
representation of Eqs. (5) and (13) is given in Fig. 1. For
incompressible materials (in the regime of linear elasticity),
ν takes the value 1/2. In this case, the Green’s function
in Eq. (13) has the same form as the Oseen tensor in
low-Reynolds-number hydrodynamics [51,52,71], where the
hydrodynamic viscosity takes the place of μ. In general, G(r)
used in Eq. (5) solves Eq. (1) .

III. MULTIPOLE EXPANSION

Using the elastic Green’s function G(r), we can express
the matrix displacement field u(r) generated by an arbitrarily

FIG. 1. Illustration of the displacement field u(r) generated by a
point force F acting on the matrix at position r0. The displacement
field is obtained from Eq. (5) via the elastic Green’s function in
Eq. (13). Small arrows, for visibility rescaled to identical length, in-
dicate the direction of the displacement field, whereas the background
color represents the local magnitude of u(r) on a logarithmic scale.
The brighter the color, the higher the magnitude of u(r).

shaped embedded rigid particle centered at the origin as

u(r) =
∫

∂V

dS ′G(r − r′) · f(r′). (14)

Here, r′ is located on the particle surface ∂V and f(r′)
is the force per unit area exerted by the rigid particle
onto the matrix. This equation expresses a superposition of
displacement fields generated by point forces on the particle
surface. A similar situation arises in electrostatics, where a
localized continuous charge distribution can be expressed as
a superposition of point charges, each of which contributing
to the overall electric potential. Moreover, similarly to the
electrostatic potential of point charges, in Eq. (13) we have
G(r) ∼ r−1. Therefore, it is possible to perform a multipole
expansion of the Green’s function. This is well-known for
low-Reynolds-number hydrodynamics [51] and has previously
been adapted to elastostatics [72]. We follow the procedure as
described for the hydrodynamic case in Ref. [51].

In the far field, one has |r| � |r′| in Eq. (14). The Taylor
series of G(r − r′) in r′ around r′ = 0 reads

Gij (r − r′) =
∞∑

n=0

(−1)n

n!
(r′ · ∇)nGij (r). (15)

Inserting Eq. (15) into Eq. (14), we obtain the components of
the displacement field as

ui(r) =
∞∑

n=0

(−1)n

n!

∫
∂V

dS ′fj (r′) (r′ · ∇)nGij (r)

= Gij (r)Fj − ∂Gij (r)

∂rk

Djk + ..., (16)
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with

Fj =
∫

∂V

dS ′fj (r′), Djk =
∫

∂V

dS ′fj (r′)r ′
k. (17)

Here, F can be identified as the total force that the particle
exerts on the matrix. The D-tensor can be split into an
antisymmetric and a symmetric part,

Djk = Tjk + Sjk, (18)

with

Tjk = 1

2

∫
∂V

dS ′[fj (r′)r ′
k − fk(r′)r ′

j ], (19)

Sjk = 1

2

∫
∂V

dS ′[fj (r′)r ′
k + fk(r′)r ′

j ]. (20)

The symmetric tensor Sjk is called stresslet. Furthermore, we
set the components of the torque T that the particle exerts on
the matrix to

Ti := εijk

∫
∂V

dS ′r ′
j fk(r′) = − εijkTjk, (21)

with εijk the Levi-Civita symbol. Therefore, we can express
the corresponding part in Eq. (16) through

Tjk

∂Gij

∂rk

= − 1

2
εjklTl

∂Gij

∂rk

= 1

2
(T × ∇)jGij . (22)

In sum, we obtain the following expression for the first
terms of the multipole expansion,

u(r) = G(r) · F −
(

1

2
T × ∇ + S · ∇

)
· G(r), (23)

which corresponds to the displacement field around a rigid
particle in far-field approximation.

IV. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
TRANSLATED RIGID SPHERICAL INCLUSION

To facilitate our analytical approach, we now confine
ourselves to rigid spherical particles embedded in the elastic
matrix. The center of such a sphere of volume V is located at
position r0 and a is its radius. If an external force F uniformly
translates the sphere, it creates a displacement field in the
surrounding matrix. Assuming that the elastic matrix sticks to
the surface ∂V of the sphere and that the displacement field
vanishes at infinity, the boundary conditions for u(r) follow as

u(r ∈ ∂V ) = U, u(|r| → ∞) = 0. (24)

Here U is the translation of the sphere caused by the external
force, which due to the particle rigidity simultaneously applies
for all its surface points.

The resulting displacement field can be expressed in terms
of the elastic Green’s function G(r − r0); see Eq. (14). The
integral in Eq. (14), summing over all the contributions from
the point forces on the particle surface at positions r′ ∈ ∂V ,
can for a sphere be calculated explicitly, see Ref. [52] for the
case of low-Reynolds-number hydrodynamics. However, this
is a lengthy calculation, and we follow the elegant approach
outlined in Refs. [51] and [72].

Due to the linearity of the Navier-Cauchy equations Eq. (1),
there is only one unique solution satisfying the prescribed

boundary conditions. Assuming F ∼ U in the linear regime,
an ansatz u(r) ∼ G(r − r0) · F ∼ G(r − r0) · U appears
plausible. Moreover, since on ∂V the displacement field
u(r) ∼ G(r − r0) · U must satisfy Eq. (24), on ∂V the overall
multiplicand of U in this expression must be proportional to
Î. This is accomplished by an additional differential operator
acting on G(r − r0),(

1 + a2

6
∇2

)
G(r − r0)

∣∣∣∣
|r−r0|=a

= 5 − 6ν

24π (1 − ν)μa
Î. (25)

Altogether,

u(r) = 24π (1 − ν)μa

5 − 6ν

(
1 + a2

6
∇2

)
G(r − r0) · U (26)

satisfies the boundary conditions Eq. (24) as well as Eq. (1) and
thus, due to the uniqueness of the solution, is the desired result.

For a → 0 and |r − r0| > a, the contribution a2

6 ∇2 be-
comes negligible and we must reproduce Eq. (5). In this way,
we find

F = 24π (1 − ν)μa

5 − 6ν
U (27)

or, equivalently,

u(r ∈ ∂V ) = U = 5 − 6ν

24π (1 − ν)μa
F. (28)

As a consequence, we may rewrite Eq. (26) as

u(r) =
(

1 + a2

6
∇2

)
G(r − r0) · F. (29)

This is the elastic analogue to the hydrodynamic Stokes flow
[52].

Since, as we just argued, the solution in Eq. (29) is exact,
we can for a spherical particle insert it into Eq. (14) to find for
|r − r0| � a the relation∫

∂V

G(r − r′) · f(r′)dS ′ =
(

1 + a2

6
∇2

)
G(r − r0) · F, (30)

which we will need later.

V. DISPLACEMENT FIELD INDUCED BY A UNIFORMLY
ROTATED RIGID SPHERICAL INCLUSION

In a similar way, we can ask for the displacement field
generated in an elastic matrix by a uniformly rotated rigid
spherical inclusion at position r0. For this purpose, we consider
an external torque T acting on the inclusion (see Refs. [51]
and [52] for the low-Reynolds-number hydrodynamic and
Ref. [72] for the elastic case). The rotation of the particle
is quantified by the absolute (static) rotation vector �. Then
the boundary conditions on the surface ∂V of the particle and
at infinity read

u(r ∈ ∂V ) = � × (r − r0), u(|r| → ∞) = 0. (31)

Inserting the displacement field

u(r) =
(

a

|r − r0|
)3

� × (r − r0) (32)
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into these boundary conditions as well as into Eq. (1) confirms
that it is the unique solution of the problem. As will be shown
in Sec. VI, see Eq. (53), the torque that is externally imposed
on the inclusion is related to the rotation vector � via

T = 8πμa3�, (33)

with a the radius of the sphere.

VI. FAXÉN’S LAWS

In low-Reynolds-number hydrodynamics, Faxén’s laws
describe how a spherical particle is translated, rotated, and
which stresses act onto it in an imposed fluid flow [51,52,67].
The fluid is typically considered as incompressible.

Due to the similarities of the underlying equations, the
procedure can be transferred to the elastic case. That is, we
now consider an (externally) imposed deformation of our
elastic matrix as described by a displacement field u(r). We
then calculate how a rigid spherical particle embedded in
the elastic matrix and exposed to this displacement field is
translated, rotated, and which stresses act onto it. A possible
compressibility of the elastic matrix is readily included. Such
elastic Faxén laws have been outlined before [65,66]. Here,
we present an explicit derivation by direct calculation. We
adapt the hydrodynamic approach in Refs. [52] and [67] by
transferring it to the elastic case.

We consider a rigid spherical inclusion of radius a em-
bedded in the elastic matrix at position r0. In addition to the
displacement field imposed onto the matrix, the embedded
particle may still be subject to external forces or torques.
Moreover, its rigidity resists the imposed matrix deformations.
Therefore, its surface elements exert additional forces onto
the matrix, summarized again by the surface force density
f(r′) with r′ ∈ ∂V and ∂V the surface of the particle. The
additional displacement field resulting from f(r′) is calculated
according to Eq. (14). Due to the linearity of Eq. (1), the
different contributions to the overall displacement field simply
superimpose. Describing again translations and rotations of
the sphere by a translation vector U and a (static) rotation
vector �, respectively, we obtain in total for the surface points
r ∈ ∂V the stick boundary condition,

Ui + [� × (r − r0)]i =
∫

∂V

Gij (r − r′)fj (r′)dS ′ + ui(r).

(34)
On the left-hand side of this equation, we find the

displacements of the surface points of the sphere by the rigid
translation U and the rigid rotation �. For each point r ∈ ∂V ,
these displacements must be identical to the displacements
of the matrix stuck to the sphere surface. The total matrix
displacement on the surface is given on the right-hand side.
There, the first term, i.e., the integral, includes all contributions
to the matrix displacements due to the surface force density
f(r′) exerted by the particle onto the matrix. The second term,
i.e., u(r), corresponds to the (externally) imposed deformation
field. At this point, one may be concerned with the validity
of the equation, as the Green’s function G was derived for
an infinitely extended matrix. This seems to contradict the
presence of a finite-sized rigid embedded sphere. However, for
our calculation it is irrelevant whether we consider the sphere

to be rigid inside, or whether it is filled with deformable elastic
matrix material as well. The only important point is that the
surface shell, which may be considered as infinitely thin, is
rigidly translated and rotated as one rigid object.

Integration of both sides of Eq. (34) over ∂V gives

4πa2Ui =
∫

∂V

∫
∂V

Gij (r − r′)fj (r′)dS ′dS +
∫

∂V

ui(r)dS.

(35)
Using Eq. (30), the first term on the right-hand side can be
connected to the displacement of the sphere due to an external
force F. On ∂V , the resulting expression is further simplified
using Eqs. (28) and (29).

For the evaluation of the second term on the right-hand side,
we insert the Taylor expansion of ui(r) around the particle
center at r = r0,

ui(r) = ui(r0) + (r − r0)j [∇jui(r)]r=r0

+ 1

2
(r − r0)j (r − r0)k[∇j∇kui(r)]r=r0

+ 1

3!
(r−r0)j (r−r0)k(r−r0)l[∇j∇k∇lui(r)]r=r0 +...

(36)

Since there are no body forces generating the imposed field
u(r) at r = r0, Eq. (3) must hold, i.e., ∇4u(r = r0) = 0. Thus,
under the integral, terms of fourth and higher even order in
∇ must vanish due to isotropy. Furthermore, all odd terms in
(r − r0) of the Taylor series must vanish during integration
due to symmetry. Taking this into account, the second term on
the right-hand side of Eq. (35) can be evaluated as∫

∂V

ui(r) dS =4πa2ui(r0)

+ 1

2

∫
∂V

(r − r0)j (r − r0)k[∇j∇kui(r)]r=r0dS

=4πa2

(
1 + a2

6
∇2

)
ui(r)

∣∣∣∣
r=r0

. (37)

Here, in the step to the last line, we have used that∫
∂V

rj rk dS = 4πa4

3
δjk. (38)

Collecting all results, Eq. (35) leads to

U = 5 − 6ν

24π (1 − ν)μa
F +

(
1 + a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (39)

In this expression, the first contribution to the rigid translation
is caused by the external force F, see our previous result in
Eq. (28). The second contribution is due to the imposed matrix
displacement field u(r). As we can see, the sphere is not simply
advected by the imposed displacement. Due to its finite size,
the additional contribution a2

6 ∇2 arises.
In the absence of an external force on the sphere, i.e., for

F = 0, we obtain what is referred to as Faxén’s first law in
hydrodynamics [67]:

UFaxén =
(

1 + a2

6
∇2

)
u(r)

∣∣∣∣
r=r0

. (40)
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This relation describes the rigid translation of a rigid sphere in
an imposed deformation of the surrounding matrix.

To obtain corresponding expressions for the rotation vector
and for the stresslet, we multiply both sides of Eq. (34) with
(r − r0)k and integrate over ∂V ,∫

∂V

(r − r0)k[� × (r − r0)]i dS

=
∫

∂V

∫
∂V

(r − r0)k Gij (r − r′)fj (r′) dSdS ′

+
∫

∂V

(r − r0)kui(r) dS. (41)

The integral on the left-hand side is easily evaluated using
Eq. (38) and reads

4πa4

3
εilk	l. (42)

In order to calculate the inner integral of the first term on
the right-hand side, we substitute r′′ = r − r0 and express

the integral in terms of the Fourier transform of the Green’s
function,∫

∂V

Gij (r − r′) (r − r0)k dS

=
∫

∂V

Gij (r′′ − r′ + r0)r ′′
k dS ′′

= 1

(2π )3

∫
∂V

dS ′′
∫

d3k G̃ij (k)r ′′
k eik·(r′′−r′+r0). (43)

Now the integral with respect to r′′ can be evaluated as∫
∂V

dS ′′eik·r′′
r ′′
k = −i∇k,k

∫
∂V

dS ′′eik·r′′

= −4πia2k̂k

d

dk

sin(ka)

ka
. (44)

The integral
∫

d3k in Eq. (43) can be split into∫
dS(k̂)

∫ ∞
0 k2dk. Inserting Eq. (A3), Eq. (43) becomes

2π2μ

a2

∫
∂V

Gij (r − r′) (r − r0)k dS

= −i

∫
∂V

dS(k̂)

[
δij − 1

2(1 − ν)
k̂i k̂j

]
k̂k

∫ ∞

0
dk eikk̂·(r0−r′) d

dk

sin(ka)

ka

= −i

∫
∂V

dS(k̂)

[
δij − 1

2(1 − ν)
k̂i k̂j

]
k̂k

[
sin(ka)

ka
eikk̂·(r0−r′)

∣∣∣∣
∞

0

− ik̂l(r0 − r′)l
∫ ∞

0
dk

sin(ka)

ka
eikk̂·(r0−r′)

]

=
∫

∂V

dS(k̂)

[
δij − 1

2(1 − ν)
k̂i k̂j

]
k̂k k̂l(r′ − r0)l

∫ ∞

0
dk

sin(ka)

ka
eikk̂·(r0−r′). (45)

In the last line, the imaginary part is odd in k̂ and therefore vanishes upon integration. The remaining real part is an even function
in both k̂ and k, so that, under the

∫
dS(k̂) integral, we may rewrite the

∫
dk integral as

1

2

∫ ∞

−∞
dk

sin(ka)

ka
eikk̂·(r0−r′) =

{
π
2a

, for − 1 < k̂·(r′−r0)
a

< 1,

0, otherwise;
(46)

see Appendix B. We obtain∫
∂V

Gij (r − r′) (r − r0)k dS = a

4πμ
(r′ − r0)l

∫

S

dS(k̂)

(
δij − 1

2(1 − ν)
k̂i k̂j

)
k̂k k̂l , (47)

where the surface of integration 
S is given by


S =
{

k̂

∣∣∣∣ − 1 <
k̂ · (r′ − r0)

a
< 1

}
. (48)

Since r′ is located on the surface of the inclusion, i.e., |r′ − r0| = a, 
S corresponds to the surface of the unit sphere. Using
Eq. (38) (for k̂ instead of r) and ∫


S

k̂i k̂j k̂kk̂l dS(k̂) = 4π

15
(δij δkl + δikδjl + δilδjk) (49)

finally leads to∫
∂V

(r − r0)kGij (r − r′)fj (r′) dS = a

15μ

{
5(r′ − r0)kfi − 1

2(1 − ν)
[(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik]

}
. (50)
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The second term on the right-hand side of Eq. (41) can be evaluated by inserting the Taylor expansion of u(r) from Eq. (36),∫
∂V

(r − r0)kui(r) dS =
∫

∂V

(r − r0)k(r − r0)j [∇jui(r)]r=r0dS

+ 1

6

∫
∂V

(r − r0)k(r − r0)j (r − r0)l(r − r0)m[∇j∇l∇mui(r)]r=r0dS

= 4πa4

3

(
1 + a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

, (51)

where again we have used Eqs. (38) and (49) [for (r − r0) instead of k̂ in the latter]. The other terms in the expansion again
vanish due to isotropy and symmetry upon integration.

Altogether, combining Eqs. (41), (42), (50), and (51), we find

4πa4

3
εilk	l = a

15μ

∫
∂V

dS ′
{

5(r′ − r0)kfi − 1

2(1 − ν)
[(r′ − r0)kfi + (r′ − r0)ifk + (r′ − r0)lflδik]

}

+ 4πa4

3

(
1 + a2

10
∇2

)
∇kui(r)

∣∣∣∣
r=r0

. (52)

This tensor equation can be split into a symmetric and an antisymmetric part. First, we calculate the antisymmetric part by
multiplying Eq. (52) by εijk . Since there are no body forces generating the imposed field u(r) at r = r0, Eq. (4) most hold for
the last term, i.e., ∇ × ∇2u(r = r0) = 0. Therefore, the a2

10∇2-term in Eq. (52) vanishes. Using the definition of the torque from
Eq. (21), we obtain

� = 1

8πμa3
T + 1

2
∇ × u(r)

∣∣∣∣
r=r0

. (53)

T corresponds to an external torque acting onto the sphere, which is transmitted by the sphere onto the surrounding matrix (with
the reference point of the torque at the center of the sphere).

Similarly to the previous case of rigid translations, in the absence of an external torque acting on the sphere, i.e., for T = 0,
we obtain a relation referred to as Faxén’s second law in hydrodynamics [67]:

�Faxén = 1

2
∇ × u(r)

∣∣∣∣
r=r0

. (54)

This relation quantifies the (static) rigid rotation of a rigid sphere in an imposed deformation of the surrounding matrix.
Finally, we calculate the symmetric part of Eq. (52). The �-term vanishes because of its antisymmetry. Thus, we find

0 = a

15μ

1

2(1 − ν)

∫
∂V

dS ′
{

(4 − 5ν)
[
(r′ − r0)ifk + (r′ − r0)kfi

]
− (r′ − r0)j fj δik

}

+4πa4

3

(
1 + a2

10
∇2

)
1

2
[∇iuk(r) + ∇kui(r)

]∣∣∣∣
r=r0

=:
1

2
(Aik + Aki). (55)

To obtain an expression solely for the stresslet as defined in Eq. (20), we add a vanishing trace term

1

5(1 − 2ν)
Ajj δik = a

15μ

1

2(1 − ν)

∫
∂V

dS ′(r′ − r0)j fj δik + 4πa4

15

(
1 + a2

10
∇2

)
1

1 − 2ν
∇juj (r)δik

∣∣∣∣
r=r0

, (56)

leading to

0 = 1

2
(Aik + Aki) + 1

5(1 − 2ν)
Ajj δik. (57)

Then, the definition of Sik appears in Eq. (57). Solving for Sik , we find the stresslet as

S = − 4π (1 − ν)μa3

4 − 5ν

(
1 + a2

10
∇2

)(
1

1 − 2ν
Î∇ · u(r) + 5

2
{∇u(r) + [∇u(r)]T }

)∣∣∣∣
r=r0

, (58)

where the superscript (•)T marks the transpose.
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Equation (58) expresses the stress that a rigid spherical
inclusion exerts onto the surrounding matrix in the imposed
displacement field u(r) of the matrix. The matrix deformation
is imposed from elsewhere, that is, not by the spherical
inclusion itself. However, the inclusion due to its rigidity
resists this deformation. This resistance leads to the described
stresslet.

Vice versa, the stresslet that the matrix exerts onto the
particle is given by

SFaxén = − S, (59)

which together with Eq. (58) may be referred to as Faxén’s
third law and was derived by Batchelor in the hydrodynamic
case [67].

VII. DISPLACEABILITY AND ROTATEABILITY MATRIX

Now we have all the ingredients to consider the coupled dis-
placements and rotations of N spherical inclusions embedded
in the infinitely extended homogeneous elastic medium. For
simplicity, we consider identical spheres of radius a, labeled
by 1,...,N .

We here adhere to the following cause-and-effect chain.
Each spherical inclusion j is subject to an external force Fj and
an external torque Tj , j = 1,...,N . As a consequence of these
forces and torques, the inclusions are displaced and rotated
by rigid translation vectors Ui and rigid rotation vectors �i ,
respectively, i = 1,...,N . Moreover, the spheres transmit the
forces and torques to the surrounding elastic medium, causing
additional deformations in their environment. Other inclusions
are exposed to these induced deformations and counteract due
to their rigidity. This leads to further distortions, acting back
on all other rigid spheres that likewise resist induced deforma-
tions, resulting in mutually coupled particle translations and
rotations. In the following, we derive analytical expressions
for these translations and rotations, using the external forces
and torques as an input.

In formal analogy to the hydrodynamic mobility matrices
[52,73], we can define elastic displaceability and rotate-
ability matrices. Given the external (quasi)static forces Fj

and (quasi)static torques Tj , j = 1,...,N , applied to the
spherical inclusions, these matrices directly express the caused
displacements Ui and rotations �i in the resulting situation of
new (quasi)static equilibrium, i = 1,...,N :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1
...

UN

�1
...

�N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mtt
11 · · · Mtt

1N Mtr
11 · · · Mtr

1N
...

. . .
...

...
. . .

...
Mtt

N1 · · · Mtt
NN Mtr

N1 · · · Mtr
NN

Mrt
11 · · · Mrt

1N Mrr
11 · · · Mrr

1N
...

. . .
...

...
. . .

...
Mrt

N1 · · · Mrt
NN Mrr

N1 · · · Mrr
NN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1
...

FN

T1
...

TN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(60)

Here, the submatrices Mtt
ij express how the particles

are translated due to the forces acting on all the particles

(translation–translation coupling, i,j = 1,...,N ). Their com-
ponents have been derived already in a previous work [14].
The submatrices Mtr

ij include contributions to the translations
due to the torques acting on the inclusions (translation–rotation
coupling). Similarly, the submatrices Mrt

ij determine how
forces acting on the particles lead to their rotations (rotation–
translation coupling). The cause of rotations by torques is given
by the submatrices Mrr

ij (rotation–rotation coupling).
We stress that the role of the surrounding elastic medium

is implicitly contained in these matrices. Their components
will solely depend on the configuration of the rigid inclu-
sions. Therefore, they significantly facilitate the problem of
calculating the coupled displacements and rotations described
above. It is not necessary any longer to explicitly calculate the
displacement field u(r) of the surrounding medium once the
expressions for these matrices have been derived.

Below, we shall explicitly perform this derivation for the
components Mtt

ij , Mtr
ij , Mrt

ij , and Mrr
ij as an expansion in

the inverse separation distance of the inclusions. Here, we
proceed up to (including) fourth order. This comprises pairwise
interactions mediated by the surrounding elastic medium, see
Sec. VIII, and three-body interactions, see Sec. IX.

VIII. TWO-BODY INTERACTIONS

In the following, we start from the forces and torques
acting on the inclusions, which as a consequence leads to
the coupled particle translations and rotations. Our approach
adapts the method of reflections from the hydrodynamic
literature as presented in Ref. [52]. In addition to that, we
here explicitly include the role of imposed torques as for
instance exerted by external magnetic fields on magnetically
anisotropic inclusions. Moreover, we take into account the
rigidity of the inclusions directly via the stresslets that follow
from their resistance to deformations [51,67].

The initial forces and torques acting on the inclusions are
either imposed externally, or they are induced between the
inclusions from outside. These are not the forces and torques
exerted by the elastic matrix onto the inclusions. For clarity,
we consider the influence of the imposed or induced forces
and torques separately in two steps. Due to the linearity of the
governing equations, the results of these two steps can in the
end simply be added/superimposed.

A. Forces imposed on or induced between the inclusions

In the following, we consider two rigid spherical inclusions
i and j , both of radius a. They are located at positions ri and
rj , respectively. The forces Fi and Fj are externally applied
to the spheres i and j , respectively, or induced between them.
As indicated before, we will proceed below by an expansion
in the inverse separation distance between the two spheres.

To zeroth order, the spheres are thus effectively considered
to be infinitely far away from each other. Consequently, the
interactions between the two spheres via the surrounding
elastic matrix do not enter. The actual translations of the
spheres, U(0)

i and U(0)
j , respectively, are then given by the
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FIG. 2. Illustration of the immediate effect that the displacement
of sphere j has on the translation and rotation of another sphere i. A
force Fj is externally imposed on sphere j . As a consequence, sphere
j gets rigidly translated as given by U(0)

j ; see Eq. (62). Moreover, the
surrounding matrix is distorted, as described by the displacement field
u(0)

j (r); see Eq. (64). The local directions of u(0)
j (r) are indicated by the

small arrows that, for visibility, are rescaled to identical length. We
indicated the local magnitude of u(0)

j (r) by background color, where
brighter color represents higher magnitude and the color values follow
an arc-tangent scale. Sphere i is exposed to the induced displacement
field u(0)

j (r) and therefore gets translated as denoted by U(1)
i and rotated

as denoted by �
(1)
i . These quantities can be calculated from u(0)

j (r)
via Eqs. (65) and (66), respectively, leading to Eqs. (72) and (73).
Overall, in this way we obtain the corresponding contributions to
the displaceability and rotateability matrices Mtt

i=j , Mtt
i �=j , Mrt

i=j , and
Mrt

i �=j in Eqs. (78), (79), (81), and (82), respectively, up to inverse
quartic order in the particle distances.

solution for isolated spherical inclusions, see Eq. (28), and
read

U(0)
i = u(0)

i (r ∈ ∂Vi) = 5 − 6ν

24π (1 − ν)μa
Fi , (61)

U(0)
j = u(0)

j (r ∈ ∂Vj ) = 5 − 6ν

24π (1 − ν)μa
Fj . (62)

Furthermore, to zeroth order, the induced displacement field
of the elastic matrix around each sphere i and j has been
calculated in Eq. (29), i.e.,

u(0)
i (r) =

(
1 + a2

6
∇2

)
G(r − ri) · Fi , (63)

u(0)
j (r) =

(
1 + a2

6
∇2

)
G(r − rj ) · Fj . (64)

In Fig. 2, u(0)
j (r) is indicated by the small arrows.

Next, we take into account the mutual interactions between
the two spheres mediated by the surrounding elastic matrix.
For example, we consider particle i that is embedded in the
elastic matrix. Thus it is exposed to the displacement field

u(0)
j (r) that results from the force Fj acting on sphere j . An

additional translation U(1)
i and rotation �

(1)
i of sphere i are

induced in this way, which we can calculate from the Faxén
relations, Eqs. (40) and (54). They read

U(1)
i =

(
1 + a2

6
∇2

)
u(0)

j (r)

∣∣∣∣
r=ri

, (65)

�
(1)
i = 1

2
∇ × u(0)

j (r)

∣∣∣∣
r=ri

. (66)

That is, u(0)
j (r) now plays the role of the imposed matrix

displacement field u(r) in Eqs. (40) and (54).
In general, the displacement field u(0)

j (r) would tend to
deform sphere i. In other words, a stress is exerted on particle
i. Yet, because of its rigidity, sphere i resists this deformation.
As a consequence, the overall displacement field induced by
sphere j , i.e., u(0)

j (r), is disturbed via the presence of sphere
i. We can find this disturbance from the stress that the rigid
sphere i itself exerts back onto the matrix. The corresponding
stresslet follows from Eq. (58) and here takes the form

S(1)
i = −4π (1 − ν)μa3

4 − 5ν

(
1 + a2

10
∇2

)(
1

1 − 2ν
Î∇ · u(0)

j (r)

+ 5

2

{
∇u(0)

j (r) + [∇u(0)
j (r)

]T
})∣∣∣∣

r=ri

. (67)

Analogous expressions for sphere j are obtained by
swapping the indices i ↔ j in Eqs. (65)–(67).

We now proceed to improve our solution by iteration. For
this purpose, we calculate the mentioned disturbances u(1)

i (r)
and u(1)

j (r) that the stresslets S(1)
i and S(1)

j cause in the matrix,
respectively. We find corresponding expressions from Eq. (23):

u(1)
i (r) = −(S(1)

i · ∇) · G(r − ri), (68)

u(1)
j (r) = −(S(1)

j · ∇) · G(r − rj ). (69)

We should remark that Eq. (23) also contains the forces
imposed on the inclusions. However, at this stage of iteration,
they do not contribute. The direct influence of the forces has
already been determined in Eqs. (61)–(64). The spheres simply
follow the resulting induced displacement fields, without any
additional extra net force or torque resistance, see Eqs. (65) and
(66). Their only resistance is due to their rigidity as described
above, which now enters Eqs. (68) and (69) in the form of the
stresslets. Due to the linearity of the Navier-Cauchy equations,
Eq. (1), the disturbances in Eqs. (68) and (69) can in the end
simply be added/superimposed to the displacement fields in
Eqs. (63) and (64).

In the next step, each sphere is now additionally exposed to
one of these rigidity-induced displacement fields u(1)

i (r) and
u(1)

j (r) created by the other sphere. This leads to yet another

contribution to the translation (U(2)
i and U(2)

j ) and rotation

(�(2)
i and �

(2)
j ) of each sphere. Again, we can calculate these

contributions from the Faxén laws, see Eqs. (40) and (54), now
taking u(1)

j (r) and u(1)
i (r) as the imposed displacement fields,
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FIG. 3. Illustration of the rigidity-based reflection of an induced
displacement field by another sphere. (a) As in Fig. 2, an externally
imposed force Fj acts onto the spherical particle j . This directly
results in the particle translation U(0)

j and in the displacement field

u(0)
j (r) in the surrounding elastic matrix; see Eqs. (62), (64), and

Fig. 2. The small arrows indicate the local direction of the induced
displacement fields. (b) Particle i is exposed to the displacement field
u(0)

j (r) and is therefore translated by U(1)
i ; see Eq. (65). Rotations are

not considered here for simplicity. Simultaneously, the displacement
field tends to deform particle i as given by the stresslet −S(1)

i ; see
Eqs. (58) and (59). (c) However, the rigid particle i resists deformation
and imposes the stresslet S(1)

i onto the surrounding elastic matrix; see
Eq. (67). S(1)

i induces yet another displacement field u(1)
i (r) in the

elastic environment, see Eq. (68), which overlays the initial field
u(0)

j (r). In this way, the initial field u(0)
j (r) gets partially reflected by

the rigid particle i, leading to u(1)
i (r). (d) Now, particle j is exposed to

u(1)
i (r). Its initial translation U(0)

j thus gets corrected by a translation

U(2)
j ; see Eq. (75) after swapping indices i and j . Altogether, this leads

to the quartic contribution in the inverse particle separation distance
to the displaceability matrices Mtt

i=j in Eq. (78), after switching i ↔
j . In analogy, we may consider, instead of the initial particle j , a
different, third particle exposed to the reflected field. Following the
same scheme and calculating its induced translation, we obtain the
three-body interaction included by the contribution Mtt(3)

i �=j in Eq. (104).
(For the latter purpose, the first, second, and third particle are referred
to as j , k, and i, respectively.)

respectively:

U(2)
i =

(
1 + a2

6
∇2

)
u(1)

j (r)

∣∣∣∣
r=ri

, (70)

�
(2)
i = 1

2
∇ × u(1)

j (r)

∣∣∣∣
r=ri

, (71)

with U(2)
j and �

(2)
j obtained by swapping the indices i ↔ j . The

overall situation resulting in the displacement U(2)
j is illustrated

in Fig. 3 and has already been considered in Ref. [14].

Altogether, one can say that parts of the displacement fields
u(0)

i (r) and u(0)
j (r), initially generated by the first sphere, are

reflected by the respectively other sphere in the form of u(1)
j (r)

and u(1)
i (r). This is due to the rigidity of the spheres. Then

these fields are felt again by the corresponding first sphere.
In principle, one can continue this iteration by considering

further reflections. Also the first sphere is rigid and will
resist deformations in the reflected field, etc. We can use the
same formulae summarized above to continue this iteration.
Accordingly, this approach was called method of reflections
in the hydrodynamic literature [52]. Overall, it turns out that
this iterative procedure corresponds to an expansion in the
inverse particle separation distance r−1

ij , with rij = |ri − rj |.
Here, we proceed up to (including) the fourth order r−4

ij . Then,

counting factors r−1
ij and gradients shows that we may stop at

the presented stage.
To find the resulting explicit analytical expressions for the

matrix-mediated particle interactions, let us now explicitly
calculate the contributions in Eqs. (65), (66), (70), and (71).
From Eqs. (13), (64), and (65), using Eq. (3), we find for the
first correction of the translation of sphere i

U(1)
i =

(
1 + a2

3
∇2

)
G(r − rj ) · Fj

∣∣∣∣
r=ri

= 1

16π (1 − ν)μ

1

rij

{[
4(1 − ν) − 4

3

(
a

rij

)2]
r̂ij r̂ij

+
[

3 − 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
· Fj , (72)

with r̂ij = (ri − rj )/rij the unit vector pointing from sphere
j to sphere i; see Fig. 2. Similarly, using Eqs. (13), (64), (66),
and ∇ × ∇2G(r) = 0, which follows from Eq. (4), we find for
the corresponding rotation of sphere i

�
(1)
i = 1

2
∇ ×

(
1 + a2

6
∇2

)
G(r − rj ) · Fj

∣∣∣∣
r=ri

= − 1

8πμr2
ij

r̂ij × Fj ; (73)

see Fig. 2.
To determine U(2)

i and �
(2)
i , we first have to calculate the

stresslet induced by sphere j and acting onto the matrix as
given by Eq. (67) with switched indices i ↔ j ,

S(1)
j = 1

4(4 − 5ν)

a3

r2
ij

[5(1 − 2ν)(Fi r̂ij + r̂ij Fi)

− 3Î r̂ij · Fi + 15r̂ij r̂ij r̂ij · Fi] + O
(
r−4
ij

)
. (74)

It is sufficient to calculate S(1)
j to this order because ∇G(r − rj )

in Eq. (69) is already of order r−2
ij at r = ri . The additional

translation of sphere i induced by the stresslet S(1)
j can now be

calculated from Eqs. (69) and (70). To our desired order, we
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may omit the a2

6 ∇2 term and obtain

U(2)
i = − 1

32π (1 − ν)(4 − 5ν)μ

a3

r4
ij

[5(1 − 2ν)2(Î + r̂ij r̂ij )

+ (37 − 44ν)r̂ij r̂ij ] · Fi . (75)

This expression for U(2)
i corresponds to the lowest-order

correction to the displacement of sphere i resulting from a
reflection of the displacement field u(0)

i (r) from sphere j . As
for the contribution to the rotation �

(2)
i of sphere i, since

u(1)
j (ri) in Eq. (69) is already of order r−4

ij , Eq. (71) would

yield an expression of higher order O(r−5
ij ).

As indicated above, to obtain the next-order contributions,
we would have to calculate the stresslet S(2)

i that results from

the rigidity-caused resistance of sphere i in the displacement
field u(1)

j (r). This can be achieved again via Eq. (67) by
switching the indices ((0),(1)) → ((1),(2)). In analogy, the result-
ing additional displacement field u(2)

i (r) follows via Eq. (68)
by replacing (1) → (2), and the additional contribution U(3)

j

to the translation of sphere j via Eq. (70) by ((1),(2),i,j ) →
((2),(3),j,i). Also the O(r−4

ij ) terms in Eq. (74) then need to be

taken into account, and the rotations �
(2)
i contribute as well.

This scheme can basically be continued up to an arbitrary
iteration level.

Up to (including) order r−4
ij , the total translation of sphere

i is given by Ui = U(0)
i + U(1)

i + U(2)
i and reads

Ui =
{

5 − 6ν

24π (1 − ν)μa
Î − 1

32π (1 − ν)(4 − 5ν)μ

a3

r4
ij

[(
37 − 44ν + 10(1 − 2ν)2

)
r̂ij r̂ij + 5(1 − 2ν)2(Î − r̂ij r̂ij )

]}
· Fi

+ 1

16π (1 − ν)μ

1

rij

{[
4(1 − ν) − 4

3

(
a

rij

)2]
r̂ij r̂ij +

[
3 − 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
· Fj . (76)

Similarly, the total rotation of sphere i accurate up to (including) order r−4
ij is given by

�i = − 1

8πμr2
ij

r̂ij × Fj . (77)

So far, we have only considered two particles i and j . However, since the governing Navier-Cauchy equations Eq. (1) are
linear, we can linearly superimpose the influence of additional inclusions. That is, we simply add contributions of identical form
to the right-hand sides of Eqs. (76) and (77) caused by each additional particle j .

Up to (including) order r−4
ij , the individual terms on the right-hand side of Eq. (76) then identify the components of the

displaceability matrices Mtt
ij in Eq. (60) resulting from one- and two-body interactions [14] as illustrated in Figs. 2 and 3:

Mtt
i=j = M t

0

{
Î −

N∑
k=1
k �=i

3

4(4 − 5ν)(5 − 6ν)

(
a

rik

)4[(
37 − 44ν + 10(1 − 2ν)2

)
r̂ik r̂ik + 5(1 − 2ν)2(Î − r̂ik r̂ik)

]}
, (78)

Mtt
i �=j = M t

0
3

2(5 − 6ν)

a

rij

{[
4(1 − ν) − 4

3

(
a

rij

)2]
r̂ij r̂ij +

[
3 − 4ν + 2

3

(
a

rij

)2]
(Î − r̂ij r̂ij )

}
+ Mtt(3)

i �=j , (79)

with i,j ∈ {1,2,...,N} and

M t
0 = 5 − 6ν

24π (1 − ν)μa
. (80)

The contribution Mtt(3)
i �=j represents three-body interactions

and will be separately derived in Sec. IX.
Furthermore, from Eq. (77) we find for the components of

the rotateability matrices Mrt
ij up to (including) order r−4

ij

Mrt
i=j = 0, (81)

Mrt
i �=j = −M r

0
r̂ij

r2
ij

× , (82)

see Fig. 2, with

M r
0 = 1

8πμ
. (83)

B. Torques externally imposed on or induced between
the inclusions

Instead of forces Fi and Fj , let us now consider torques Ti

and Tj externally imposed on or induced between two rigid
spherical inclusions i and j . The treatment of this situation
follows the same lines, therefore we will be significantly
briefer here.

To zeroth order, where matrix-mediated interactions
between the two spheres are ignored, the torques cause
rotations �

(0)
i and �

(0)
j of the particles, respectively, which

follow via Eq. (33) as

�
(0)
i = 1

8πμa3
Ti , (84)
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FIG. 4. Illustration of the immediate effect that the rotation of
sphere j has on the translation and rotation of another sphere i. A
torque Tj is externally imposed onto sphere j that, as a consequence,
gets rigidly rotated by �

(0)
j ; see Eq. (85). Moreover, the surrounding

matrix is distorted, as described by the displacement field u(0)
j (r);

see Eq. (87). The local directions of u(0)
j (r) are marked by the small

normalized arrows. We indicated the local magnitude of u(0)
j (r) by the

background color, where brighter color represents higher magnitude
and the color values follow an arc-tangent scale. Sphere i is exposed
to the induced displacement field u(0)

j (r) and therefore gets translated

by U(1)
i and rotated by �

(1)
i , see Eqs. (88) and (89), respectively.

Explicit results are given in Eqs. (92) and (93). Overall, in this way
we obtain the corresponding contributions to the displaceability and
rotateability matrices Mtr

i=j , Mtr
i �=j , Mrr

i=j , and Mrr
i �=j in Eqs. (94)–(97),

respectively, up to inverse quartic order in the particle distances.

�
(0)
j = 1

8πμa3
Tj . (85)

Due to the stick boundary conditions, the rotated spheres
drag the surrounding matrix along and therefore generate
displacement fields as given by Eq. (32),

u(0)
i (r) =

(
a

|r − ri |
)3

�
(0)
i × (r − ri), (86)

u(0)
j (r) =

(
a

|r − rj |
)3

�
(0)
j × (r − rj ); (87)

see Fig. 4.
Similarly to the case of translated spheres, the displacement

field u(0)
j (r) resulting from the rotation of sphere j affects the

total displacement and rotation of sphere i. Moreover, due
to its rigidity, additional stresses occur when sphere i resists
deformations that would be induced by the displacement field
u(0)

j (r). The induced translation U(1)
i , additional rotation �

(1)
i ,

and rigidity-based stresslet S(1)
i exerted by sphere i can be

calculated using Eqs. (40), (54), and (58), respectively. There,

u(0)
j (r) is inserted as the imposed displacement field. We find

U(1)
i =

(
1 + a2

6
∇2

)
u(0)

j (r)

∣∣∣∣
r=ri

, (88)

�
(1)
i = 1

2
∇ × u(0)

j (r)

∣∣∣∣
r=ri

, (89)

S(1)
i = −4π (1 − ν)μa3

4 − 5ν

(
1 + a2

10
∇2

)(
1

1 − 2ν
Î∇ · u(0)

j (r)

+ 5

2

{∇u(0)
j (r) + [∇u(0)

j (r)
]T })∣∣∣∣

r=ri

. (90)

Analogously to Eq. (68), the displacement field resulting from
the rigidity-based resistance of sphere i against deformation is
given by

u(1)
i (r) = − (

S(1)
i · ∇) · G(r − ri). (91)

Since the stresslet S(1)
i here yields an expression of order r−3

ij ,

u(1)
i (rj ) is already of order r−5

ij . Therefore, we can stop our
iteration at this point, confining ourselves to contributions up to
(including) order r−4

ij . Again, all corresponding expressions for
sphere j are obtained by simply switching all indices i ↔ j .

To derive explicit analytical expressions, we insert Eqs. (85)
and (87) into Eqs. (88) and (89). We obtain

U(1)
i = − 1

8πμr2
ij

r̂ij × Tj , (92)

�
(1)
i = 1

16πμr3
ij

[3r̂ij r̂ij − Î ] · Tj , (93)

as illustrated in Fig. 4. From Eq. (92), we see that an additional
translation of sphere i only occurs, if r̂ij is not (anti)parallel to
Tj . Moreover, sphere i is translated in the same direction as the
nearest surface point of sphere j . The sense of the additional
rotation �

(1)
i that only vanishes at infinite particle separation

rij depends on the relative angular configuration according
to Eq. (93). For instance, if r̂ij ‖ Tj , i.e., both spheres and
the imposed torque Tj align along a common axis, then the
zero-order rotation �

(0)
j and the additional rotation �

(1)
i have

the same sense. For r̂ij ⊥ Tj , i.e., the imposed torque Tj is
perpendicular to the plane that contains both spheres, these
two rotations have opposite sense.

Overall, the total translation of sphere i to our desired order
is given by U(1)

i in Eq. (92). The total rotation up to (including)
order r−4

ij equals �
(0)
i + �

(1)
i ; see Eqs. (84) and (93). Therefore,

with the same reasoning as in Sec. VIII A, we can read off the
components of the corresponding displaceability matrices Mtr

ij

and rotateability matrices Mrr
ij from Eqs. (84), (92), and (93) as

Mtr
i=j = 0, (94)

Mtr
i �=j = −M r

0
r̂ij

r2
ij

× , (95)

Mrr
i=j = M r

0
1

a3
Î, (96)

Mrr
i �=j = M r

0
1

2r3
ij

[3r̂ij r̂ij − Î], (97)
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where M r
0 was introduced in Eq. (83). See also the

illustration in Fig. 4. Based on the linearity of the governing
Navier-Cauchy equations in Eq. (1), we may sum up the
influence of imposed or induced forces in Sec. VIII A and the
ones just derived for imposed or induced torques and combine
them in an overall matrix equation as given in Eq. (60).

IX. THREE-BODY INTERACTIONS

Following the same strategy as in Sec. VIII, we now derive
similar expressions for the three-body interactions. In this way,
we determine the components of the matrix Mtt(3)

i �=j in Eq. (79).
Again, we adapt the procedure for low-Reynolds-number
hydrodynamics presented in Ref. [52].

For this purpose, we now consider three rigid spherical
inclusions of radius a, located at positions ri , rj , and rk .
They are acted on by externally imposed or induced forces Fi ,
Fj , and Fk , respectively. To zeroth order, i.e., not taking into

account matrix-mediated interactions between the inclusions,
sphere i creates a displacement field as given by Eq. (63).
Corresponding expressions follow for spheres j and k by
switching indices i → j and i → k, respectively.

In analogy to Eq. (65), we can calculate from the first Faxén
law Eq. (40) the translation that sphere i acquires within the
linearly superimposed displacement fields u(0)

j (r) and u(0)
k (r).

Using u(0)
j (r) + u(0)

k (r) as the imposed field on the right-hand
side of Eq. (40), we obtain

U(1)
i =

(
1 + a2

6
∇2

)[
u(0)

j (r) + u(0)
k (r)

]∣∣∣∣
r=ri

. (98)

Corresponding expressions follow for spheres j and k by
switching in this equation i ↔ j and i ↔ k, respectively.

Again, sphere i resists any deformation that would be
implied by the matrix deformations described by u(0)

j (r) and

u(0)
k (r). The resulting stresslet that sphere i thus exerts onto

the matrix can be calculated in analogy to Eq. (67) and using
Eq. (58),

S(1)
i = −4π (1 − ν)μa3

4 − 5ν

(
1+ a2

10
∇2

)[
1

1 − 2ν
Î∇ · [

u(0)
j (r)+u(0)

k (r)
]

+ 5

2

(∇[
u(0)

j (r)+u(0)
k (r)

]+{∇[
u(0)

j (r)+u(0)
k (r)

]}T )]∣∣∣∣
r=ri

. (99)

It produces the displacement field

u(1)
i (r) = − (

S(1)
i · ∇) · G(r − ri), (100)

see Eq. (23), due to the resistance of sphere i to deformations implied by u(0)
j (r) and u(0)

k (r). Once more, expressions for spheres
j and k are obtained from this equation by replacing i → j and i → k, respectively.

Next, we use the sum of the resulting displacement fields u(1)
j (r) + u(1)

k (r) as the imposed field on the right-hand side of Faxén’s

first law, Eq. (40). In this way, we can calculate the additional translation U(2)
i that sphere i experiences in these rigidity-induced

displacement fields,

U(2)
i =

(
1 + a2

6
∇2

)[
u(1)

j (r) + u(1)
k (r)

]∣∣∣∣
r=ri

. (101)

At first glance, this expression is of identical shape as Eq. (70) for the two-sphere interaction. The only difference seems to be
that here we take into account the two contributions from the two spheres j and k, instead of only one. Indeed, we here recover
all contributions that we have already identified in Sec. VIII A. However, there is now more to that.

For simplicity, let us for the moment only consider in Eq. (101) the effect of the displacement field u(1)
k (r), where the latter

according to Eq. (100) is given by

u(1)
k (r) = − (

S(1)
k · ∇) · G(r − rk). (102)

Here, S(1)
k is the stresslet that sphere k exerts onto the surrounding matrix due to its rigidity. It arises as sphere k opposes to

deformations implied by u(0)
i (r) and u(0)

j (r). The latter displacement fields directly result from the external forces Fi and Fj acting
onto spheres i and j , respectively. These two forces lead to two different scenarios.

The first scenario has already been described in Sec. VIII A. A force Fi acting onto sphere i generates the displacement field
u(0)

i (r). This field is reflected by sphere k. Then it acts back onto sphere i in the form of u(1)
k (r), contributing to U(2)

i in Eq. (101).
We abbreviate this chain of matrix-mediated interactions as i ← k ← i.

In the second scenario, a force Fj acting onto a third sphere j induces a displacement field u(0)
j (r). This field is then reflected by

sphere k due to its rigidity in the form of u(1)
k (r). However, in the present three-body configuration, the reflected field also affects

sphere i and contributes to its displacement U(2)
i in Eq. (101). This three-body interaction thus defines a further contribution in

addition to the pairwise interactions derived in Sec. VIII A. We abbreviate the corresponding chain of matrix-mediated interactions
as i ← k ← j .
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Altogether, we find two such three-body interactions contributing to U(2)
i in Eq. (101) in addition to the pairwise interactions.

The first one works as described, i ← k ← j , and we denote it as U(2)
ikj . The second one works via i ← j ← k, which would

then be termed U(2)
ijk . Explicit calculation yields

U(2)
ikj =−

(
1 + a2

6
∇2

)(
S(1)

k · ∇) · G(r − rk)

∣∣∣∣
r=ri

= 1

64π (1 − ν)(4 − 5ν)μ

a3

r2
ikr

2
jk

(−10(1 − 2ν){(1 − 2ν)[(r̂ik · r̂jk)Î + r̂jk r̂ik]

+ 3(r̂ik · r̂jk)(r̂ik r̂ik + r̂jk r̂jk) − r̂ik r̂jk} + 3[7 − 4ν − 15(r̂ik · r̂jk)2]r̂ik r̂jk) · Fj + O[(rik,rjk)−5]. (103)

U(2)
ijk is readily obtained from this expression by switching indices j ↔ k.
In summary, to our desired order, i.e., up to (including) quartic order in the inverse particle separation distances, two- and

three-body interactions contribute to U(2)
i . The latter follow from Eq. (103) for i �= j . For i = j , Eq. (103) exactly reproduces the

two-body contributions listed already in Eq. (75). Again due to the linearity of the governing elasticity equations Eq. (1), we may
simply add the additional contributions U(2)

ijk and U(2)
ikj to our previous explicit analytical expression for the overall displacement

of sphere i.
Superimposing all contributions that result for the coupled displacements and rotations of N identical spherical inclusions, we

return to our formalism in terms of the displaceability and rotateability matrices in Eq. (60). We can now read off from Eq. (103)
the additional three-body contribution Mtt(3)

i �=j to the displaceability matrix in Eq. (79) [14],

Mtt(3)
i �=j = M t

0
3

8(4 − 5ν)(5 − 6ν)

N∑
k=1
k �= i,j

(
a

rik

)2(
a

rjk

)2

(−10(1 − 2ν){(1 − 2ν)[(r̂ik · r̂jk)Î + r̂jk r̂ik]

+ 3(r̂ik · r̂jk)(r̂ik r̂ik + r̂jk r̂jk) − r̂ik r̂jk} + 3[7 − 4ν − 15(r̂ik · r̂jk)2]r̂ik r̂jk), (104)

where M t
0 was introduced in Eq. (80). This expression is exact up to (including) order (rik,rjk)−4.

It can readily be seen that rotations caused by three-body interactions are of higher order than (rik,rjk)−4. The additional
rotation �

(2)
i of sphere i due to the reflected displacement fields u(1)

j (r) and u(1)
k (r) follows from Faxén’s second law Eq. (54) and

reads

�
(2)
i = 1

2
∇ × [

u(1)
j (r) + u(1)

k (r)
]∣∣

r=ri
. (105)

This expression is already of order (rik,rjk)−5, because both
u(1)

j (ri) and u(1)
k (ri) are of order (rik,rjk)−4, which is obtained

by combining Eqs. (13), (63), (99), (100), and (102). Therefore,
to our desired order, we find

Mrt(3)
i �=j = 0. (106)

Similarly, we do not obtain any three-body contribution
to the remaining displaceability and rotateability matrices
up to our desired order. Reconsidering the above derivation
of Mtt(3)

i �=j , we find that solely the lowest-order parts of all
contributing expressions finally enter Eq. (104). When torques
are externally imposed on or induced between the individual
spheres, already the resulting zero-order displacement fields
are one order higher in the inverse separation distances. This
follows by comparing Eqs. (84)–(87) to the case of imposed
or induced forces, see Eqs. (13), (63), and (64). Therefore, the
reflected displacement fields due to the rigidity of the spherical
inclusions, see Eqs. (99) and (100), already yield expressions
of order (rik,rjk)−5. Thus, we find to our desired order

Mtr(3)
i �=j = 0, (107)

Mrr(3)
i �=j = 0. (108)

These results complete our derivation of the displaceability
and rotateability matrices up to (including) inverse quartic

order in the separation distances between the individual
spherical particles.

Naturally, for larger deformations, the more the nonlinear-
ities in the elastic response of the embedding matrix become
significant, the less exact our approach will become. In non-
linearly elastic situations, if an exact quantitative evaluation is
necessary, simulations are still mandatory. Yet, for a first and
quick qualitative scan in the absence of bifurcational behavior,
our analytical expressions will in many cases be helpful.
Moreover, our approach may still be valuable to significantly
speed up corresponding simulations. For this purpose, the
configuration calculated from our linearly elastic formalism
could be used as an initialization in iterative simulation
methods.

X. SOME ILLUSTRATIVE EXAMPLES

Confining ourselves to the sole effect of induced forces
between the embedded particles, we have in a previous
work determined the resulting coupled translations [14]. For
this purpose, we considered an example system of identical
spherical paramagnetic particles that were embedded in a
planar configuration into a soft elastic polymeric gel matrix.
Then, an external magnetic field was applied and rotated within
the configurational plane. In this way, magnetic interactions
between the particles were induced and tuned by rotating the
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field. The elevated amplitude of the magnetic field caused a
close-to-saturation magnetization of the particles. Thus, the
induced magnetic dipole moments m = mm̂ (m = |m|) of
the particles could be considered identical and aligned along
the external magnetic field. Then, the magnetic dipole–dipole
force on a particle i is given by [74]

Fi = − 3μ0m
2

4π

N∑
j =1
j �= i

5r̂ij (m̂ · r̂ij )2 − r̂ij − 2m̂(m̂ · r̂ij )

r4
ij

,

(109)
where μ0 is the magnetic vacuum permeability and N the
total number of particles. We then evaluated the coupled
translations resulting for the magnetized particles in response
to the induced magnetic forces. Based on the magnetic nature
of the particles and their size, this pure focus on induced forces
and resulting translations was justified.

Here, we consider the effect of additional torques applied
to the particles. The translationally and rotationally coupled
situation is analyzed. We demonstrate for some minimal ex-
ample configurations how the additional torques and rotational
couplings modify our previous results.

For illustration, we assume the following idealized model
situation. Again, we consider identical spherical magnetizable
particles with no-slip surface conditions. As before, a strong
external magnetic field shall be applied that saturates the
magnetization of the particles and always keeps their mag-
netic moments oriented along the external field. However,
the particles shall now be magnetically anisotropic. More
precisely, we assume uniaxial magnetic anisotropy. That is,
an energetic penalty arises whenever the nonpolar axis n̂i of
magnetic anisotropy of each particle i is not aligned parallel to
the direction m̂ = B̂ of the external magnetic field. Assuming
particles of this kind and following the idealized Stoner-
Wohlfarth model [75], the energetic penalty for misalignment
is expressed as

ESW = KVS[1 − (n̂i · B̂)2]. (110)

In general, VS denotes the volume of each particle and the
anisotropy parameter K quantifies the strength of its uniaxial
magnetic anisotropy. Its magnitude may vary significantly
with the magnetic nature of the particles and their shape.
One factor is the type of internal lattice structure in the
particles that may cause the magnetic anisotropy [76,77].
Moreover, an elongated, e.g., rod-like shape of the particles
may likewise cause magnetic uniaxiality [11,13]. Since here
we are considering spherical particles, our uniaxiality must
be due to a magnetocrystalline anisotropy axis. Below, we
set the rescaled relative strengths of magnetic interactions
m2μ0/μa6 = 22.5 × 103 and 24.5 × 103 for the considered
two- and three-particle systems, respectively, corresponding
to the experimental parameters in our previous study [14].
Moreover, we then choose a comparatively low value for the
rescaled anisotropy parameter of K/μ = 3 [78]. It leads to an
effect that shows up in an illustrative way when comparing
to corresponding results in the absence of imposed torques.
Using Eq. (110), we can calculate the imposed torque on each
particle i resulting from its orientation with respect to the

FIG. 5. (a) Schematic illustration of the modified initial spatial
configuration of a two-particle system that had been investigated
before in Ref. [14] in the absence of induced torques. The double ar-
rows indicate the initial orientations of additional magnetic anisotropy
axes. ϑ here is defined as the angle between the unit vector x̂ and
the direction B̂ of an external magnetic field (right-handed system).
This external magnetic field is initially applied parallel to x̂ and then
rotated counterclockwise in the xy plane until ϑ = 180◦. Magnetic
forces arise between the particles as given by Eq. (109) due to induced
magnetic moments m ‖ B. (b) Plot of the z components of the rotation
vectors �i of the particles as functions of ϑ . In this configuration,
all rotations occur in the xy plane, therefore all other components of
�i vanish. The continuous line represents the rotations of particles
1 and 2, if induced torques are set to zero. The dashed and dotted
lines show the results when the torques are included as they result
from Eqs. (110) and (111). The maximum magnitudes of rotation
occur around ϑ = 45◦ and 135◦, respectively, as expected from the
underlying Stoner-Wohlfarth model, with opposite signs beyond 90◦

because the anisotropy axes do not have any preferred direction. (c)
The y components of the displacement vectors Ui without (continuous
lines) and with (dashed) inclusion of the torques. The curves are
labeled by the particle numbers; see (a). In this setup, the torques
amplify the magnitudes of the displacements due to their sense of
rotation.

external magnetic field,

Ti = 2KVS(n̂i · B̂) n̂i × B̂. (111)

Since the forces Fi change with altering interparticle distance
(during the process of particle displacement), we had imple-
mented an iterative loop to calculate the magnetic forces in
the final state [14]. Now, we have extended the approach to
include the torques Ti . Their magnitude finally decreases with
progressing rotation of the anisotropy axis towards the external
magnetic field.

In Figs. 5–9 we display our results for two- and three-
particle example configurations. The initial spatial arrange-
ments, distances, and material parameters are the same as
in Ref. [14]. In each of Figs. 5–9, a schematic sketch (a)
indicates the initial orientation of the magnetic anisotropy
axes. The external magnetic field is applied in the indicated
xy plane (right-handed coordinate system) and rotated in a
counterclockwise way, starting from B̂ · x̂ = 1. The plots (b)
in each figure illustrate the resulting rotations �i as functions
of the angle ϑ = arccos(B̂ · x̂) of the magnetic field direction.
Moreover, the plots (c) show the displacements Ui in distinct
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FIG. 6. The same as in Fig. 5, except for the orientations of the
anisotropy axes. They are now initially oriented along ŷ; see (a).
Therefore, the particles are rotated inversely when compared to Fig. 5,
as shown by the dashed and dotted lines in (b). Overall, this now leads
to an attenuation of the displacements in ŷ direction (c).

directions. Continuous lines represent the results without
imposed torques, whereas dashed and/or dotted lines represent
the results for the torques Ti included. For distinction, the
curves are labeled by the corresponding particle numbers.

Several different initial configurations of the anisotropy
axes were considered in Figs. 5–9. All plotted quantities
were calculated via Eqs. (60), (78)–(83), (94)–(97), (104),
and (109)–(111). The resulting calculated rotations and their
amplifying or dampening effects on the particle displacements
can be qualitatively comprehended with the help of simple
geometric considerations. For example, in Fig. 5(a) the
anisotropy axes of both particles 1 and 2 are initially oriented
along the x̂ axis. From Eq. (111) it then follows that the
torques T1 and T2 (and thus the directly induced rotations)
are maximized around ϑ = 45◦; see Fig. 5(b). Both particles
are therefore rotated in counterclockwise direction, thereby
creating displacement fields in the surrounding matrix (see
also Fig. 4). As a result of their matrix-mediated interactions,
particle 2 is pushed into the ŷ direction due to the torque
T1, whereas particle 1 is pushed into the (−ŷ) direction due
to T2, see the dashed lines in comparison to the continuous
lines in Fig. 5(c) around ϑ = 45◦. Overall, this leads to an
amplification of the particle displacements |Ui,y | for all ϑ .

In contrast to that, in Fig. 6 the anisotropy axes are initially
aligned along the ŷ axis, i.e., perpendicular to the anisotropy
axes in Fig. 5. All other parameters remain unchanged. As a
consequence, the sense of rotation of both particles is inverted
with respect to the previous configuration, see Figs. 5(b)
and 6(b). This leads to a mutual damping of the magnitudes
|Ui,y |, see Fig. 6(c), in opposition to the previous situation in
Fig. 5(c).

Another example is depicted in Fig. 7, where the anisotropy
axis n̂2 of particle 2 remains the same as in Fig. 5. However,
n̂1 now points out of the xy plane, along the ẑ axis. That is,
n̂1 is always oriented perpendicular to the external magnetic
field B̂. From Eq. (111) we find that T1 = 0 for all ϑ . Thus,
there is no directly induced rotation of particle 1 that would
modify the overall displacement of particle 2. In contrast to
that, the displacement U1,y in Fig. 7(c) remains identical to
U1,y in Fig. 5(c).

FIG. 7. The same as in Fig. 5, but now the anisotropy axis of
particle 1 is along ẑ; see (a). (b) Then, the induced torque T1 vanishes
for all ϑ and particle 1 is only weakly rotated due to the rotation–
translation coupling in Eq. (82). Therefore, we do not observe a
change in the displacements U2,y in (c) when the torques are included.

In Fig. 8(a), the spatial configuration of the three-particle
system studied in Ref. [14] is illustrated. Additional anisotropy
axes are chosen such that they are rotated by 120◦ with respect
to each other, all of them confined to the xy plane. This is
reflected by the resulting phase-shift in the torque-induced
rotations, see Fig. 8(b). The displacement Ui of each particle

FIG. 8. Similar to Fig. 5 but now for a three-particle system. (a)
Schematic illustration of the initial spatial configuration of the three-
particle system in Ref. [14] and the orientations of the added initial
anisotropy axes. Here, the anisotropy axes n̂i are rotated with respect
to each other by 120◦, with n̂3 along ŷ. (b) Plot of the z components of
the rotation vectors �i . Again, in this configuration all rotations take
place in the xy plane. The individual curves are phase-shifted with
respect to each other according to the initial shifted orientations of
the anisotropy axes. (c) Projection of the displacements Ui onto the
interparticle unit vector r̂jk set by the respective other particles [with
(i,j,k) ∈ {(1,2,3),(2,3,1),(3,1,2)}]. The induced torques amplify the
magnitudes of displacements in the directions r̂jk (dashed lines). Due
to small deviations of the configuration from a perfect equilateral
triangle [14], the curves are not simply phase-shifted with respect to
each other.
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FIG. 9. The same as in Fig. 8, but now the anisotropy axes
are oriented “randomly” in all three dimensions as indicated in
(a). (b) Here, components of the rotations �i are plotted as
	1,z,	2,z,[(	3,x)2 + (	3,y)2]1/2. Since initially n̂3 is almost oriented
along ẑ, the torques T3 and therefore the rotations �3 are relatively
small compared to those of particles 1 and 2, which have a larger
projection onto the xy plane. Moreover, the symmetry of Fig. 8(b)
does not exist anymore. (c) Due to the additional torques, the
projections Ui · r̂jk for particles 1 and 2 are reduced (dashed lines),
whereas the result for particle 3 remains qualitatively the same as in
Fig. 8. Here, additional displacements out of the xy plane occur (not
shown).

i in Fig. 8(c) is projected onto the interparticle unit vector
r̂jk between the two other particles j and k, i.e., (i,j,k) ∈
{(1,2,3),(2,3,1),(3,1,2)}. An amplification is observed for
all of these displacement components. This can be directly
inferred from the sense of the imposed rotation of each particle,
see also Fig. 4 and Eq. (92).

Finally, a random initial configuration of the anisotropy
axes was chosen in Fig. 9(a) for the same spatial configuration
as in Fig. 8(a). In view of the initial setup, we plot in Fig. 9(b)
the components 	1,z, 	2,z, and [(	3,x)2 + (	3,y)2]1/2 of the
rotation vectors. Since n̂3 is nearly oriented along the ẑ axis,
the torque T3 and therefore the overall rotation �3 is mostly
relatively weak when compared to T1 and T2; see Fig. 9(b).
The orientations of the anisotropy axes of particles 1 and 2
can roughly be compared with those of particles 2 and 1
in Fig. 8(a), respectively, i.e., their roles are approximately
inverted. This leads to a mutual reduction of the depicted
displacement amplitudes of particles 1 and 2 in Fig. 9(c)
when the torques are included. In contrast to that, the depicted
displacement of particle 3 remains qualitatively the same as in
Fig. 9(c).

In addition to that, we have tested how the modifications
above would affect the induced changes in interparticle
distances that had been plotted in Ref. [14]. However, the
relative deviations from the situations without torques were
only of the order ∼10−2.

XI. CONCLUSIONS AND OUTLOOK

In summary, we have presented the derivation of explicit
analytical expressions to calculate from given forces and

torques acting on rigid spherical inclusions in an elastic
matrix their resulting coupled displacements and rotations.
The surrounding elastic matrix is assumed to be an infinitely
extended, homogeneous, isotropic elastic medium with stick
boundary conditions on the inclusion surfaces. Matrix defor-
mations are induced by the forces and torques acting on the
inclusions. These deformations lead to mutual, long-ranged,
matrix-mediated interactions between the rigid inclusions.
The role of such matrix-mediated interactions is implicitly
contained in our resulting analytical expressions. Technically,
to perform the derivation, the well-known approach in terms
of Faxén’s theorems and the method of reflections is adapted
from the field of low-Reynolds-number hydrodynamics [52].
Throughout, we have included the case of compressible
elastic environments. We summarize our results in terms of
displaceability and rotateability matrices that are functions
of the given inclusion configuration only. These matrices
express how given forces and torques on the inclusions lead to
their coupled displacements and rotations. In the considered
static, linearly elastic case of nontouching inclusions, these
expressions replace the need for finite-element simulations
that explicitly calculate the matrix deformations between the
inclusions.

As a next step, more complex inclusion geometries can
be addressed. Of particular interest are elongated particles
that can more directly be exposed to external torques and
are also used for microrheological purposes [11–13]. The-
oretically, it should be possible to derive expressions for
ellipsoidal inclusions [51,65], but due to the significantly
more complicated structure of such expressions they may
already be of limited use for practical applications. Long
thin rods could be approximated by long chains of spheres
[52]. Recent experiments observed a buckling of chains
of spherical magnetic particles in soft gel matrices under
perpendicular magnetic fields [79]. Possibly, such behavior
could likewise be interpreted more quantitatively in terms of
our formalism. As in low-Reynolds-number hydrodynamics,
more complex inclusion objects should become accessible
by the raspberry model, i.e., collections of rigidly connected
identical spheres that as an entity represent more complex
objects [80–82]. Moreover, similarly to low-Reynolds-number
hydrodynamics, the effect of system boundaries should be
analyzed [83,84]. Possibly, also hydrodynamic methods to
describe more concentrated colloidal suspensions [85,86]
could be transferred to the case of elastic environments.

Our results will be helpful in the quantitative interpretation
of microrheological experiments [6–13], as already indicated
in our previous work [14]. In principle, they should apply
to different sorts of elastic matrix environments, as long as
the material appears sufficiently homogeneous and isotropic
down to the scale of the probe particle. For example, a related
picture applies to the modeling of active forces generated
by and within biological cells, where particularly the effect
of active force dipoles is investigated [87,88]. Another field
of application is to further characterize the tunability of
composite materials by externally imposed fields [15,27–33].
For example, the change in the linear elastic moduli of
magnetorheological elastomers when applying an external
magnetic field could be addressed using our formalism. The
method could be combined with statistical descriptions that

053002-17



MATE PULJIZ AND ANDREAS M. MENZEL PHYSICAL REVIEW E 95, 053002 (2017)

use a probability distribution to characterize the arrangement
of the inclusions in an elastic matrix [89].

One strength is that larger numbers of inclusions can
be handled than with simulation methods that explicitly
resolve the matrix environment [23,34,46–49], at least to the
accuracy given by the expansion in the particle distance and
as long as linear elasticity theory is sufficient to describe the
resulting matrix deformations to the desired degree of accu-
racy. Naturally, concerning the latter point, nonlinear elastic
effects arising in real materials with increasing amplitude of
deformation will first quantitatively affect the results and may,
for large degrees of deformation, even lead to qualitative
differences in the behavior. Extending such formalisms as
the present one to the nonlinear regime is a nontrivial future
task and incomparably more involved. Nevertheless, as we
have demonstrated, in many cases numerical and experimental

results are still well reproduced. Thus, considering the explicit
form of our resulting anlytical expressions and their efficient
numerical evaluation, our approach will still be beneficial for
analyzing the behavior of real materials. For example, it allows
to quickly qualitatively scan the response of a multitude of
different possible particle distributions and internal structural
realizations in elastic composites. In this way, our approach
shall help to quantitatively support the development of tunable
composite materials designed for a specific requested purpose.
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APPENDIX A

Equation (12) can be solved by Fourier forth and back transformation. The former replaces the nabla operator ∇ by ik and
the Dirac delta function δ(r − r0) by 1 in Eq. (12),

λkpimk̂mk̂pk2G̃ij (k) = δjk, (A1)

with the unit vector k̂ = k/k in k-space. Inserting

λkpimk̂mk̂p = μ

[
δik + λ + μ

μ
k̂i k̂k

]
(A2)

via Eq. (7), we can solve for the Green’s function in Fourier space:

G̃(k) = 1

μk2

[
Î − λ + μ

λ + 2μ
k̂k̂

]
= 1

μk2

[
Î − 1

2(1 − ν)
k̂k̂

]
, (A3)

with Î the identity matrix and k̂k̂ a dyadic product. Next, we transform back to real space,

G(r) = 1

(2π )3

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ

∫ ∞

0
dkk2eik·rG̃(k) = 1

(2π )3μ

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ

∫ ∞

0
dk eikr cos ϑ

[
Î − 1

2(1 − ν)
k̂k̂

]
.

(A4)

The Dirac delta function is linked to its Fourier transform via∫ ∞

−∞
dk eikx =

∫ ∞

−∞
dk[cos(kx) + i sin(kx)] = 2πδ(x). (A5)

Keeping this in mind, the k-integral in Eq. (A4) is reformulated:∫ ∞

0
dk eikr cos ϑ =

∫ ∞

0
dk cos(kr cos ϑ) +

∫ ∞

0
dk i sin(kr cos ϑ) = 1

2

∫ ∞

−∞
dk cos(kr cos ϑ) +

∫ ∞

0
dk i sin(kr cos ϑ)

= 1

2

∫ ∞

−∞
dk[cos(kr cos ϑ) + i sin(kr cos ϑ)] − 1

2

∫ 0

−∞
dk i sin(kr cos ϑ)

= πδ(r cos ϑ) − 1

2

∫ 0

−∞
dk i sin(kr cos ϑ). (A6)

We find that the second term in the last line of the previous expression does not contribute. Upon inserting it into Eq. (A4), it
leads to ∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ

∫ 0

−∞
dk sin(kr cos ϑ)

[
Î − 1

2(1 − ν)
k̂k̂

]
. (A7)
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Substituting u = cos ϑ and −du = sin ϑ dϑ , it can easily be seen that the first term in the square brackets leads to an odd
function of u and therefore vanishes upon integration over du from u = 1 to −1. Calculating for the second term in the square
brackets all matrix components k̂i k̂j explicitly by inserting the components of k̂, the second term is found to vanish as well.

Thus, for the remainder of Eq. (A4), we obtain

G(r) = 1

8π2μr

∫ 2π

0
dϕ

∫ 1

−1
du δ(u)

[
Î − 1

2(1 − ν)
k̂k̂

]
= 1

8π2μr

∫ 2π

0
dϕ

[
Î − 1

2(1 − ν)
k̂k̂

]∣∣∣∣
k̂·r=0

, (A8)

with the condition k̂ ⊥ r arising from the delta function. Thus, k̂ can be expressed as

k̂ = α̂ cos ϕ + β̂ sin ϕ, (A9)

with the constant unit vectors α̂ and β̂, α̂ ⊥ β̂, and α̂ ⊥ r ⊥ β̂. Then, α̂, β̂, and r̂ = r/r form an orthonormal basis, and we can
write

α̂α̂ + β̂β̂ + r̂r̂ = Î. (A10)

Inserting Eq. (A9) into Eq. (A8), we evaluate the remaining integral over dϕ and obtain

G(r) = 1

8πμr

[
2Î − 1

2(1 − ν)
(α̂α̂ + β̂β̂)

]
= 1

8πμr

[
2Î − 1

2(1 − ν)
(Î − r̂r̂)

]
. (A11)

Finally, combining the prefactors of Î leads to the expression for the elastic Green’s function in Eq. (13).

APPENDIX B

Our goal is to evaluate the integral

1

2

∫ ∞

−∞
dk

sin(ka)

ka
eikk̂·r (B1)

appearing in Eq. (46). For this purpose, we rewrite the expression by substituting z = ka:

1

2

∫ ∞

−∞
dk

sin(ka)

ka
eikk̂·r = 1

4ia

∫ ∞

−∞
dz

1

z

[
eiz(1+ k̂·r

a
) − eiz(−1+ k̂·r

a
)
]
. (B2)

The evaluation can be accomplished in a straightforward way by using contour integration in the complex z plane. We start by
considering only the first term on the right-hand side and define the function

f (z) = 1

z
eiz(1+ k̂·r

a
). (B3)

Depending on the value of k̂ · r/a, the integration path is amended on a case-by-case basis over a semicircle of infinite radius
R in either the upper or the lower complex z half-plane. Starting with k̂ · r/a > −1, the integration path is closed in the upper
z half-plane. According to Cauchy’s integral theorem, in our case all closed integration paths that do not contain the origin are
zero, therefore

0 =
∮

dz f (z) = lim
R→∞

[ ∫ −ε

−R

dz f (z) −
∫
Cε

dz f (z) +
∫ R

ε

dz f (z) +
∫
CR

dz f (z)

]
, (B4)

with Cε = {εeiϕ | 0 � ϕ � π} and CR = {Reiϑ | 0 � ϑ � π}. The integral over the path CR vanishes for R → ∞. Combining
these relations with the principal value,

P
∫

(. . .) = lim
ε↘0

[ ∫ −ε

−∞
(. . .) +

∫ ∞

ε

(. . .)

]
, (B5)

we obtain in this first case

P
∫ ∞

−∞
dz f (z) = lim

ε↘0
i

∫ π

0
dϕ eiεeiϕ (1+ k̂·r

a
) = iπ. (B6)

Similarly, for k̂ · r/a < −1 we amend the integration path over the semicircle of infinite radius in the lower z half-plane and
obtain for the principal value

P
∫ ∞

−∞
dz f (z) = − lim

ε↘0
i

∫ 2π

π

dϕ eiεeiϕ (1+ k̂·r
a

) = − iπ. (B7)
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An analogous procedure for the second term on the right-hand side of Eq. (B2) yields

P
∫ ∞

−∞
dz

1

z
eiz(−1+ k̂·r

a
) =

{
iπ, for k̂·r

a
> 1,

−iπ, for k̂·r
a

< 1.
(B8)

Inserting Eqs. (B6)–(B8) into Eq. (B2) finally leads to [52]

1

2

∫ ∞

−∞
dk

sin(ka)

ka
eikk̂·r =

{
π
2a

, for − 1 < k̂·r
a

< 1,

0, otherwise.
(B9)
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