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Role of the displacement current on Warburg-type behavior
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We investigate the role of the displacement current in the analysis of the electric response of an electrolytic
cell to an external stimulus. We show that several models proposed to interpret the spectra deduced by means of
the impedance spectroscopy technique are questionable. In particular, we demonstrate that even in the frequency
range below the Debye frequency the role of the displacement current is fundamental, and its omission leads
to incorrect results for the impedance of the cell. In our analysis, the boundary conditions on the bulk current
density are of Nernstian and of Ohmic type. The analysis is limited to a fully dissociated electrolyte, and for
only one type of mobile ions, as discussed in several papers devoted to the subject. Particular attention is given
to the spatial dependence of the current density. We show that Warburg-like behavior is never predicted in the
framework of the Poisson-Nernst-Planck model, if the electric impedance of the cell is correctly evaluated. From
this conclusion, valid for media with only one type of mobile ions, it follows that if Warburg-like behavior is
experimentally observed the theoretical interpretation is still an open problem, and its origin is probably related
to the boundary conditions.
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I. INTRODUCTION

The electric response of a dielectric medium to an external
electric field depends on its effective dielectric constant,
related to the molecular properties of the medium itself, and on
the electrodes used to apply the external stimulus. In the case
where the applied voltage is a simple harmonic function of the
time �V (t) = V0 exp(iωt), of amplitude V0, and of circular
frequency ω, the response of the cell is related to its electric
impedance defined as the ratio between �V (t) and the current
I (t) across the sample, that is, by Z = �V (t)/I (t). In the limit
of small V0, the system behaves in a linear manner, and I (t) =
I0(ω) exp(iωt), where I0(ω) ∝ V0. In this limit the impedance
is independent of V0. Usually Z(ω) is decomposed as Z(ω) =
R(ω) + iX(ω), where R(ω) and X(ω) are the resistance and
reactance of the cell, respectively, in the series representation.
These quantities are related to the dissipative and reactive
phenomena taking place in the conduction phenomenon. In
the low frequency region, i.e., for frequency smaller than a
few MHz, the ions present in the medium contribute to the
electric response. An analysis of the frequency dependence
of the electric impedance of the cell can give information on
the ionic densities and ionic diffusion coefficients [1–3]. The
theoretical description of the electrical impedance of a material
to an external electric field is usually made by means of a
model based on the equations of continuity for the positive
and negative ions, and on the equation of Poisson for the
actual electrical field in the sample [4,5]. Several versions
of this model have been proposed along the years to interpret
experimental data obtained in different contexts by Macdonald
and coworkers [6]. In the cases where the ions dissolved in the
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insulating liquid limited by blocking electrodes have the same
diffusion coefficient, the parametric plot of R(ω) versus X(ω)
(Nyquist plot) is a semicircle, the center of which is on the
real axis, passing through the origin of the reference frame. If
the electrodes are not blocking, the parametric plot can show
a deformed curve that in some cases can be decomposed in
simple semicircles. Similar parametric plots are predicted in
the case where only one group of ions is mobile. This latter case
has been considered by several authors for its simplicity [7] and
technological importance [8–13]. In some cases the parametric
plot consists of a high frequency semicircle related to the
dielectric relaxation of the bulk followed by a frequency region
where R(ω) and X(ω) are proportional to 1/

√
ω. In this region

the parametric curve of X(ω) versus R(ω) is a straight line of
slope 1, known as Warburg behavior [14]. Several papers have
been devoted to the theoretical justification of the Warburg-like
impedance [8–12,15–17]. In a recent review by Lai and Haile
these models are discussed and their limits underlined [18], in
particular the absence of mathematical rigor in the derivation of
the impedance of the cell. In a recent paper, we have analyzed
the electric response of an insulating material in the Nernstian
approximation when the charge carriers are injected in the
system by the electrodes [19], and shown that a Warburg-like
impedance is not predicted. In the present paper, we consider
the case of a medium that contains, in thermodynamical
equilibrium, a bulk density of ions n0 small enough that the
generation and recombination phenomenon can be neglected.
Our aim is to show that the models discussed in Refs. [8–13],
called in the following pure diffusion models, are questionable
because the displacement and drift currents have been omitted
in the determination of the electric impedance of the cell.
If only drift current is omitted, the model will be called
hereinafter the diffusion model. We show that when the
displacement current is included in these models the Warburg-
type behavior disappears. From this result follows that the
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theoretical interpretation of Warburg-type impedance is still
absent, for the case where only one group of ions is mobile.

The remainder of the paper is organized as follows. In
Sec. II an elementary discussion on the displacement current
is reported. The case where the generation and recombination
phenomenon takes place is also investigated, and its conse-
quence on the position independence of the electric current
across a sample in the shape of a slab is analyzed. In Sec. III
the simple case where only the ions of one sign are mobile is
discussed. The general solution of the problem is reported in
Sec. IV, and the expression of the electric impedance in terms
of the integration constants is deduced for the Nernstian case.
In Sec. V, the case where the electrodes are described by Ohmic
boundary conditions is considered. To compare our results with
similar calculations performed by other authors, we considered
also the very particular case where the conduction current
is due only to diffusion. In this framework, drift current is
assumed to be negligible. This approximation is very often
used [20–23]. A comparison with the impedance expressions
derived in the framework of pure diffusion models [8–12] is
presented in Secs. V and VI, and the anomalies contained in the
pure diffusion models are critically analyzed. The conclusions
are reported in Sec. VI, where it is stressed that the theoretical
interpretation of Warburg’s impedance is still an open problem
in electrochemistry.

II. THE DISPLACEMENT CURRENT

More than 100 years ago Maxwell proposed to modify
Ampere’s law ∇ × B = μ0j, where B and j are the magnetic
field and the electric current density, and μ0 is the magnetic
permittivity of the vacuum. The reason was related to the
simple observation that from it one derives ∇ · j = 0, that is
valid only in the stationary case. To overcome this difficulty
Maxwell proposed to modify Ampere’s law by introducing the
displacement current according to

∇ × B = μ0

(
j + ε

∂E
∂t

)
, (1)

where ε is the dielectric constant of the medium. With this
modification from Eq. (1) the equation of continuity, stating
the conservation of the electric charge,

∂ρ

∂t
+ ∇ · j = 0, (2)

where ρ is the bulk density of electric charge, is identically
satisfied if Poisson’s equation ∇ · E = (1/ε)ρ is taken into
account. In particular it follows that the total current

J = j + ε
∂E
∂t

(3)

is a solenoidal vector. In the simple case where the sample is a
slab of thickness d, all physical quantities depend only on the
coordinate along the normal to the limiting surfaces, z, and
from Eq. (3) we derive that the z component of the total current
density Jz = J is position independent across the sample.

To analyze the importance of the displacement current,
let us consider the case where the external electric field is a
harmonic function of the time t of the type E = E0 exp(iωt),
where, as before, ω is the circular frequency of the external

field of amplitude E0, and the isotropic medium is charac-
terized by an electrical conductivity σ . In this framework the
conduction current is j = σE and the displacement current
ε∂E/∂t = iωεE. The two contributions are comparable when
σ ∼ ωε. In the case of a metal, where σ ∼ 107 (� m)−1

and ε ∼ 10 × ε0, the two contributions are comparable for
ω ∼ 1017 rad/s. From this observation it follows that for
usual conductors the displacement current can be neglected
in the low frequency region, and the quasistationary descrip-
tion works well. If the medium under consideration is an
electrolytic solution, the electric conductivity is given by
σ = n0qμ, where n0 is the bulk density of ions, q is its
electric charge, and μ is the electric mobility. Assuming n0 ∼
1022 m−3, q = 1.6 × 10−19A s, μ = 40 × 10−9 m2/(V s), and
ε ∼ 10 × ε0, we get that the conduction current is comparable
with the displacement current for ω ∼ 4 × 103 rad/s, i.e.,
for frequency of the order of a few kHz. From this simple
observation it follows that the displacement current can play an
important role in the determination of the electric impedance
of an electrolytic cell for frequencies in the range from
mHz up to a few Mhz, which is usually explored with the
impedance spectroscopy technique [24]. However, for some
unclear reasons, it is simply neglected in several papers
devoted to the characterization of nonmetallic conductors by
means of the impedance spectroscopy technique without any
justification [8–13].

We observe that only when taking into account the
displacement current the total current across the cell is position
independent, and the concept of electric impedance, defined as
the ratio of the applied voltage over the current across the cell,
is meaningful. When it is neglected, the conduction current is
position dependent, and therefore it is simply impossible to
define the impedance of the cell since the current is variable
across the cell.

It is of some importance to note that the total electric current
across a cell in the shape of a slab is position independent
even in the case where the phenomenon of generation (G)
and recombination (R) is considered. To show this in some
detail, let us consider an insulating medium containing neutral
particles that can be dissociated by means of some mechanism,
in positive and negative ions. We indicate by n, p, and m their
bulk particle density, respectively, and by jn, jp, and jm we
indicate their bulk current density, respectively. The continuity
equations for n, p, and m are

∂n

∂t
= −∇ · jn − G + R, (4)

∂p

∂t
= −∇ · jp + G − R, (5)

∂m

∂t
= −∇ · jm + G − R, (6)

independently of the functional form relating the bulk density
of currents to the bulk density of particles and to the actual
electric field in the medium. The actual electric field in the
sample is related to the net charge density by the equation of
Poisson:

∇ · E = q

ε
(p − m), (7)
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where q is the ionic charge and ε is the dielectric constant of
the medium in which the ions are dissolved. The total electric
current is

J = q(jp − jm) + ε
∂E
∂t

. (8)

From Eq. (8), taking into account Eq. (7) we get

∇ · J = q

{(
∇ · jp + ∂p

∂t

)
−

(
∇ · jm + ∂m

∂t

)}
= 0, (9)

for all G and R terms. As discussed before, even in this case, for
a one-dimensional problem, J is constant across the cell, and
the impedance of the cell is simply given by Z = �V/(JS),
where �V is the difference of potential applied to the cell, and
S is the surface area of the electrodes.

III. SIMPLE PROBLEM

We limit now our analysis to the simple problem where
only the positive ions are moving. This case corresponds to
a hydrogel containing ions, such that the negative ions are
stuck on the network of the gel, as discussed in Ref. [25]. The
sample is assumed in the shape of a slab of thickness d, and
the Cartesian reference frame has the z axis perpendicular to
the electrodes, placed at z = ±d/2. The external difference of
potential applied to the sample is supposed to be a harmonic
function of the type �V (t) = V0 exp(iωt), of amplitude V0

and circular frequency ω. We indicate by n0 the bulk density
of ions in thermodynamical equilibrium, by p the actual bulk
density of cations in the presence of the external field, and
by Dp their diffusion coefficient in the considered insulating
liquid. The electric potential across the sample is indicated
by V . In this case the fundamental equations of the problem,
neglecting the G-R phenomenon, are

∂p

∂t
= ∂

∂z

{
Dp

∂p

∂z
+ μp p

∂V

∂z

}
, (10)

representing the equation of continuity, and

∂2V

∂z2
= −q

ε
(p − n0), (11)

which is Poisson’s equation. We assume that the electric
mobility, μp, and the diffusion coefficient, Dp, are related by a
generalization of the Einstein relation μp/Dp = a/Vth, where
Vth = kBT /q. The parameter a could be frequency dependent,
as discussed in a simple example in the Appendix. For a = 1
we recover Einstein’s relation. We assume that V0 is such
that p − n0 � n0 and introduce the reduced quantities up =
(p − n0)/n0, uv = V/Vth, and ζ = z/d, in such a manner that
−1/2 � ζ � 1/2. The bulk density of current of the positive
ions is

jp = −Dpn0

d

(
∂up

∂ζ
+ a

∂uv

∂ζ

)
. (12)

From Eq. (12) it is evident that for a = 0 we recover the case
of diffusion, and for large a the case of drift (where drift
dominates the conduction current). In terms of the reduced

quantities Eqs. (10) and (11) can be rewritten as

∂up

∂t
= ωd

(
∂2up

∂ζ 2
+ a

∂2uv

∂ζ 2

)
, (13)

∂2uv

∂ζ 2
= −(d/
)2 up, (14)

where 
 =
√

εkBT /(n0q2) is the Debye length for the present
problem, and ωd = Dp/d2 is the diffusion circular frequency.
For further consideration it is useful to introduce Debye’s
relaxation circular frequency ωD = Dp/
2, and express the
frequency in units of ωD as � = ω/ωD .

When the excitation is harmonic we have up(ζ,t) =
φp(ζ ) exp(iωt) and uv(ζ,t) = φv(ζ ) exp(iωt), where φp(ζ )
and φv(ζ ) are solutions of the ordinary differential equations

φ′′
p(ζ ) = 4 M2(a + i �) φp(ζ ), (15)

φ′′
v (ζ ) = −4 M2 φp(ζ ), (16)

where the prime means a derivation with respect to ζ , and
M = d/(2
). The total electric current density across the cell
is given by

J = J0{(φ′
p + aφ′

v) + i�φ′
v} exp(iωt), (17)

where J0 = εωD Vth/d is an intrinsic electric current density.
The contribution to J of the conduction current is

Jcond = J0 (φ′
p + aφ′

v) exp(iωt), (18)

whereas the contribution due to the displacement current is

Jdisp = i J0 �φ′
v exp(iωt). (19)

Solutions of Eqs. (15) and (16) are

φp(ζ ) = A1 sinh(2 M
√

a + i � ζ )

+A2 cosh(2 M
√

a + i � ζ ) (20)

and

φv(ζ ) = − 1

a + i �
φp(ζ ) + B1ζ + B2, (21)

where A1, A2, B1, and B2 are integration constants to be
determined by means of the boundary conditions discussed
below. Substituting φp and φv given by Eqs. (20) and (21) into
the expression (17) we get

J = J0 B1 (a + i�) exp(iωt). (22)

From Eq. (22) it follows that J is position independent in the
cell. It depends only on the integration constant related to the
linear term in ζ of the potential expression. The impedance of
the cell, defined by Z = �V (t)/[J (t)S], in our case is

Z = R0
u0

B1(a + i�)
, (23)

where u0 = qV0/KBT , and R0 = d/(εωDS) is a characteristic
resistance of the sample.

Equation (23) is general. It can be applied as soon as the
boundary conditions of the problem are defined. The boundary
conditions on the electric potential, due to the presence of the
external power supply, are

φv(±1/2) = ±u0/2. (24)

052604-3



I. LELIDIS AND G. BARBERO PHYSICAL REVIEW E 95, 052604 (2017)

The boundary conditions on the bulk density of ions or on the
ionic currents depend on the model.

IV. NERNSTIAN MODEL

A. General considerations

In the framework of the Nernstian model [8–12] the
potential of the electrode fixes the bulk density of ions just
in front of the electrodes itself, according to the relations

φp(1/2) = k1
u0

2
and φp(−1/2) = −k2

u0

2
, (25)

in the limit of small u0. The perturbation of the bulk density of
ions due to the presence of the applied potential is responsible
for a diffusion current of charged particles across the sample.
In this case, a simple calculation yields

B1 = u0
a + i� + (k1 + k2)/2

(a + i�)
(26)

and the impedance of the cell, according to Eq. (23), is

ZN (k1,k2,a; �) = R0

a + i� + (k1 + k2)/2
, (27)

where the subscript N indicates that we are working in the
Nernstian approximation. In the symmetric case where k1 =
k2 = k from Eq. (27) we get

ZN (k,k,a; �) = R0

a + i� + k
, (28)

whereas in the case where k1 = k and k2 = 0 we have

ZN (k,0,a; �) = R0

a + i� + k/2
. (29)

Figure 1 shows the frequency dependence of RN

(k,k,a; �) = Re[ZN (k,k,a; �)] [Fig. 1(a)], XN (k,k,a; �) =
Im[ZN (k,k,a; �)] [Fig. 1(b)], and their parametric plot
−XN (k,k,a; �) versus RN (k,k,a; �) [Fig. 1(c)], for a = 0
corresponding to a diffusive current (solid line), for a = 1
corresponding to the Einstein approximation (dashed line),
and for a = 10 corresponding to a case where the diffusion
current is small with respect to the drift current (dotted line).
We observe that for this symmetric case, in the dc limit the
behavior of the cell is of pure Ohmic type, and

lim
�→0

ZN (k,k,a; �) = R0

a + k
. (30)

The relaxation frequency, well visible in the spectrum of
XN (k,k,a; �), is �r = a + k.

As discussed in the Introduction, to compare our results
with those derived by means of pure diffusion models [8–
12], we have to limit our analysis to the case in which
the conduction current is only due to the diffusion. In this
framework, the drift component of the conduction current
is assumed to be negligible with respect to the diffusion
component. This approximation is widely used, despite the
fact that its physical origin is unclear [20–23]. It is based on
the hypothesis that in the bulk the net electric field is zero. The
electric current is generated by the modification of the bulk
density of ions close to the electrodes, and it has only a diffusive
origin. In the following, to perform this limit we will assume

Log10 [Ω]

Log10 [Ω]

FIG. 1. Frequency dependence of RN/R0 (a) and −XN/R0 (b)
and parametric plot of −XN/R0 vs RN/R0 (c) for a symmetric
cell in the Nernstian approximation, when a = 0, diffusive current
(solid line); a = 1, Einstein approximation (dashed line); and a = 10,
important drift (dotted line). The curves are drawn for k = 1. The
vertical lines are the circular relaxation frequencies �r = a + k.

a = 0. This is a delicate point for the following reason. The
drift current is negligible when the electric field responsible
for the drift is very small, as in supported liquid. However, the
electric field is surely not negligible close to the electrodes,
where the overpotential is responsible for the response of the
cell to the external stimulus. In the surface layer the actual
electric field is usually rather large, since the overpotential
vanishes over a few Debye lengths. Consequently, in the
surface layer, the drift current is not expected to be negligible
with respect to the diffusion current. This type of problem has
not been mentioned in [8–12] because Poisson’s equation was
not considered. In the following to compare our results with
those obtained by [8–12] we suppose that the current is still
due to the diffusion, but we will take into account Poisson’s
equation.

In the diffusion approximation, where a = 0, and for the
symmetric electrodes case, the electric current density across

052604-4



ROLE OF THE DISPLACEMENT CURRENT ON WARBURG- . . . PHYSICAL REVIEW E 95, 052604 (2017)

the cell is

J = J0 u0(k + i�) eiωt , (31)

as it follows from Eq. (22), and the impedance of the cell,
given by Eq. (27), can be written as

ZN (k,k,0; �) = R0

k + i�
. (32)

From Eq. (32) it follows that the resistance, RN (k,k,0; �), and
reactance, XN (k,k,0; �), of the cell are given by

RN (k,k,0; �) = R0
k

k2 + �2
,

XN (k,k,0; �) = −R0
�

k2 + �2
. (33)

The parametric plot of −XN (k,k,0; �) versus RN (k,k,0; �) is
a semicircle crossing the real axis at the origin of the reference
frame and at R0/k, with center on the real axis in R0/(2k).
This parametric plot is similar to that predicted by a Debye
model for a medium having a complex dielectric constant
characterized by a single relaxation time [24].

The same problem (a = 0) in the framework of the Nern-
stian approximation has been considered by means of pure
diffusion models [8–12] where, moreover, the displacement
current has been neglected. With a calculation similar to that
presented above, the expression for the reduced ionic density
is found to be

φp(ζ ) = k
u0

2

sinh(2 M
√

i� ζ )

sinh(M
√

i�)
, (34)

coinciding with Eq. (20) written for the present case. In the
subsequent analysis, and in the framework of pure diffusion
models, the total electric current density in the cell is identified
with the diffusion current j = J0φ

′
p exp(iωt), that taking into

account Eq. (34) can be rewritten as

j = ku0 J0 M
√

i�
cosh(2 M

√
i� ζ )

sinh(M
√

i�)
eiωt . (35)

We underline that, if the displacement current is neglected, the
electric current across the cell is independent of the electric
potential distribution. In this case the equation of Poisson does
not play any role in the determination of the impedance of the
cell. As it is evident from Eq. (35) the current density is not
constant across the cell. It is an even function of ζ . In Ref. [11]
the current was, arbitrarily, evaluated on the electrodes
obtaining

j = ku0 J0 M
√

i� tanh(M
√

i�) eiωt . (36)

The impedance of the cell is then

ZD = R0

k

tanh(M
√

i�)

M
√

i�
, (37)

where the subscript D stands for Z obtained in the framework
of pure diffusion models. Note that M

√
i� = (1/2)

√
iω/ωd ,

where ωd = Dp/d2 is the diffusion circular frequency in-
troduced above. It follows that in the model proposed in
Refs. [8–12] the circular relaxation frequency is independent
of the bulk density of ions. In Fig. 2, we compare the
parametric plot of −X versus R obtained (i) from ZN , given

Log10 [Ω]

Log10 [Ω]

FIG. 2. Comparison of the frequency dependence of the real (a)
and imaginary (b) part of the electric impedance of the cell derived by
means of the complete model (solid lines) and of the pure diffusion
model (dashed lines), where the total electric current is identified only
with the conduction current due to diffusion. The parametric plots are
reported in panel (c). The vertical lines are the circular relaxation
frequencies determined by means of the two models. The linear part
present in the curves derived by means of pure diffusion models has
been identified in the past with a Warburg-like impedance.

by Eq. (32), that includes displacement current, and (ii) from
the expression reported in Ref. [11], deduced by neglecting
the displacement current, that is, ZD . The relaxation frequency
from ZN (k,k,0; �) is �r (N ) = k, whereas from the expression
ZD it is �r (D) = π2/(2M)2, as is evident from the spectrum
of R [Fig. 2(a)] and of X [Fig. 2(b)]. In the parametric plot
of −XD versus RD is present, in the high frequency range, a
linear dependence of XD on RD , that in several papers has been
claimed as a demonstration of the Warburg impedance [14],
and hence explained as a consequence of the pure diffusion
motion of the charge carriers in the medium. This is question-
able because the model used to derive this conclusion seems
not to be correct. Once the displacement current is taken into
account, the linear part of the parametric plot disappears and
the semicircular behavior is recovered. In Fig. 3 left, we show
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FIG. 3. Left: Total reduced current (blue horizontal line) for zero drift (dashed line) at the frequency � = 0.01 and its nonzero components,
diffusion (red solid line) and displacement current (black dot-dashed line), for the symmetric case of the Nernstian approximation. Right:
Electric field in the cell. Note that the electric field is not zero far from the electrodes, thus neglecting drift seems questionable.

the current components over the total current, versus ζ , in the
proximity of the electrode as a function of the position, ζ , for
a = 0. The calculation of the currents has been performed at
a low frequency � = 0.01 in order to test if the displacement
current could be neglected as usually assumed in the literature.
The horizontal solid line represents the total current in the cell,
that is constant at all positions before normalization. The solid
red line represents the diffusion current Jdif and the dot-dashed
black line represents the displacement current Jdisp. Note that
Jdisp is constant far from the electrodes and much larger than
Jdif , and its amplitude close to the electrode is similar to
the amplitude of the diffusion current. Figure 3 right shows
the electric field in the cell. φ′

v is constant but not zero far
from the electrode, therefore one has to be cautious with the
hypothesis of the supported system. Figure 4 left shows the
current components for the case a = 1, that is, when drift
is allowed. From this figure, one concludes that, in general,
the drift current (dashed line) cannot be omitted either in the
interfacial region or in the bulk where it may be dominant in
respect to the diffusion current. This latter observation is also
of some importance in respect to the supported electrolyte
approximation. Note also that the displacement current in
the bulk compares with the drift component, while close to
the electrode it is certainly not negligible. Figure 4 right
shows the electric field in the cell. As is shown, in the surface
layer the electric field is found to be rather large.

B. Adsorbing electrodes

In the framework of the Nernstian model an electrode is
called adsorbing if it is able to fix the surface bulk density
of ions to its thermodynamical equilibrium value. This means

that, in the analysis presented above, the corresponding k1 or
k2 phenomenological parameters entering into the boundary
conditions (25) vanish. As is clear from Eq. (27), if k1 = k2 =
0 the electric impedance of the cell limited by two adsorbing
electrodes is

ZN (0,0,a; �) = R0

a + i �
, (38)

i.e., it coincides with the impedance of a Debye model
characterized by a single relaxation time. In the particular case
where a = 0, the impedance corresponds to a pure capacitive
reactance. If only one of the electrodes is adsorbing, the
corresponding impedance is given by Eq. (29). It is equivalent
to the impedance of a symmetric cell limited by nonadsorbing
electrodes with k1 = k2 = k/2. In the diffusive case Eq. (29)
yields

ZN (k,0,0; �) = R0

k/2 + i�
. (39)

We analyze in some detail the cell limited by one adsorbing
electrode to underline the strange results that are obtained
when the displacement current is neglected in the determi-
nation of the impedance in the pure diffusive case, as done,
among others by Bisquert [11]. In the case where k1 = k and
k2 = 0 the profile of the bulk density of the charge carriers is

φp(ζ ) = k

4
u0

{
sinh(2M

√
i� ζ )

sinh(M
√

i �)
+ cosh(2M

√
i� ζ )

cosh(M
√

i �)

}
.

(40)

If the displacement current is neglected, the electric current
density in the cell is given by Eq. (18), that in the present case
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FIG. 4. Left: Total reduced current (blue horizontal line) at the frequency � = 0.01 and its components, diffusion (red solid line), drift
(dashed line), and displacement current (black dot-dashed line), for the symmetric case of the Nernstian approximation. Right: Electric field in
the cell.

takes the form

j = k

2
u0 J0 M

√
i �

{
cosh(2M

√
i� ζ )

sinh(M
√

i�)
+ sin(2M

√
i� ζ )

cosh(M
√

i�)

}
.

(41)

The electric current density is not constant across the cell, and
it does not have a defined symmetry in ζ .

If j is evaluated, in an arbitrary manner, at ζ = 1/2
(nonadsorbing electrode), we get

j (1/2) = ku0J0M
√

i� coth(2M
√

i�), (42)

and the corresponding impedance of the cell, in the scheme
proposed in Ref. [11], is given by

ZD(1/2) = 2
R0

k

tanh(2M
√

i�)

2M
√

i�
. (43)

The comparison of ZN (k,0,0; �) given by Eq. (39) with ZD

given by Eq. (43) has the characteristics shown in Fig. 2.
If j is evaluated on the adsorbing electrode, at ζ = −1/2,

we have

j (−1/2) = ku0J0M
√

i�
1

sinh(2M
√

i�)
, (44)

and the impedance of the cell becomes

ZD(−1/2) = 2
R0

k

sinh(2M
√

i�)

2M
√

i�
. (45)

Expression (45) is nonsense. It predicts negative resistance for
some values of the frequency. This nonsense, as underlined

above, is related to the assumption that the displacement
current is negligible. This assumption works well only in the
limit of � → 0. In this limit expressions (39), (43), and (45)
tend to the correct value 2R0/k, as expected.

C. Reflecting electrodes

An electrode is called reflecting if the current density of
particles vanishes on it. In the domain of electrochemical
impedance spectroscopy an electrode having this property is
also called blocking. We consider now the case where the
boundary conditions on the potential are of the type of Eq. (24)
and those on the ionic density are

φp(1/2) = k
u0

2
and φ′

p(−1/2) = 0, (46)

corresponding to a reflecting electrode at ζ = −1/2. In the
diffusion case, the solution of the problem can be obtained by
means of the procedure discussed above. A simple calculation
gives for the impedance of the cell the expression

Zc = 2R0
cosh(2M

√
i�)

(k + 2i�) cosh(2M
√

i�) − k
. (47)

In the limit � → 0, Zc diverges, indicating that no dc
current can flow across the cell, in agreement with the
hypothesis that one of the electrodes is blocking. In the dc
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limit, from Eq. (47), we get

lim
�→0

Zc = 5kM4

3(1 + kM2)2
R0 − i

R0

(1 + kM2)�
. (48)

In the case of large � from Eq. (47) we obtain

lim
�→∞

Zc = 2
R0

k + 2i�
, (49)

from which it is evident that in the limit of large � the
impedance coincides with that of a cell having an adsorbing
electrode [see Eq. (39)], characterized by a dc resistance
2R0/k. An expansion in the power series of Z, expression (47),
to the second order in � shows that there exists a critical value
of k, defined by

kc = −23 + √
2191

2M2
, (50)

such that, for k � kc, R tends first to 2R0/k, and then decreases
to the value given by Eq. (48). In this case, before diverging, the
reactance changes sign in a small frequency range. This effect
is well visible in Fig. 5 where are shown the real [Fig. 5(a)] and
imaginary [Fig. 5(b)] parts of Zc versus �, and the parametric
plot of −Xc versus Rc [Fig. 5(c)]. In contrast, for k � kc, R

tends monotonically to the value given by Eq. (48). This
situation is shown in Fig. 6. We observe that the case k � kc

looks a little bit strange, for the decreasing of the resistance
of the cell in the dc limit. Probably it simply indicates that
Nernstian boundary conditions are valid only for weak enough
current at the interface, related to small values of k. Hence kc

gives, probably, an indication on the maximum value of the
phenomenological parameter k.

In the present case, the profile of charge carriers is
given by

φp(ζ ) = k

2
u0

sinh(M
√

i�) sinh(2M
√

i� ζ ) + cosh(M
√

i�) cosh(2M
√

i� ζ )

cosh(2M
√

i�)
. (51)

If the displacement current is neglected the electric current density is found to be

j = ku0J0M
√

i�
sinh(M

√
i�) cosh(2M

√
i� ζ ) + cosh(M

√
i�) sinh(2M

√
i� ζ )

cosh(2M
√

i�)
. (52)

This current density is ζ dependent. It vanishes at ζ = −1/2.
If it is arbitrarily evaluated at ζ = 1/2, a simple calculation
gives

j (1/2) = ku0J0M
√

iω tanh(2M
√

i�). (53)

The corresponding impedance

ZD = 2
R0

k

coth(2M
√

i�)

2M
√

i�
(54)

is coinciding with the expression reported in Ref. [11]. From
Eq. (54) we deduce that in the limit of � → 0, the impedance
tends to

lim
�→0

ZD = 2R0

3k
− i

R0

2kM2�
, (55)

showing that in the parametric plot of −XD versus RD , the
vertical asymptote is located at RD(0) = 2R0/(3k). In the high
frequency region it tends to

lim
�→∞

ZD = R0

k

1

M
√

i�
, (56)

presenting, in the parametric plot, the linear part, attributed to
Warburg. As before, we note that although the expression (54)
is very elegant, its physical meaning is unclear.

V. OHMIC MODEL

A. General considerations

In previous sections we have investigated in some detail the
impedance of an electrolytic cell assuming that the boundary
conditions on the ionic bulk density just in front of the electrode

are fixed by the difference of potential between the electrode
itself and the bulk, mathematically expressed by Eqs. (25).
These boundary conditions are expected to work well in
the state of thermodynamical equilibrium, where the current
across the cell is absent. In this case, it can be considered as
the expression of Boltzmann statistics for charged particles
in the presence of an external field. In the presence of an
electric current these boundary conditions are not so obvious.
According to the analysis of the previous section, Nerstian
boundary conditions could be valid only for low enough cur-
rent. A discussion on them has been reported by Bisquert [11].
Other boundary conditions very often used in electrochemistry
are those proposed by Chang and Jaffe [26], where the current
density at the surface is proportional to the variation of the
bulk density of ions just in front of the electrode with respect
to the value of equilibrium. Boundary conditions of this type
are used to describe the evaporation phenomenon [27], or
the external heat conduction. In the latter case, it is known
as Newton’s law. The effect of the Chang-Jaffe boundary
conditions on the electric impedance of an electrolytic cell
has been investigated by Macdonald and Franceschetti long
ago [28]. Another type of boundary conditions proposed some
years ago assumes that the current density at the surface is
proportional to the surface electric field [29], known as the
Ohmic model. In the simple case where only one group of ions
is mobile, as in the case considered in the present paper, it is
possible to show that the Chang-Jaffe model and Ohmic model
are equivalent [30]. This means that fixing a phenomenological
parameter for one model it is possible to determine, in a unique
manner, the phenomenological parameter of the other model
in such a manner that the two expressions of the impedance
coincide [30]. In a recent paper we have analyzed the analogies
and differences between the two models [31].
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Log10 [Ω]

Log10 [Ω]

FIG. 5. Frequency dependence of the real (a) and imaginary (b)
part of the impedance, and parametric plot of the imaginary vs the
real part (c). The cell in the pure diffusive regime is limited by a
reflecting electrode, at ζ = −1/2. On the electrode at ζ = 1/2 the
boundary condition is of Nernstian type characterized by k = 1. Full
expression of the real and imaginary parts of the impedance is shown
by the solid line, while approximated expressions valid in the high
and low frequency regions are shown by the red dashed and black
dotted lines, respectively. In panel (a), the horizontal lines are the
plateaus corresponding to 5R0/(3k) and to 2R0. In panel (c) the
vertical asymptote corresponds to 5R0/(3k).

Log10 [Ω]

Log10 [Ω]

FIG. 6. Same as Fig. 5, with k = 10−5 � kc.

Our aim is now to evaluate the impedance of the cell, in the
same framework used above, assuming Ohmic boundary con-
ditions, in order to verify if a Warburg-type behavior is present.
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In particular, we are interested in the pure diffusive case, where a = 0. The case of a = 1, corresponding to the Einstein-
Smolucowski relation, has been considered in Refs. [32,33]. In the framework of the Ohmic model the boundary conditions on
the current density of particles are

jp(1/2) = s1 E(1/2) and jp(−1/2) = s2 E(−1/2), (57)

where s1,2 are the phenomenological parameters of the Ohmic model and E(±1/2) are the surface electric fields. In terms of the
reduced quantities introduced above, in the linear approximation, Eqs. (57) can be rewritten as

φ′
p + (a − h1) φ′

v = 0, (58)

φ′
p + (a − h2) φ′

v = 0, (59)

at ζ = ±1/2, respectively, where h1 = s1/sc and h2 = s2/sc, with sc = εωD/q, are dimensionless parameters of the Ohmic
model. In this case the integration constants A1, A2, B1, and B2 are easily determined from the boundary conditions (24), (58),
and (59), and the electric impedance of the cell is evaluated by means of Eq. (23). A simple calculation gives for the impedance
Z(h1,h2,a; �) the expression

Z = R0
2M(a + i�)(h1 + i�)(h2 + i�) + √

a + i�[−2h1h2 + a(h1 + h2 + 2i�) − i(h1 + h2)�] tanh[M
√

a + i�]

2M(a + i�)2(h1 + i�)(h2 + i�)
. (60)

From Eq. (60) it follows that in the dc limit we get

lim
�→0

Z(h1,h2,a; �) = R0
2ah1h2M + √

a[−2h1h2 + a(h1 + h2)] tanh[
√

a M]

2a2h1h2M
, (61)

from which it follows that, as soon as a 	= 0, h1 	= 0, and h2 	= 0, in the considered limit the cell behaves as a pure resistance.

B. Symmetric and blocking electrodes

In the following, we limit our analysis to the case h1 = h2 = h, that we term symmetric, and to the case h1 = h and h2 = 0,
corresponding to a cell limited by one blocking electrode. Using Eq. (60) we get for the two cases

Z(h,h,a; �) = R0
M(h + i�)(−ia + �) − i(a − h)

√
a + i� tanh[M

√
a + i�]

M(a + i�)2(−ih + �)
, (62)

Z(h,0,a; �) = R0
2M(h + i�)�(−ia + �) + √

a + i�[−a(h + 2i�) + ih�] tanh[M
√

a + i�]

2M(a + i�)2�(−ih + �)
. (63)

In the diffusive case, expressions (62) and (63) can be rewritten as

Z(h,h,0; �) = −iR0
M(h + i�)� + ih

√
i� tanh[M

√
i�]

M�2(h + i�)
, (64)

Z(h,0,0; �) = −iR0
2M(h + i�)�2 + ih

√
i� � tanh[M

√
i�]

2M�3(h + i�)
. (65)

In the limit of � → 0, from Eqs. (64) and (65) we get

Z(h,h,0; �) =
(

1

h
+ M2

3

)
R0 − i

15 + (5 + 2hM2)hM2

15h2
R0 � + O(�2), (66)

Z(h,0,0; �) = R0

2i�
+ 3 + hM2

6h
R0 + O(�). (67)

From the expansion of Z(h,h,0; �), we infer that in the dc limit Z tends to a pure resistance given by

lim
�→0

Z(h,h,0; �) =
(

1

h
+ M2

3

)
R0 ∼ M2

3
R0, (68)

for h ∼ 1 and M 
 1. In contrast, from the expansion of Z(h,0,0; �) it follows that in the dc limit it diverges, as expected. The
impedance of the cell is equivalent to a series of a capacitance Cs and a resistance Rs defined by

Cs = 2ε
S

d
and Rs = 3 + hM2

6h
R0 ∼ 1

6
M2R0 = 1

24

d3

εDpS
. (69)
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FIG. 7. Spectra of the real (a), imaginary (b), and parametric (c) plot of the real part with respect to the imaginary part, of Z(h,h,0) (black
solid line) and Z(h,0,0) (dashed blue line). In the same figure are also reported the dc values for the resistances deduced by Eqs. (68) and (69).
The relaxation frequency, visible in panel (b), is �r = π 2/(2M)2. In the parametric plot (c), the vertical asymptote (red line) is defined by
Eq. (69), and the corresponding frequency is �r . The curves are drawn for M = 103, h = 2.

In the limit of � → ∞ from Eqs. (64) and (65) we obtain

Z(h,h,0; �) = R0

i�
+ hR0√

2 M
�−5/2, (70)

Z(h,0,0; �) = R0

i�
+ hR0

2
√

2 M
�−5/2, (71)

from which one derives that in the high frequency region the
series capacitances for Z(h,h,0) and Z(h,0,0) coincide with
the capacitance of the cell free of ions, Cs(� → ∞) = εS/d.
The resistance of Z(h,h,0) is the double of the resistance of
Z(h,0,0) and tends to zero as �−5/2. For all frequencies, the
real part of Z(h,h,0; �) is, practically, the double of the real
part of Z(h,0,0; �).

In Fig. 7, we compare the spectra of the real [Fig. 7(a)],
imaginary [Fig. 7(b)], and parametric [Fig. 7(c)] plot of the
real part with respect to the imaginary part, of Z(h,h,0) and

Z(h,0,0). In the same figure are also reported the dc values
for the resistances deduced by Eqs. (68) and (69). From the
spectrum of the imaginary part of Z(h,h,0) it is evident
that the relaxation frequency is, for h = 2 of the order of
�r = π2/(2M)2, as predicted in Ref. [34]. Since for h = 0
the symmetric cell behaves as a condenser, as follows from
Eq. (64), �r is expected to depend on h. A numerical calcu-
lation shows that, for h > h∗ = π2/(8M2),�r is practically
independent of h, whereas for h < h∗ the relaxation frequency
tends rapidly to zero. In the parametric plot the vertical
asymptote is defined by Eq. (69), and the corresponding
frequency is �r . In Fig. 8, we show the logarithm of the real
part of Z(h,0,0) and the approximated expression given by the
real part of Eq. (71) versus log[�]. From this figure it is evident
that the logarithm of the real part of Z(h,0,0) is practically
frequency independent in the low frequency region, depends
on �−2 in the intermediate frequency region, and varies as
�−5/2 in the high frequency region.
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Log10 [Ω]

Lo
g 1

0 

FIG. 8. Frequency dependence of the logarithm of the real part of
Z(h,0,0), and the approximated expression given by the real part of
Eq. (71). Note that it is practically frequency independent in the low
frequency region, dependent on �−2 in the intermediate frequency
region, and dependent on �−5/2 in the high frequency region. The
curves are drawn for M = 103, h = 2.

VI. CONCLUSIONS

We have investigated the response of an electrolytic cell to
an external harmonic electric field, in the linear approximation
by means of the Poisson-Nernst-Planck model. Our analysis
has been mainly focused on the diffusive case, where the
conduction current is due only to diffusion. We have shown
that if the displacement current is omitted, the electric current
is not constant across the cell. Therefore, it is not possible to
define the impedance of the cell in the usual manner, that is, as
the ratio between the applied voltage and the current across the
cell, at least without an evaluation of the current density at an
arbitrary point. Our analysis has been performed first assuming
Nernstian boundary conditions, where the bulk density at
the surface is fixed by the potential of the electrode with
respect to the bulk. In this case, we have compared our results
with those reported some years ago, on a similar problem
in Ref. [11], obtained in the framework of a pure diffusion
model, that is, the total electric current is identified with the
ionic diffusion current [8–12]. In the case of a symmetric
sample limited by Nernstian electrodes, our expression for
the impedance does not contain, in the high frequency region,
the linear dependence, in the parametric representation, of
the reactance versus the resistance, known as Warburg’s
impedance. Furthermore the relaxation frequency, defined by
the maximum of the reactance, according to our model depends
on the ionic concentration and on the phenomenological
parameter entering into the Nernstian boundary conditions.
In contrast, according to pure diffusive models the relaxation
frequency coincides with the diffusion circular frequency.
Similar differences are observed when one of the electrodes

is completely adsorbing. In this case the pure diffusion model
discussed in Ref. [11] predicts an electrical impedance for the
cell strongly dependent on the position where the current is
evaluated. If it is evaluated on the reflecting electrode the
results are nonphysical, because the resistance of the cell
could be negative. If the current is evaluated on the other
electrode, the reactance diverges at the relaxation frequency
and presents again in the high frequency region the Warburg-
like impedance. We have investigated also the response of
the cell for Ohmic boundary conditions. For a cell with one
blocking electrode, we have found that in the low frequency
region the reactance diverges at the relaxation frequency. Our
model predicts three power law dependencies for the real
part of the impedance: (i) in the low frequency range, it is
independent of the frequency; (ii) for moderate frequency it
depends upon the frequency with a power of −2; and (iii) in
the high frequency region it depends upon the frequency with
a power of −2.5.

Our conclusion is that the models proposed to interpret
Warburg-type impedance based only on the diffusion equation,
generalized to take into account the traps, although able to
reproduce the main characteristic of the experimental spectra,
are not physically based. Therefore misleading conclusions
could be drawn concerning the properties of the electrodes
and of the electrolytic cell in general. There are several other
models based on the transmission lines able to predict a
frequency dependence of the impedance similar to Warburg’s
impedance. However, it is not very simple to relate the lumped
electrical elements with physical mechanisms responsible for
the electric response of the cell to the external electric field.
Our personal point of view is that these kinds of models are
only fitting models unable to help in the understanding of
the physical mechanisms contributing to the electric behavior
of the cell or, worse, misleading models. We are convinced
that, for the one mobile ion approximation, if the Warburg
impedance is observed, its explanation has to be searched for in
the boundary conditions. Hence, the theoretical interpretation
of Warburg’s impedance is still lacking.
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APPENDIX

In a simple model for the motion of the ions in an insulating
liquid, it is assumed that Newton’s equation of the ions in the
presence of an electric field is

m
dv
dt

= q E − κ v, (A1)

where m is the mass of the ion, including the hydration effect,
and v is its velocity in the presence of the electric field E. In this
simple approach the dissipative effects are taken into account
by means of a friction force of viscous origin, described by
a coefficient κ depending on the shape of the ion and on the
viscosity of the liquid, η. In the simple case where the shape
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of the mobile ion can be assumed to be spherical of radius
r, κ = 6πrη [35]. This model is very rough, however a few
indications of the frequency dependence of the ionic mobility
on the frequency can be derived operating as follows.

If the electric field is time independent, in the steady state,
the velocity of the ion is related to the electric field by v =
(q/κ) E. It follows that the ionic mobility is μ0 = q/κ , where
the subscript zero means that the electric field is continuous.

If the external electric field is a harmonic function of the
time of the type E = E0 exp(iωt), in the steady state, v =
v0 exp(iωt), as follows from Eq. (A1). The amplitude of the
velocity of drift along the electric field is

v0 = μ0

1 + i (ω/ωr )
E0, (A2)

where μ0 = q/κ as before, and ωr = κ/m is a characteristic
circular frequency related to the inertial (m), and dissipative
(κ), properties of the ion in the given liquid. In the present case
we get

v = μ0

1 + i (ω/ωr )
E, (A3)

from which the effective ionic mobility defined by v = μ(ω) E
is found to be

μ(ω) = μ0

1 + i (ω/ωr )
. (A4)

Although Eq. (A4) has been obtained in the framework
of a very simple model, it contains reasonable frequency
dependence of μ = μ(ω). As expected, for ω → ∞, μ → 0.
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