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Contact angles of a drop pinned on an incline
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For a drop on an incline with small tilt angle α, when the contact line is a circle of radius r , we derive the
relation mg sin α = γ r π

2 (cos θmin − cos θmax) at first order in α, where θmin and θmax are the contact angles at
the back and at the front, m is the mass of the drop and γ the surface tension of the liquid. We revisit in this
way the Furmidge model for a large range of contact angles. We also derive the same relation at first order in
the Bond number B = ρgR2/γ , where R is the radius of the spherical cap at zero gravity. The drop profile is
computed exactly in the same approximation. Results are compared with surface evolver simulations, showing a
surprisingly large range of contact angles for applicability of first-order approximations.
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I. INTRODUCTION

Pinning and depinning of a drop on an incline is a subject
with a long history in the field of surface phenomena. See
Refs. [1–4] for historical references, and see Refs. [5–19] for
more recent work. Depinning and eventual roll-off of a drop
on an incline have attracted renewed attention in recent years,
motivated not only by fundamental understanding but also by
several applications: moving droplets during condensation as
controlled by the Stenocara beetle [20], wiper-free windscreen
[21], transport of chemicals in a microfluidic system, etc.
The roll-off angle is often used to characterize the quality
of a surface: if it is small, say below 5◦, the surface is
considered as perfect, such as a piece of glass or silica
wafer. If the roll-off angle is large, say above 10◦, then
the surface must be heterogeneous, physically in terms of
topographical defects or chemically in terms of various species
covering the surface, or for most of the industrial cases, both
[22]. For superhydrophobic surfaces, this roll-off angle is
of great importance. A superhydrophobic surface is indeed
characterized by a receding contact angle above 135◦ and a
roll-off angle below 10◦.

The external force described here is presented as gravity
but it can be generalized to many other types of force such
as thermal gradient, electrical field, chemical heterogeneities.
Quite often, the derived expressions or formulas are rather
approximate, with a lack of symmetry leading to a limited
range of validity. We are herewith willing to consider the
pinning or depinning of a sessile droplet for a very large range
of contact angles, including therefore the superhydrophobic
case. We believe that our results will help develop more
elaborate numerical simulations to study depinning on real
surfaces. For the sake of clarity, let us now introduce some
definitions. The advancing and receding contact angles may
be viewed as follows (see Ref. [23] for background and
references): consider a small piece of contact line where the
three phases meet. The sum of forces parallel to the solid
surface, per unit length of contact line, is perpendicular to the
line and defines the local spreading coefficient γSV − γSL −
γ cos θ = γ (cos θY − cos θ ), where θ is the local contact

angle and θY is the Young angle implied by the equation. The
local contact angle θ is a macroscopic quantity, with smooth
variation on the macroscopic scale, because the fluid surface
is smooth. The Young angle θY , before averaging, follows the
heterogeneity of the solid surface energies γSV − γSL and may
vary in a range θ1 � θY � θ2. If the local contact angle θ falls
in this range then the piece of contact line will undergo positive
and negative spreading coefficients and thus will be pinned.
Otherwise, it will move to one side or the other, defining
advancing and receding contact angles.

This is a simplified picture, notably because it deals with
metastability through equilibrium macroscopic notions only,
which will be wrong at the nanoscale. One should also
distinguish Wenzel states wetting nanopores from Cassie-
Baxter states with air pockets, etc. The advancing and receding
angles θA and θR are defined experimentally. But the basic
mechanism should be valid and should imply the following
scenario: a drop is gently deposited on a horizontal substrate;
the macroscopic contact line is a circle. Suppose the contact
angle is θ0 with θR < θ0 < θA. Now tilt the substrate by
a small angle α. The contact angle along the contact line
becomes a function of azimuth, θ = θ (ϕ), oscillating around θ0

and therefore satisfying θR < θ (ϕ) < θA for all ϕ ∈ [−π,π ].
The contact line is pinned everywhere and remains circular.
Upon increasing α, depending upon θ0, the maximum of
θ (ϕ) will reach θA or the minimum will reach θR and a
corresponding piece of the contact line will move by a finite
amount, not yet the roll-off. The remaining piece holds the
drop. Upon increasing α further, eventually the remaining
piece will be unable to hold the drop, with the minimum
contact angle at θR and the maximum at θA: the drop will
roll off. Such a scenario with three different transitions has
been experimentally observed in Ref. [11] and numerically
implemented in Ref. [24]. If θ0 = θA or θR , of course the first
stage is skipped, and the circle is deformed as soon as α > 0.
The importance of the deposition history was already stressed
in Refs. [17,25–27].

Here we consider the first stage, where the contact line is
pinned as a circle of radius r0. We denote θmax

α and θmin
α the
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FIG. 1. Water drop on hydrophobic incline at angle α = 30◦.
Volume V � 42 μL. Pinned base radius r0 � 2.0 mm. Simulated with
surface evolver.

contact angles at the front and at the back of the drop when the
tilt angle is α (see Fig. 1). We show, for any B, for small α,

mg sin α = γ r0
π

2

(
cos θmin

α − cos θmax
α

) + O(α3), (1)

and for any α, for small B,

mg sin α = γ r0
π

2

(
cos θmin

α − cos θmax
α

) + O(B2), (2)

where B is the Bond number defined in the abstract. Our
derivations are analytic, but a factor π/2 or very near π/2 was
found previously from numerical solutions using the finite
elements method [28] or from experiments [29,30]; see Fig. 4
in Ref. [30]. We have used surface evolver [31] to compare
first-order approximations and numerically almost exact re-
sults, showing a good agreement in the full range 0 < θR <

θmin
α < θmax

α < θA < π . For extensive applications of surface
evolver to microdroplets; see, for instance, Refs. [32,33].

II. SESSILE DROP

We start from a sessile drop on a plane horizontal substrate,
with three-phase contact-line a circle of radius r0. We use
cylindrical coordinates (z,r,ϕ) with origin at the center of
the contact-line circle. The hydrostatic pressure just below
the drop surface is p = p0 − ρgz, where p0 is the pressure
at the origin and z = z(r) is the drop profile, obeying the
Laplace-Young equation,

p − patm = −2γH = −γ

(
z′′

(1 + z′2)3/2
+ z′

r (1 + z′2)1/2

)
,

where γ is the liquid-air surface tension and H is the
mean curvature: 2H = 1/R1 + 1/R2, where R1 and R2 are
the principal radii of curvature, with signs. The boundary
conditions are z′(0) = 0 , z(r0) = 0. Eliminating the pressure
gives

p0 − patm = ρgz − 2γH. (3)

The parameters r0 and p0 − patm may be changed in terms
of drop volume and macroscopic contact angle θ0. This angle
depends upon the way the sessile drop was deposited on the

substrate and can be any angle between the receding angle and
the advancing angle.

Let us now tilt the substrate by an angle α and assume
that the contact line does not move, as discussed above. We
keep cylindrical coordinates with z axis perpendicular to the
substrate, so that the hydrostatic pressure is now

p = p0 − ρgz cos α + ρgx sin α,

where the x axis is chosen in the direction of the downward
slope. Then Eq. (3) becomes

p0 − patm = ρgz cos α − ρgx sin α − 2γH, (4)

where now z = z(r,ϕ), with partial derivatives denoted
zr ,zϕ,zrr ,zrϕ,zϕϕ , and

2H = (
r2

(
z2
r + 1

) + z2
ϕϕ

)−3/2[
rzrr

(
z2
ϕ + r2

) + zrr
2
(
z2
r + 1

)
+ 2zrzϕ(zϕ − rzrϕ) + rzϕϕ

(
z2
r + 1

)]
. (5)

At small tilt or small Bond number the solution to
Eq. (4) will generally admit a Taylor expansion in a small
parameter, and one may attempt to solve Eq. (4) order by
order. We consider the first order, which corresponds to
linearizing Eq. (4). We assume that order zero has cylindrical
symmetry, so that z(r,ϕ) = z0(r) + αz1(r,ϕ) + higher orders,
or a similar formula with the Bond number instead of α, and
the appropriate z0 in each case. Inserted into Eq. (5), this yields
H = H0 + αH1 + higher orders or a similar formula with the
Bond number instead of α, with, in any case,

2H1 = (
1 + z′2

0

)− 3
2 z1rr + (

1 + z′2
0

)− 1
2

z1ϕϕ

r2

+ (
1 + z′2

0

)− 3
2
z1r

r
− 3z′′

0z
′
0

(
1 + z′2

0

)− 5
2 z1r . (6)

Volume conservation and boundary conditions apply to all
orders. In particular,

0 =
∫ π

−π

dϕ

∫ r0

0
dr r z1(r,ϕ), z1(r0,ϕ) = 0 ∀ ϕ.

III. SMALL TILT

Here we take for z0 the solution of Eq. (3). The pressure
p0 at the center is even in α, so that p0 = p00 + O(α2). Order
zero in Eq. (4) is Eq. (3), now written as

p00 − patm = ρgz0 − 2γH0,

and the contact angle at order zero is given by tan θ0 = −z′
0(r0).

Order one, the coefficient of α in the Taylor expansion of
Eq. (4) with z(r,ϕ) = z0(r) + αz1(r,ϕ) + higher orders, is

0 = ρgz1 − ρgr cos ϕ − 2γH1, (7)

where the polar angle ϕ is measured from the downward slope
direction. An ansatz for a solution is

z1(r,ϕ) = z̃1(r) cos ϕ, z̃1(0) = 0, z̃1(r0) = 0.

Then using Eq. (6), it appears that cos ϕ cancels out from
Eq. (7), and z̃1(r) is the solution of the ordinary differential
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equation,

ρgr

γ
= ρgz̃1

γ
− (

1 + z′2
0

)− 3
2 z̃′′

1 − (
1 + z′2

0

)− 1
2

z̃1

r2

+ (
1 + z′2

0

)− 3
2
z̃′

1

r
− 3z′′

0z
′
0

(
1 + z′2

0

)− 5
2 z̃′

1. (8)

The contact angle θα(ϕ) obeys

tan θα(ϕ) = −∂z

∂r
(r0,ϕ) = tan θ0 − αz̃′

1(r0) cos ϕ + O(α2),

so that

cos θα(ϕ) = cos θ0 + αz̃′
1(r0) sin θ0 cos2 θ0 cos ϕ + O(α2),

(9)
and

cos θα(ϕ) − cos θmax
α

cos θmin
α − cos θmax

α

= 1 − cos ϕ

2
+ O(α), (10)

to be compared to ElSherbini and Jacobi’s formula [29],

θα(ϕ) − θmin
α

θmax
α − θmin

α

= 2
|ϕ|3
π3

− 3
ϕ2

π2
+ 1. (11)

A comparison is achieved by plotting the right-hand side of
Eq. (11) together with the function of ϕ obtained from the
left-hand side of Eq. (11) with θα(ϕ) extracted from Eq. (10)
without O(α). The two plots are hardly distinguishable over
the full range ϕ ∈ [−π,π ] when θmax

α − θmin
α is small, as

considered here.
The total capillary force upon the drop, projected onto the

substrate and onto the direction ϕ = π , upwards along the
slope, is

Fγ = −γ r0

∫ π

−π

dϕ cos ϕ cos θα(ϕ)

= γ r0
π

2

(
cos θmin

α − cos θmax
α

) + O(α3). (12)

The error is O(α3) because the part even in α cancels out
when integrating over ϕ. Equilibrium with gravity implies
Fγ = mg sin α, giving Eq. (1), implying

γ r0π
(

cos θmin
α − cos θmax

α

)
2mg sin α

= 1 + O(α2), as α → 0.

(13)
Equation (9) can then be written as

cos θα(ϕ) = cos θ0 − mg sin α

γ r0π
cos ϕ + O(α2). (14)

We have used surface evolver to compute the ratio Eq. (13)
numerically for α varying between 0.1◦ and 30◦ for a 100 μl
droplet with base radius 6 mm, corresponding to θ0 � 32◦;
see Fig. 2(a). Maximum and minimum contact angles, in the
plane of symmetry of the drop, were measured by a quadratic
fit with three points nearest to the contact line. The error on
the ratio is inversely proportional to the number of surface
evolver vertices times sin α. For α greater than 5◦, error bars
are too small to be shown. For α smaller than 5◦, the limiting
value 1 or a value derived from the quadratic fit are better. The
value 0.9995 for α = 0.1◦ compared to 1.00003 for α = 1◦
illustrates the divergence of the error as α ↘ 0.

α

FIG. 2. The ratio Eq. (13). As (a) function of α: 100 μl droplet,
with fit 1 + c sin2 α. As (b) function of drop volume: +(α = 30◦) and
�(α = 60◦), each with fit 1 + aV + bV 2. Simulated with surface
evolver.

Note that to obtain Eqs. (13) and (14) it was not necessary to
solve Eq. (8). Here the full profile of the drop is not computed.
It will be computed for small Bond number in the next section.

IV. SMALL BOND NUMBER

The Bond number is a dimensionless ratio between gravi-
tation and capillarity, such as mg/(γ r0), but more often in the
form ρgL2/γ , where popular choices for the length L are r0

or V 1/3 or R, related by the spherical cap formula,

V = πR3
(

2
3 − cos θ0 + 1

3 cos3 θ0
)
, r0 = R sin θ0,

where θ0 is the contact angle. All Bond numbers generally
give the same order of magnitude, but must be specified for
quantitative comparisons. Here we choose B = ρgR2/γ for
algebraic simplicity. The drop profile at g = 0 is independent
of the tilt,

z00 =
√

R2 − r2 −
√

R2 − r2
0 , (15)

and the corresponding curvature, and the pressure at the origin,
are

H0 = − 1

R
, p00 = patm + 2γ

R
. (16)

We now assume a Taylor expansion z(r,ϕ) = z00(r) +
Bz1(r,ϕ) + O(B2), which inserted into Eq. (5) yields

H = − 1

R
+ BH1 + O(B2), (17)
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with H1 given by Eq. (6) with z00 instead of z0, which using
Eq. (15) simplifies to

2H1 = (1 − t)3/2z1rr + (1 − t)1/2 z1ϕϕ

r2

+ (1 − t)1/2(1 − 4t)
z1r

r
, (18)

where t = r2/R2. We then define a dimensionless first-order
pressure correction p1 by

p0 − patm = 2γ

R
+ B

γ

R
p1 cos α + higher orders. (19)

Order one in Eq. (4) takes the form

p1 cos α = z00

R
cos α − r

R
sin α cos ϕ − 2RH1. (20)

Equation (4) is invariant under α → −α, ϕ → π − ϕ, one
can separate odd and even parts of z − z00. Accordingly, at
first order, we try the ansatz

z1(r,ϕ) = z01(r) cos α + z11(r) sin α cos ϕ. (21)

Since Eq. (20) is linear and the two terms in Eq. (21) are
linearly independent, it yields two independent differential
equations, where cos α and sin α cos ϕ factor out,

p1 = z00

R
− 2RH01, 0 = 2π

∫ r0

0
dr rz01, z01(r0) = 0, (22)

0 = − r

R
− 2RH11, z11(0) = 0, z11(r0) = 0, (23)

where 2H01 is Eq. (18) for z01 instead of z1, without the z1ϕϕ

term, and

2 H11 = (1 − t)3/2z′′
11 − (1 − t)1/2 z11

r2
+ (1 − t)1/2(1 − 4t)

z′
11

r
.

Like the small tilt case, Eqs. (21), (22), and (23) imply Eq. (2),

γ r0π
(

cos θmin
α − cos θmax

α

)
2mg sin α

= 1 + O(B) as B → 0. (24)

We have used surface evolver to compute the ratio Eq. (24)
numerically for α = 30◦ and α = 60◦ as function of volume
V , when the contact angle at g = 0 is θ0 � 32◦, see Fig. 2(b),
where B = B(V ) = 17.2 × (V/100)2/3. It is remarkable that
the ratio Eq. (24) remains within 1% of its small B limit up
to V = 100 μl, corresponding to B = 17.2. This may be due
in part to the smallness of sin α = 0.5, the correction being
O(α2); see Eq. (13) and the remark before it.

Equations (22) and (23) can be solved exactly. In Eq. (23)
the change of variable t = r2/R2 and function v = rz11/R

2

leads to

(1 − t)−1/2 = −4(1 − t)v′′ + 6v′ − 2
v

t
,

v(0) = 0, v(t0) = 0.

Mathematica gives the solution

v = t(1 − t)−1/2 C1 + 1
3 − 1

3 (1 − t)1/2

+ 1
3 t(1 − t)−1/2 ln[1 + (1 − t)1/2], (25)

where C1 is fixed by v(t0) = 0. Equation (22) was solved in
Ref. [34]. We give here an equivalent solution:

z′′
01 + r−1(1 − t)−1(1 − 4t)z′

01 = R−2(1 − t)−3/2(z00 − Rp1),

or, with u = z′
01r/R and t0 = r2

0 /R2,

2 u′ − 3u

1 − t
= (1 − t)−1 − [(1 − t0)1/2 + p1](1 − t)−3/2.

This is a first-order linear differential equation, which can be
solved by the variation of constants method, yielding

u(t) = 1
3 (1 − t)−3/2 − 1

3 − 1
2

[
(1 − t0)1/2 + p1

]
t(1 − t)−3/2.

The volume of the drop does not vary:

0 = 2π

∫ r0

0
dr rz01 = −π

∫ r0

0
dr r2z′

01 = −πR3

2

∫ t0

0
dt u,

implying

p1 =
8
3 − 2t0 + (1 − t0)1/2

( 2t0
3 − 8

3

)
2 − t0 − 2(1 − t0)1/2

. (26)

Then,

z01(r) =
∫ r

r0

d	 z′
01(	) = R

2

∫ t

t0

ds
u(s)

s
= R

2

(
I

3
+ J

)
,

(27)
where

I = 2(1 − t)−1/2 − 2(1 − t0)−1/2 − 2 log

[
1 + (1 − t)1/2

1 + (1 − t0)1/2

]
,

J = [(1 − t0)1/2 + p1][(1 − t0)−1/2 − (1 − t)−1/2].

Resulting z = z00 + Bz01 cos α + Bz11 sin α cos ϕ with
z01 given by Eq. (27) and z11 = vR2/r given by Eq. (25) are
shown on Fig. 3 as “first order,” together with the spherical cap
z00 and the almost exact surface evolver results. Comparing
with Fig. 2(b), it appears that the first-order approximation
to the ratio has a wider applicability than the first-order
approximation to the profile, which is good for B = 5.89,
see Fig. 3(a), but poor for B = 17.2, see Fig. 3(b). Indeed the
value 1 for the ratio requires only the functional form Eq. (21),
whatever z01(r) and z11(r), whereas the profile depends on
these functions.

The profile with B = 17.2, corresponding to the top
right points for the ratio on Figs. 2(a) and 2(b), is not far
from the physical limitation θmin

α = 0, and the first-order
approximation, in fact, gives a small negative value for θmin

α ,
while surface evolver still gives a positive value. At some
slightly larger B, the angle θmin

α will reach zero, beyond which
the model ceases to represent a drop on a plane incline. And
similarly if θmax

α reaches π .

V. OVERHANGS

The derivation so far used cylindrical coordinates and height
functions z(r,ϕ), which excludes overhangs and contact angles
larger than π/2. Yet singularities only occur at contact angles
0 and π , beyond which a fraction of the drop profile would
go into z < 0 if continued analytically. The laws, Eqs. (1) and
(2), therefore extend to 0 < θmin < θmax < π . As for the drop
profile, the apparent singularity at π/2 disappears in spherical
polar coordinates with origin at the center of the spherical cap
for B = 0; see Fig. 4. Then with θ ∈ [0,θ0] measured from
the z axis and azimuth ϕ ∈ [−π,π ], the position vector for a
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FIG. 3. Drop on 30◦ incline: spherical cap z00, first-order z00 +
Bz1, and surface evolver profiles. (a) Volume 20 μl, base radius
6 × 0.21/3 mm, Bond number B = 5.89. (b) Volume 100 μl, base
radius r0 = 6 mm, Bond number B = 17.2. Abscissa x along incline,
downwards, and ordinate z perpendicular to incline, both in meters.

running point on the interface is

r (θ,ϕ) = [R + δr(θ,ϕ)]er, δr(θ0,ϕ) = 0,

where er is the radial unit vector and r(θ,ϕ) = R + δr(θ,ϕ) is
the new distance to the origin. New formulas are derived from
the previous ones, first in the case θ0 < π/2 using

δr(θ,ϕ) = Bz01 cos α cos θ + Bz11 sin α cos θ cos ϕ,

θ0

rδ θ0er

ϕ

θ
R O

FIG. 4. Spherical coordinates.

(a)

z00
1st order

evolver

(b)

z00
1st order

evolver

FIG. 5. Drop on 30◦ hydrophobic incline: spherical cap z00 with
contact angle 2π/3, first-order z00 + Bz1 and surface evolver profiles.
(a) Bond number B = 0.5, corresponding to a volume V � 25 μl
and base radius r0 � 1.7 mm. (b) B = 0.8, corresponding to V �
51 μl and r0 � 2.1 mm. The profiles are scaled by a factor r−1

0 for
comparison. The dimensionless radius of the contact circle is thus set
to one in both figures.

and (1 − t0)1/2 = cos θ0, (1 − t)1/2 = cos θ . These formulas
are then extended analytically to the whole range of θ with
θ0 ∈]0,π [, where the cosines can be negative. Results are
shown on Fig. 5. One may note that the first order in B

overestimates the effect of gravity in the hydrophilic case but
underestimates it in the hydrophobic case.

VI. CONCLUSION

We have studied a drop pinned on an incline of tilt angle α,
with a circular contact line and contact angle θα(ϕ) at azimuth
ϕ obeying

0 � θR � θmin
α � θα(ϕ) � θmax

α � θA � π, (28)

thus for a very large range of contact angles. Starting from the
Laplace-Young equation, we have found that the first-order
approximation in the tilt angle α or the Bond number B is
typically within 1% of the almost exact surface evolver result
in the full range Eq. (28), whatever the advancing and receding
contact angles θA and θR . Of course, if the calculated values

052805-5



DE CONINCK, DUNLOP, AND HUILLET PHYSICAL REVIEW E 95, 052805 (2017)

of either θmax
α or θmin

α fall outside the interval (θR,θA), then the
corresponding region of the contact line will move (recede if
θmin
α < θR or advance if θmax

α > θA). The exact solution of the
linearized Laplace-Young equation given in the present work
together with the simple Eqs. (1) and (2) for the retentive force
factor should therefore be valuable.
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