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Relation between the porosity and tortuosity of a membrane formed by disconnected irregular pores
and the spatial diffusion coefficient of the Fick-Jacobs model
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In this work, we provide a theoretical relationship between the spatial-dependent diffusion coefficient derived in
the Fick-Jacobs (FJ) approximation and the macroscopic diffusion coefficient of a membrane that depends on the
porosity, tortuosity, and the constriction factors. Based on simple mass conservation arguments under equilibrium
as well as in nonequilibrium conditions, we generalize previous expressions for the effective diffusion coefficient
of an irregular pore, originally obtained by Festa and d’Agliano for horizontal and periodic pores, and then
extended by Bradley for tortuous periodic pores, to the case of pores with arbitrary geometry. Through a formal
definition of the constrictivity factor in terms of the geometry of the pore, our results provide very clear physical
interpretation of experimental measurements since they link the local properties of the flow with macroscopic
quantities of experimental relevance in the design and optimization of porous materials. The macroscopic
diffusion coefficient as well as the spatiotemporal evolution of the concentration profiles inside a pore have been
recently measured by using pulse field gradient NMR techniques. The advantage of using the FJ approach is
that the spatiotemporal concentration profile inside a pore of irregular geometry is directly related to the pore’s
shape and, therefore, that the macroscopic diffusion coefficient can be obtained by comparing the spatiotemporal
concentration profiles from such experiments with those of the theoretical model. Hence, the present study is
relevant for the understanding of the transport properties of porous materials where the shape and arrangement
of pores can be controlled at will.
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I. INTRODUCTION

The effective diffusion coefficient Dm of a given fluid in
the presence of a membrane is lower than the corresponding
molecular diffusion coefficient D0 of the same fluid in its
absence [1]. Several expressions for the diffusivity of the
membrane, defined by the ratio Dm/D0 [2], have been
previously proposed on the basis of empirical correlations, as
well as on theoretical models in which the pore geometry was
oversimplified [3–5]. In most of these models, it is customary
to split the diffusivity upon three factors: the void space inside
the porous medium, the average path length that the particle
has to travel in order to cross the medium, and the reduction
in the effective flow due to the changes on the cross section of
the pores [1,6]. From a macroscopic point of view, these three
factors are taken into account by using three characteristic
parameters of the porous media called the porosity φ, the
tortuosity τ , and the constrictivity factor δ. The most common
representation for the effective diffusion coefficient of a
membrane Dm in terms of these parameters is [7]

Dm = D0
φ

τ
δ. (1)

The last sentence emphasizes the lack of consensus with
respect to the specific dependence of the diffusivity on φ, τ ,
and δ, since, depending upon the specific pore model used,
each parameter depends on the two others in different ways
[8,9]. This obstacle has not prevented that such quantities
continue to be used in the experimental description of porous
media; see for instance Refs. [10–14].
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Roughly speaking, two different approaches can be carried
out in order to model the effective diffusive flux across
a porous media. In the first one, the porous medium is
visualized as the interstitial space between solid particles of
precise shapes such as spheres, ellipsoids, and cylinders. In
this approach, the diffusive and volumetric fluxes across the
particle are calculated inside a unit cell whose porosity is
taken as representative of the entire material [15–17]. This
approach is more convenient for granular porous media. In the
second approach, the porous media are described as a bunch
of almost cylindrical tubes where the average internal flux can
be calculated [18–21]. Then, a specific probability function
which establishes the distribution of lengths and radius of
the pores is assumed in order to average the internal fluxes
[22–24]. These models are more convenient for describing
nonstructured or disordered porous media where the local
effects of pore junctions on the total flux can be easily averaged
[25]. These two traditional schemes for describing diffusion in
porous media have been confirmed on several physical and
numerical experiments for these types of porous materials
[3,25–27]. For a review see Ref. [5].

However, nowadays there is a new kind of experimental
technique which allows us to create artificial porous materials,
where the arrangement and form of the pores composing the
membrane can be produced at will. Some examples are shown
in Refs. [28–33]. These membranes allow us to control the
amount of material transferred from side to side and, in the
case of adsorbing catalytic materials, the amount of material
adsorbed and transformed during the process [34–39]. This
class of materials is not disordered or granular, like those stud-
ied by the previous models and, most importantly, the specific
shape of the pores is crucial in their chemical properties. The
transport inside this kind of material is the focus of our study.
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The approach of this work is to combine both analytical
approaches cited before, in order to describe the effective dif-
fusion coefficient of porous media composed of irregular and
independent pores. This coefficient is very important not only
from a theoretical perspective but, more importantly, because
it can be now measured by using experimental techniques such
as pulse field gradient NMR or interference microscopy; see
examples in Refs. [40–44]. In these experiments, the measured
spatiotemporal concentration profile provides curves that can
be adjusted using the solution of the diffusion equation and two
adjusting parameters: the effective diffusivity of the membrane
Dm and the surface permeability [45–47]. Therefore, by
linking the microscopic aspects enclosed by the Fick-Jacobs
diffusion coefficient with these macroscopic coefficients, our
approach provides a very solid theoretical basis for modeling
and evaluating the performance of new materials.

We proceed by considering the pore-cell system of the
first approach and the averaging process of the internal flux
of the second, in order to get the appropriate averages of
the microscopic quantities. Thus, our model resembles the
strategies used in parallel capillary models [18,20,21]. The
difference with these traditional approaches is that in our model
the flux inside the pores can be calculated in a very precise way
by using the projection scheme of the Fick-Jacobs (FJ) model.
This mean-field approximation allows us to establish closed
expressions for the porosity, tortuosity, and constriction factor
in terms of the width of the pore, its inclination, and its changes
on cross section. In using the FJ model we are interested only
in the diffusive regime, i.e., in processes where the volumetric
velocity of the particles flowing inside the pore is negligible.

In the FJ approach, the diffusion equation is averaged
along the transverse direction of the channel giving as a
result an equation for the transport along the longitudinal
coordinate x [48]. This integration supposes that the sinuosity
and corrugation of the pores are not so marked and, therefore,
the flow direction does not deviate too much from the transport
direction [49–51]. Under these restrictions, the following
equation holds for the averaged concentration CFJ (x,t) =
(1/w)

∫
C(x,y,t)dy [52,53]:

∂CFJ

∂t
= 1

w(x)

∂

∂x

[
DFJ (x)w(x)

∂CFJ

∂x

]
, (2)

where w(x) represents the transverse area of the pore and
DFJ (x) is an effective diffusion coefficient which considers
the effect of the walls [49,54,55]. Several methodologies
for obtaining this local coefficient have been provided de-
pending on the geometry and dimensionality of the system.
Those models range from semiempirical arguments [48,49] to
complex projection mechanisms [54,56–58], where the local
dependence of this coefficient with the geometric parameters
has been estimated to various orders of approximation. For
a bidimensional system, most of these coefficients can be
reduced in some approximation [55] to the expression we will
use in this paper, which is based on that of Bradley’s work
Ref. [56]:

DFJ (x) = D0

1 + h2
x(x) + 1

12w2
x(x)

, (3)

FIG. 1. Geometry of the pore-cell system. The void space (in
white) has local width w(x) and actual length LZ . A slice of length
ln is shown between two adjacent areas wn and wn+1. The cell has
length L and width W . The coordinate axes are shown with x being
the direction of transport. The z axis is measured along the middle
line of the pore starting from the left.

where h(x) represents the middle line of the channel and
the subscript x denotes derivative respect x; see Fig. 1.
The particular election of Eq. (3) simplifies the algebraic
manipulation of the formulas. However, as already mentioned,
other more complete relations like that of Ref. [55] can also be
used [in fact Eq. (43) in Ref. [56] is the Taylor approximation
of Eq. (3) in the limit of h2

x,w
2
x � 1]. In the last expression,

the tortuousness and constriction of the pore cause a local
diminution of the flux [48]. Therefore, unlike the traditional
jointed-tube models [18,20,21], the FJ approach explicitly
considers the divergence-convergence of the flow near necks
and funnels through the use of appropriate boundary conditions
[50,51,59].

In its current state, the application of the FJ scheme for
obtaining an effective diffusion coefficient is restricted to
periodic pores, where this coefficient D∗ is

1

D∗ =
〈

1

DFJ (x)w(x)

〉
X

〈w(x)〉X. (4)

The brackets represent a spatial average over a period of the
pore [56,60]. We emphasize the spatial average by using the
subscript X. This expression is also restricted to horizontal
pores, i.e., pores whose middle line coincides with the direction
of transport. In periodic pores, this theoretical expression has
been confirmed by comparing the FJ diffusion coefficient with
Brownian dynamics [61] and macrotransport theory [62].

The objective of this work is to use the FJ approach,
essentially Eq. (3), in order to deduce the effective diffusion
coefficient of a membrane, empirically defined by Eq. (1). In
doing this deduction, we will give microscopic expressions for
the macroscopic quantities, in particular for the constrictivity
factor δc which strongly depends on the shape of the pore. In
this form, we will study the porous medium in three different
levels: (1) considering only the pore, (2) considering the pore
inside a rectangular cell, and (3) considering a cell system
composed of several pores.

Let us emphasize that the objective and the relevance
of our study is that it constitutes a bridge between the
microscopic arrangement and geometry of the pores and
the effective diffusion coefficient given by Eq. (1), which
contains important measurable quantities such as porosity,
tortuosity, constriction, mass transfer coefficient, and internal
effectiveness factors [4,63,64].
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This work is organized as follows. In Sec. II A we will
establish the effective resistance of a pore with basis only
on conservation arguments. In Sec. II B we compare the flux
of the pore-cell system in order to obtain a generalization of
Eq. (4) for pores whose only geometric restriction is that the
FJ equation is valid for them. In Sec. II C we generalize this
method for a cell of multiple pores in order to relate the spatial
diffusion coefficient DFJ (x) with Dm in Eq. (1). In Sec. III we
illustrate how to compare the results of the FJ approach with
those of the effective medium theory. Finally, in Sec. IV we
discuss the scope and perspective of our work.

II. EFFECTIVE DIFFUSION COEFFICIENT OF A
MEMBRANE OF NON-INTERCONNECTED PORES

In this section, first we will use the FJ scheme in order to
calculate the resistance to diffusion that a single pore exerts
over the flux of material. In this treatment, each section of the
pore is seen as an individual resistance and, therefore, the total
resistance is that of a series circuit. Then we will study the
pore-cell system, where each individual pore is enclosed in a
rectangular cell in such a way that the diminution of effective
volume available is taken into account. This pore-cell system
is specially convenient for artificial porous media where the
geometry and the arrangement of multiple pores can be easily
controlled [65–69]. Finally, we will extend these ideas to more
general systems where the effect of diverse pore geometries in
the same material can be considered simultaneously.

Let us consider a porous media of the parallel-capillary
type. In these systems, the following conditions hold: (1) the
material can be seen as a collection of non-interconnected
pores, (2) all the pores are open to both extremes of the
membrane and they do not connect with themselves, (3) the
internal walls of the pores have geometries which can be
approximated by continuous and differentiable functions, and
(4) the characteristic width of the pore is much smaller than
the longitudinal length of the pore. The first two hypotheses
allow us to calculate averages over the material in a simple
way. The last two hypotheses allow us to establish the validity
of the reduction Fick-Jacobs system in every pore.

A. Internal resistance to the diffusive flux of a single pore

Let us consider a simple pore of longitudinal size L and
width w(x); see Fig. 1. We will assume that the pore is
filled due to a difference of concentration at both sides of the
membrane �C = CN − C0. This concentration C corresponds
approximately to the concentration CFJ in Eq. (2) when
the pore is long enough compared with its width. In this
limit w/L � 1/2, the Fick-Jacobs approach holds [53] and,
therefore, the effective diffusion coefficient derived from it
can be used in order to estimate the local flux. The number of
particles crossing a section of the pore can be measured by the
flux H given by

H =
∫

w

J · dw, (5)

where J is the flow per unit of area. It should be noted that the
concentrations C ≈ CFJ have the same units of mol by unit
of internal volume, and they should not be confused with the

reduced concentration or density of probability c = w(x) CFJ

used in the standard form of the Fick-Jacobs equation [48].
The advantages of using the average concentration are that
it allows us to relate more easily the diffusion process with
the external conditions at the pore and with possible chemical
interactions since its physical interpretation is more direct; see
Refs. [53,63].

Now, we subdivide the pore in N slices along the horizontal
direction; see Fig. 1. The idea is that each slice represents an
individual resistance to the flow that it is simple to calculate.
The width of this subdivision is taken short enough in order to
consider that the transversal area wn = w(xn) of each slice is
roughly constant at the point xn. In the stationary state, we can
consider that in each one of the N transverse areas the number
of particles flowing per second is approximately constant. This
is mass conservation. This means that H in Eq. (5) is constant
for any transversal area wn. Therefore

H =
∫

wn

Jn · dwn. (6)

If the FJ model is valid in the particular pore then we can
assume that the flux per unit of transverse area along each slice
obeys a reduced Fickean law of diffusion. This means that the
effective flux along the pore can be calculated as

J = −DFJ (x)
∂C

∂x
. (7)

In terms of the discretization, the flow per unit of area in the
nth slice is Jn ≈ −Dn(Cn+1 − Cn)/�x where Dn = DFJ (xn)
is the local value of the effective diffusion coefficient DFJ

near the nth slice; see Eq. (3). This is the major hypothesis
of our work, since it establishes that the validity of the FJ
scheme for an entire pore (which comprises the aspect relation
of pore’s wide and length) can be extended locally to small
sections of the pore. Different forms of establishing the validity
of the FJ approach are stated in Refs. [54–57]. We will use
the criterion founded numerically in Ref. [53], w/L � 1/2.
This hypothesis will be corroborated in Sec. III for some
illustrative examples, in which we include a comparison with
the numerical solution of the complete diffusion equation.

Now we will assume that the local deviations of flux along
the transverse coordinates are not comparable with the total
change of concentration along the longitudinal direction of
the pore. This hypothesis is also required in the FJ approach
[48,49]. In this case, the integral in Eq. (6) is

H = −
[
Dn wn

�x

]
(Cn+1 − Cn), n = 1, . . . ,N. (8)

In analogy with the language of electrical circuits, the quantity
in square brackets can be seen as the inverse of the local
resistance to the flux of each slice. This is

ρn = �x

Dn wn

. (9)

Therefore, ρn depends upon the local width of the pore, its
length measured along the x coordinate, and the effective
diffusion coefficient in a neighborhood of the slice. The
effective resistance of the pore ρs can be defined through the
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equation

H = − 1

ρs

(CN − C0). (10)

In order to obtain an expression for this total resistance
ρs in terms of the individual resistances ρn, we may apply
mathematical induction over the N slices accomplishing
Eq. (8). The result is the same that for a circuit of resistances
connected in series and, therefore, the total resistance of a pore
is the sum of the individual resistances of each slice. This is

ρs �
N∑

n=1

ρn. (11)

In this expression, the symbol of approximation stands for the
fact that the discrete result depends on the number of slices in
which we divide the pore. Substituting Eq. (9) for individual
resistances in the last equation and the fact that �x → dx in
the limit N → ∞ (see Fig. 1), then ρs can be calculated in the
limit of infinite slices. In this case, the sum over the N slices
becomes an integral along the spatial coordinate x, and we have

ρs =
∫ L

0

1

DFJ (x) w(x)
dx. (12)

In this expression, the longitudinal length of the pore L, i.e.,
its length measured along the direction of transport x, is not
necessarily the same as the actual length of the pore Lz; see
Fig. 1. According to these two characteristic lengths of the
pore, the last equation can be written in two different ways.
The first one is in terms of an average along the longitudinal
coordinate x. If we define the spatial average along x as
〈f (x)〉X = 1

L

∫ L

0 f (x) dx, the last equation can be written as

ρs

L
=

〈
1

DFJ (x) w(x)

〉
X

. (13)

This expression remarks that the average in the brackets has
the meaning of a resistance per unit of longitudinal length and
was deduced by following similar arguments as in Ref. [56].

For our purpose about relating the effective macroscopic
diffusion coefficient of a membrane with the local results
provided by the FJ approximation, it is more convenient to
introduce the auxiliary coordinate

z(x) =
∫ x

0

√
1 + h2

x(x ′)dx ′, (14)

in order to express Eq. (12). This auxiliary coordinate z(x) is
measured along the middle line of the pore; see Fig. 1. Its value
at x = 0 is zero and its value at x = L is the actual length of
the pore z(L) = Lz. Using Eq. (14), the ratio between both
lengths can be written as

Lz

L
= 〈√

1 + h2
x(x)

〉
X
. (15)

In terms of the variable z, we can define the average along
the middle line as 〈f (z)〉Z = 1

LZ

∫ Lz

0 f (z) dz. In this variable,
it is easy to prove that 1 + h2

x = (1 − h2
z)−1 and 0 � h2

z � 1.

In these terms, Eq. (12) can be written as

ρs

Lz

=
〈 √

1 − h2
z(z)

DFJ (z) w(z)

〉
Z

. (16)

In this case, the average in brackets is taken along the middle
line of the pore and therefore has the meaning of resistance
per unit of internal length.

The relevance of Eqs. (13) and (16) for the purposes
of the macroscopic description of mass diffusion in porous
media emerges from two facts. The first is that they connect
the microscopic geometric aspects of pore geometry with a
macroscopic parameter, the resistance of the pore, which can
be measured in uptake experiments consistent with Eq. (10).
The second and more important is that they allow one to discern
the physical meaning underlying the parameters introduced
when it is assumed that the effective diffusion of a membrane
obeys the empirically formulated Eq. (1). This is the central
point, because it follows that the physical interpretation of
Eqs. (13) and (16) should be crucial when comparing theory
with experiments. For instance, although both equations give
equivalent quantitative results when assessing the concentra-
tion distribution along a pore, as we do in Sec. III, the unique
way to deduce a relation for the effective diffusion coefficient
of a membrane consistent with Eq. (1), in particular after
introducing the definition of the tortuosity τ parameter, is by
choosing Eq. (16) as we will show in Sec. II B. The main
consequence of this fact is that the constrictivity factor δ that
is measured in experiments is related with the real resistance
of the pores since it corresponds with the resistance per unit
of internal length given in Eq. (16).

B. Effective diffusion of a pore-cell system

In this section we will focus on the importance of the
solid material around the pore and how it affects the diffusive
transport on a membrane. In order to do this, in this section
we will consider a pore-cell system as the one depicted in
Fig. 1. This system can be representative of a membrane only
if the ratio between the void volume of the pore and cell is
equivalent to the same ratio measured in the entire material.
Let us consider the pore studied before inside a cell of length
L and width Wc. Ignoring the particular shape of the pore, the
effective diffusion coefficient of this cell Dc can be defined
through the relation

H = −DcWc

L
(CN − C0). (17)

By proposing this equation, we are assuming that the
longitudinal length L of the pore is the same that the length of
the cell in order to fulfill the hypothesis that the pore is open to
both ends. Furthermore, we are using the fact that the internal
concentration at the extremes of the pore should be the same
as the external concentration at both sides of the membrane.
Now, we will use that the total flux of particles H must be
the same as the flux in Eq. (10) since the particles cross the
membrane only through the void space of the pore [6]. In
this case, comparison between Eqs. (10) and (17) results in a
relation between the effective diffusion coefficient of the cell
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and the resistance associated with the pore:

Dc = L

Wc

1

ρs,c

. (18)

This equation identifies two types of dependencies in the
effective diffusion coefficient. The first has to do with the
internal structure of the pore in the cell through the term ρs,c.
In this resistance we have added a subscript c in order to
emphasize its relation with a specific cell. The second aspect
is the relation between the relative sizes of the pore and the
cell. In order to see this, let us define the geometric porosity of
the cell φc in the usual way, i.e., as the ratio between the void
volume and the volume of the cell [1,2,6]. This is

φc =
∫ L

0 w(x) dx

LWc

. (19)

This relation can be written in terms of the variables x and z

as

φc = 1

Wc

〈w(x)〉X = 1

Wc

LZ

L

〈
w(z)

√
1 − h2

z(z)
〉
Z
. (20)

Now, let us define a geometric tortuousness of the pore as
usual, i.e., as the square ratio between the actual length of
the pore and the length along the longitudinal coordinate [70].
Using Eq. (15), this is

τc =
(

Lz

L

)2

= [〈√
1 + h2

x(x)
〉
X

]2
. (21)

It should be noted that by construction φc � 1 and τq � 1. In
these terms, by using these definitions in Eq. (18), the effective
diffusion coefficient of a cell can be written in two equivalent
ways.

(a) First form of the effective diffusion coefficient of a cell.
The first one is by using ρs as in Eq. (13). In this case, Eq. (18)
is

φc

Dc

=
〈

1

DFJ (x) w(x)

〉
X

〈w(x)〉X. (22)

From the comparison between Eqs. (4) and (22) it follows that
D∗ in Eq. (4) is a particular case of Eq. (22) when only the
internal resistance of the pore is considered, since Dc = φD∗.
As we will show later, this implies that the physical meaning
of D∗/D0 in Eq. (4) is closer to the concept of constriction
factor than to the concept of effective diffusion coefficient. It
is convenient to emphasize also that our Eq. (22) is valid for
periodic and nonperiodic pores, as well as for horizontal and
inclined pores as long as the FJ scheme is valid in the chosen
geometry. This is a very important issue because most of the
porous media do not function with restrictions such as being
horizontal and periodic. This means that our generalization
of the expression originally found by Festa and d’Agliano in
Ref. [60] allows one to study more general membrane systems.

(b) Second form of the effective diffusion coefficient of a
cell. The second way of writing Eq. (18) is by using ρs given
by Eq. (16). In this case, both dependencies of Eqs. (19) and
(21) enter in natural way into Eq. (18). Thus, we have

Dc = φc

τc

[〈 √
1 − h2

z(z)

DFJ (z) w(z)

〉
Z

〈
w(z)

√
1 − h2

z(z)
〉
Z

]−1

. (23)

This equation also relates the measured diffusion coefficient of
a cell Dc and the local diffusion coefficient DFJ obtained from
the Fick-Jacobs scheme. However, the key point here is the
physical meaning of the term in the parentheses. It that can be
understood by substituting Eq. (3) in the last equation in terms
of the variable z, that is, DFJ (z) = D0(1 + 1

12w2
z )/(1 − h2

z).
In this case, as long as the constriction factor of the individual
cell is

1

δc

=
〈

[1 − h2
z(z)]3/2

[1 + 1
12w2

z (z)] w(z)

〉
Z

〈
w(z)

√
1 − h2

z(z)
〉
Z
, (24)

then it is possible to write the effective diffusion coefficient of
a cell exactly in the same form as it is given Eq. (1), that is, in
the empirical form Dc = D0(φc/τc) δc.

The constriction factor (24) measures the change on cross
section along the middle line of the pore. In order to clarify its
meaning, let us consider the particular case of a horizontal
pore, hx = hz = 0. In this case, using Eq. (3) we have
DFJ /D0 = 1 + w2

x/12, and the constriction factor δc is given
by

1

D0 δc

=
〈

1

DFJ (x) w(x)

〉
X

〈w(x)〉X. (25)

From this equation is clear that the constriction term
considers the existence of funnels or throats through the factor
w2

x in the local diffusion coefficient DFJ (x). When the last
equation is compared with Eq. (4), we can conclude that the
ratio D∗/D0 = δc can be interpreted as a constriction factor
in the context of diffusion in porous media. Therefore, D∗ is
related to the resistance per unit of internal length of the pore
to flow due to the local changes in its width, and not to the
resistance per unit of longitudinal length.

From the functional form of Eq. (24), it is expected that
the effects of the constriction factor in the effective diffusion
coefficient are strong only when the pore has significative
tortuousness or inclination (measured mainly through h2

x) or
has large caves and throats (measured mainly by w2

x).
Finally, Eq. (24) shows that splitting in three different

aspects the diminution on the effective diffusion coefficient in
Eq. (1) constitutes an artificial separation, because the aspects
related with the width of the pore cannot be separated from
the aspects related with the inclination or the constriction, at
least for the kind of pores we are considering. In summary,
the present study unravels these tacit dependencies, otherwise
hidden in Eq. (1), and allows us to relate with precision the
internal aspects of the pore geometry with the experimental
characterization of membranes through the use of the porosity,
the tortuosity, and the constriction factors, which have been
largely used in the experimental study of porous materials and
can be determined from uptake experiments.

C. Membrane composed of multiple pores

The results obtained in the previous section for a simple
pore-cell system can be extended to membranes with multiple
pores, as long as they are open to both extremes and do not
connect with other pores. Assuming that each cell contains
only one pore, the total flux across the membrane composed
of M cells is just the sum of all the individual fluxes, i.e.,
Ht = ∑M

c=1 H (c), where the superscript c stands for the flux in
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each cell indexed by c. In this case, the total conductivity of
the membrane 1/ρM is the sum of the individual conductivities
as in a parallel circuit:

1

ρM

=
M∑

c=1

1

ρ
(c)
s

, (26)

where each ρ(c)
s is given, according to Eq. (12), by

ρ(c)
s =

∫ L

0

1

D
(c)
FJ (x) w(c)(x)

dx. (27)

Since the membrane has width W = MWc and length L,
the total flux is given by an equation similar to Eq. (17) but
with the effective diffusion coefficient Dm of the membrane
[6]. Therefore, we can deduce an expression equivalent to
Eq. (18), where the total conductivity is the sum over the
conductivities of all the pores. In this case,

Dm = L

W

M∑
c=1

1

ρ
(c)
s

. (28)

For a membrane composed by M cells, each one containing
one pore, the porosity is defined as the sum of all internal
volumes divided by the total volume. Using Eq. (19), we have

φm = 1

LW

M∑
c=1

∫ L

0
w(c)(x) dx, (29)

where w(c) is the width of each pore. This equation can be

written in terms of the discrete average over the pores fc
M =

1
M

∑M
c=1 fc, as the average over the total number of cells

φm = 〈w(c)〉XM

W/M
. (30)

In this case, by using the last equation and Eq. (13) in
Eq. (28), we have

Dm = φm

〈w(c)(x)〉xM

〈
1

D
(c)
FJ (x)w(c)(x)

〉−1

X

M

. (31)

This equation proves that the diffusivity of a membrane
depends on the average of the diffusivities of the pores. In
the case of a membrane of infinite pores, the discrete average
over the pores can be changed by a continuous average over

the vertical direction as long as the probability distribution
function of the internal geometry is known as a function of y.
It is expected that the averages along the coordinates x and
y cannot be interchanged, at least that some simplifications
are carried out. This means that for this kind of material,
a probability distribution function of the internal geometry
given only in terms of lengths and cross sections of the pores
in an element of volume does not seem an appropriate tool
in the description of the effective flux [18–21]. However, in
artificial materials where the pore shape and arrangement can
be controlled [65–69] this is not a problem, since the model we
have studied here provides the tools for studying with detail
the membrane when the geometry and number of pores are
known.

The deduction given in this section for the diffusion coeffi-
cient of a membrane composed of multiple pores may be very
relevant in the context of diffusion in porous media because
Dm, in Eq. (31), establishes the link of the internal diffusion
measured by DFJ inside each pore of a membrane with
the key macroscopic quantities of interest in the engineering
of reactors, such as the mass transfer coefficient and the
effectiveness internal factor [63]. Nonetheless, in the next
section we will concentrate our attention only on the relation
between the microscopic and macroscopic flux in a single
pore-cell system, leaving the numerical study of composite
materials for a subsequent work.

III. COMPARISON BETWEEN THE FLUXES
IN PORE-CELL SYSTEMS

In order to illustrate the use of the effective diffusion
coefficient given by Eq. (23) and its relation with the local
diffusion coefficient of the FJ scheme, we will make a
quantitative comparison of the total fluxes predicted by the
FJ reduction scheme and the effective medium theory we have
developed in this work with the numerical results arising from
the two-dimensional diffusion equation. We will focus on the
pore-cell systems depicted in Table I for two types of boundary
conditions of great relevance in reactor engineering.

A. Net flux boundary conditions

We consider that the cell separates two regions of different
concentration and, therefore, the boundary conditions at the
pore ends are C(x = 0) = C0 and C(x = L) = CN = 0 which

TABLE I. Pore-cell systems studied in Fig. 2. The three pores correspond to the wall functions w1(x) = α1 sin(α3πx/5) + α2 sin(7πx/5)
and w2(x) = 1 + α1 sin(α3πx/5) − α2 sin(7πx/5). The values of αi are given here for each pore. The local width is w(x) = w2(x) − w1(x)
and the middle line is h(x) = (1/2)[w1(x) + w2(x)]. The width of the cell is Wc = 2.5, and the length is L = 5 in all cases.

Pore Cell Geometry Transport Parameters Stat. Flux

No. L = 5,W = 2.5 α1 α2 α3 ρs φc τc Dc/D0 δc HFJ Hcell

1 0 0.4 1 12.4 0.386 1.0 0.167 0.433 0.082 0.083

2 0.8 0.2 1 7.09 0.401 1.12 0.293 0.822 0.142 0.141

3 0.6 0 2 6.42 0.416 1.27 0.324 0.99 0.158 0.156
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FIG. 2. Concentration (inset) and total fluxes as functions of position and time for net flux boundary conditions. The time is represented by
different colors, red being the initial condition (t = 0) and blue the stationary state (tmax). Intermediate values are tmax/10 and tmax/5 for orange
and green, respectively. Each column corresponds to one pore depicted in Table I. The stationary time (blue color) was tmax = 25,25, and 15,
respectively. The diffusion coefficient in the nonconfined situation was fixed at D0 = 1.

correspond to nonequilibrium boundary conditions. For this
study, we have chosen sinusoidal geometries due to their
resemblance with zeolites.

First we have to check the validity of the FJ scheme in
the three chosen geometries. In order to do so, we compare
the solution of the Fick-Jacobs reduction model with the
direct solution of the two-dimensional diffusion equation
∂C2D

∂t
= D0∇2C2D [53]. In the insets of Fig. 2, we compare

the average concentration given in Eq. (2) (dashed lines)
with the average concentration obtained of the direct solution
C2Da(x,t) = 1

ω

∫
C2D(x,y,t)dy (markers) for four different

times represented by colors; see Ref. [53] for details. Since
the average concentration is almost the same in both cases
CFJ ≈ C2Da , we can conclude that the FJ model is valid
for these three geometries, even for transient times and
nonequilibrium conditions [53].

Once we have checked the validity of the FJ scheme in the
pores, we compare the total fluxes given by the FJ model and
the effective medium theory. The flux of particles inside the
pore is just

HFJ (x,t) = −DFJ (x) w(x)
dCFJ

dx
. (32)

In this equation one can also use directly C2Da; see Fig. 2.
In both cases, this HFJ represents the actual flux of particles
inside the pore and it is based on the microscopic scale.

In order to use the effective medium theory for a cell, we
have to find the auxiliary concentration of particles in the
void volume of the pore Ccell. This concentration is related to
the concentration measured over the entire volume of the cell
CV , through the relation φCcell = CV . This emphasizes the
fact that CV has a lower value since the number of particles
is counted through the integration over the entire volume.
Therefore, in order to compare these macroscopic results with
CFJ or C2Da , one has to solve the effective one-dimensional
diffusion equation:

∂Ccell

∂t
= D∗ ∂2Ccell

∂x2
, (33)

where the null effect of the solid space in counting the internal
number of particles can be considered by removing the

porosity from Dc = φD∗. In Fig. 2 we plot in solid lines the re-
sult of the macroscopic model for the expected internal concen-
tration. Furthermore, the flux in the effective medium theory
is just

Hcell(x,t) = −DcW
dCcell

dx
. (34)

Here, Dc can be calculated using Eqs. (22) or (23) since at this
level they provide equivalent information. This macroscopic
flux is based on measurements of the porosity, tortuosity,
and constrictivity of the pore. In order to calculate these
parameters, in this theoretical work we have used Eqs. (19),
(21), and (24), respectively. However, in real porous systems,
the importance of this comparison is that these parameters
can be measured independently by uptake experiments
providing some information on the internal geometry of the
system [3,4].

In Fig. 2 we compare the results for the flux and
concentrations obtained by direct solution of the bidimensional
equation (markers), by the Fick-Jacobs model (dashed lines),
and by the macroscopic scheme we have presented in this work
(solid lines). As can be seen, for the pores considered in this
work, the microscopic Fick-Jacobs model and the macroscopic
diffusion coefficient that we have derived from it give very
good results in the approximate description of the transport
inside this kind of porous structure. We have to emphasize
that these results are applicable to periodic and nonperiodic
pores as well as to horizontal structures, or those presenting
some tortuousness. As we have shown, the only limitation
of our results is dictated by the validity of the FJ scheme.
As this validity is practically guaranteed for very long pores,
this model constitutes a very precise tool able to describe and
model the transport in very general porous materials.

The macroscopic diffusion coefficient we have deduced,
Dm, provides remarkable good results not only for the
stationary concentration profiles but, more importantly, it
also gives very good approximations of the transient profiles.
This fact is very relevant because, as we have mentioned, the
transient profiles of concentration in experimental devices are
used to adjust an effective diffusion coefficient [7]. Finally,
our simple and intuitive approximation allows us to relate the
microscopic structure of the pores with macroscopic quantities
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FIG. 3. Concentration (inset) and total fluxes as functions of position and time with the same parameters as in Fig. 2, but using saturation
boundary conditions.

such as the porosity, tortuosity, and constriction factor in
membranes. For the three examples of pore-cell systems
considered, the internal resistance, porosity, tortuosity,
diffusivity, and constriction factor found in Eqs. (13), (19),
(21), (22), and (24), are respectively shown in Table I.

B. External conditions of saturation

In our deduction of the effective diffusion coefficient of a
membrane Dm, Eq. (1), we have used a derivation based on
mass conservation through a membrane whose ends are under
a net flux due to a concentration difference. However, it is
to be expected that, under certain restrictions, the validity
of the previous arguments for an entire membrane hold
also for small sections of the pore where the concentration
difference becomes gradually closer to zero. Hence, one may
expect that Eq. (22) could be also valid for a pore under
saturation conditions. In this subsection we will show that this
hypothesis is reasonable by using some numerical examples.
It is important to note that these comparisons can be carried
out also with analytical and not only numerical solutions for
some particular pores as those obtained in Ref. [71].

Therefore, as in the previous section we will compare the
results of the microscopic flux derived from the solution of
Eqs. (2) and (32), and the macroscopic results derived from
solving Eq. (33) and the flux Eq. (34). The difference with
the last section is that now the concentration is the same at
both sides of the pore, i.e., C(x = 0) = C(x = L) = C0. In
Fig. 3 we show that the approximate scheme can be used also
as a good approximation for the net fluxes of particles as a
function of time in the case of saturation conditions. This is
very important because the concentration profiles shown in
the insets of Fig. 3 are the kind of spatiotemporal profiles
that are recorded in pulse field gradient NMR and interference
microscopy experiments [40,43].

In this work, the comparison between microscopic and
macroscopic models in Eqs. (2) and (33) is made indirectly
through the comparison of their fluxes [in Eqs. (32) and (34)]
and also numerically in Figs. 2 and 3 for two different boundary
conditions. However, a mathematical derivation of the identity
between both schemes that allows us to establish the validity
criteria on any of the two descriptions is still needed and
constitutes a very interesting open problem in the description
of porous media.

IV. DISCUSSION AND CONCLUSIONS

In this work we have found the relation between the spatial-
dependent diffusion coefficient DFJ (x) of the Fick-Jacobs
model and the effective diffusion coefficient of a membrane
composed of parallel pores of irregular shape. In order to do
so, we have used simple conservation arguments where each
section of the pore is treated as an electric resistance. This
has allowed us to generalize the well known expression found
by Festa and d’Agliano [60] (whose validity was restricted to
periodic and horizontal pores) to a new range of systems with
geometries more similar to real porous materials. Besides,
our approach has allowed us to give a closed expression
for the constriction factor which, together with the porosity
and tortuosity, is usually employed in the characterization of
porous materials.

We have proved that the effective diffusion coefficient
provides good results in estimating the concentration profiles
and the stationary flux of particles. This success is based on
the fact that we have related the internal geometry of the pore
with macroscopic quantities related to the flux diminution.
Although we have considered only a few illustrative examples
in this work, the conclusions we have developed here let us to
think that our expressions for the effective diffusion coefficient
of a membrane in terms of the Fick-Jacobs coefficient can
be used for any pore, as long as its length is much greater
than its width. These achievements open a bridge between
the Fick-Jacobs model and significant quantities in reactor
design, and therefore constitute a powerful application of this
theoretical formalism.

It is important to note that the fluxes established by the
approximate reduced model in one dimension assess not
only the stationary profile in equilibrium and nonequilibrium
conditions but, with some negligible differences, it also can
be used in estimating the concentration profiles in transient
times. This means that for long pores where the Fick-Jacobs
equation is valid, the information of the spatiotemporal profiles
can be used in order to obtain the macroscopic diffusion
coefficient measured in experimental methods of pulse field
gradient NMR and interference microscopy. In these methods,
the concentration inside a crystalline porous material can be
tracked, and an effective diffusion coefficient is measured by
adjusting to these profiles the solutions of an equation similar
to Eq. (33) for the concentration. Notwithstanding that in these
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experiments the adsorption process takes a predominant role,
in a future work we will generalize the results achieved here in
order to include the presence of an adsorbed phase. However,
the type of reasoning that we will use in that case is exactly the
same as that which we use here when only the bulk diffusion
is present.

Finally, an interesting aspect to study in the future is
the relation between Eq. (31) and a possible distribution
of pores over the entire volume. That is, we would like to
know whether the two averages in Eq. (31), first along the
longitudinal direction of transport (along x), and then along
the vertical distribution of pores (along y), can be carried out
independently. In other words, we want to know whether under
some reasonable assumptions it is possible to use a volumetric

distribution of the pore geometry as in the traditional parallel
capillary models [19,20]. These models use hypotheses about
the directionality of the pores and the flux at the junctions that
are not necessarily fulfilled in systems like ours. However, in
order to study this possibility, a study about the interconnection
of pores using the FJ model should be carried out first.
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