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Recovery of mechanical pressure in a gas of underdamped active dumbbells with Brownian noise
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In contrast with a gas at thermodynamic equilibrium, the mean force exerted on a wall by a gas of active particles
usually depends on the confining potential, thereby preventing a proper definition of mechanical pressure. In
this paper, we investigate numerically the properties of a gas of underdamped self-propelled dumbbells subject
to Brownian noise of increasing intensity, in order to understand how the notion of pressure is recovered as
noise progressively masks the effects of self-propulsion and the system approaches thermodynamic equilibrium.
The simulations performed for a mobile asymmetric wall separating two chambers containing an equal number
of active dumbbells highlight some subtle and unexpected properties of the system. First, Brownian noise of
moderate intensity is sufficient to let mean forces equilibrate for small values of the damping coefficient, while
much stronger noise is required for larger values of the damping coefficient. Moreover, the displacement of the
mean position of the wall upon increase of the intensity of the noise is not necessarily monotonous and may instead
display changes of direction. Both facts actually reflect the existence of several mechanisms leading to the rupture
of force balance, which tend to displace the mean position of the wall towards different directions and display
different robustness against an increase of the intensity of Brownian noise. This work therefore provides a clear
illustration of the fact that driving an autonomous system towards (or away from) thermodynamic equilibrium
may not be a straightforward process, but may instead proceed through the variations of the relative weights of
several conflicting mechanisms.
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I. INTRODUCTION

Active matter defeats many intuitions based on the
knowledge of the properties of systems at thermodynamic
equilibrium. For example, the (mechanical) pressure of a
gas at thermodynamic equilibrium can be measured as the
mean force per unit area exerted by the constituent particles
on a confining wall. Quite importantly, identical results are
obtained for walls made of different materials; that is, the
pressure does not depend on the precise interactions between
the particles and the wall. Moreover, the (thermodynamic)
pressure of a gas at equilibrium can alternately be estimated
from an equation of state, which involves only bulk properties
of the gas, such as temperature and density, and the result
is identical to the mechanical pressure. However, this is no
longer necessarily true for so-called active fluids, which are
made of particles capable of autonomous motion, such as
self-propulsion [1], and are permanently out of thermodynamic
equilibrium. Indeed, for such active fluids, pressure [2–17],
but also stress [18] and chemical potential [19], may lose
part (or all) of the properties they display at equilibrium
and become ill-defined notions. Interestingly, the loss of
equilibrium properties may depend on rather subtle details
of the system. For example, active Brownian spheres still obey
an equation of state when confined between torque-free walls
[7], but the equation of state no longer exists when the wall is
able to exert a torque on the spheres [8].

While most of the results quoted above were obtained in
the limit of overdamped dynamics, we recently described
and analyzed the dynamics of a gas of underdamped active
dumbbells [20], which are characterized by a finite mass, a
given self-propulsion force (instead of a given self-propulsion
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velocity), and move in a medium with finite but relatively
small damping coefficient γ . The goal was to understand
how the unusual properties of pressure reported in [8] emerge
progressively from the characteristics of individual trajectories
upon increase of the damping coefficient γ . For this purpose,
a mobile wall was placed inside a two-dimensional chamber
containing an equal number of active dumbbells on each side
of the wall. The repulsion force constants on both sides of the
mobile wall were set to very different values and the mean
position of the wall was computed for increasing values of γ

and the density of active dumbbells. The most striking result of
this study was probably the observation that the displacement
of the mean position of the wall is not monotonous upon
increase of γ , especially at low dumbbell density, where a clear
displacement first to the right and then to the left is observed
[20]. The origin of this nonmonotony was traced back to the
existence of two different mechanisms, which are both able
to disrupt the balance between the mean forces exerted by the
active dumbbells on both sides of the mobile wall but tend
to displace the mean position of the wall towards opposite
directions.

The aim of the present paper is to extend and complete
the results presented in [20] by investigating how the gas of
underdamped active dumbbells recovers its thermodynamic
equilibrium properties upon addition of Brownian noise.
Since an ensemble of Brownian particles enclosed in an
isolated chamber is at equilibrium from the thermodynamic
point of view, it is expected that increasing the intensity of
the Brownian noise applied to the active dumbbells masks
progressively the influence of self-propulsion and enables the
system to recover its equilibrium properties. Concentrating
on pressure, the most naïve expectation is consequently that,
upon increase of the intensity of Brownian noise, the mean
position of the mobile wall returns back progressively to the
center of the chamber, because the mean forces exerted by the
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dumbbells on both sides of the mobile wall tend to equalize.
The principal result of the present paper is the demonstration
that the actual dynamics of the system of underdamped active
dumbbells with Brownian noise can actually be substantially
more complex than this naïve prediction. For example, it will
be shown that, within a certain interval of values of γ , the
mean position of the mobile wall first strays further away
from the center of the chamber before heading up to it upon
increase of the intensity of the Brownian noise. As discussed
below, detailed analysis of the dynamics of the model reveals
that this complexity stems from the fact that there are actually
three different mechanisms (and not only the two reported in
[20]), which are capable of disrupting the balance between the
mean forces exerted by the dumbbells on both sides of the
mobile wall, and that these three mechanisms have different
robustness against Brownian noise. For each value of γ and
the particle density, the relative importance of each mechanism
fluctuates with increasing noise, which leads potentially to
complex kinematics of the wall, because the mechanisms tend
to displace the wall in different directions.

All in all, this work demonstrates that driving an au-
tonomous system towards thermodynamic equilibrium may be
a quite subtle process and that it cannot be taken for granted
that equilibrium properties are recovered as a monotonous
function of the driving parameter. This example may be of
conceptual interest for the development of a thermodynamic
theory of active matter.

The remainder of this paper is organized as follows. The
model is described in Sec. II and the results of simulations
performed therewith are described and interpreted in Sec. III.
We finally discuss a couple of important issues and conclude
in Sec. IV.

II. DESCRIPTION OF THE MODEL

A. Model with two confinement chambers

Except for the introduction of Brownian noise and the
associated random forces, the model investigated in this work
is similar to the one in [20] and is schematized in Fig. 1. It
consists of N identical self-propelled dumbbells [5,19,21–26]
moving in a two-dimensional space and enclosed between
fixed walls with gross size 2Lx × 2Ly . A mobile wall of
thickness 2e separates this area into two noncommunicating
chambers. The mobile wall can move along the x axis while
remaining parallel to the y axis, the position of its median line
being characterized by its abscissa xw. This piston geometry
has already been used to investigate the properties of other
nonequilibrium systems, such as active Brownian particles [8]
and granular gases, either vibrated ones [27] or nonvibrated
ones [28]. Corners between any two walls have the shape of a
quarter of a circle of radius r , in order to avoid the accumulation
of particles that occurs in square corners [6,29]. An equal
number N/2 of dumbbells are enclosed in each chamber, each
dumbbell j being composed of two particles with respective
positions R2j−1 and R2j (j = 1,2, . . . ,N) connected by a
harmonic spring and separated at equilibrium by a distance
a. Each particle experiences an active force directed along the
axis of the dumbbell R2j − R2j−1. Moreover, each particle
experiences a random force with components extracted from

FIG. 1. (a) Schematic diagram of a dumbbell, showing the two
particles located at positions R2j−1 (tail) and R2j (head), the string
connecting them, and the self-propulsion force applied to each particle
and directed from the tail to the head of the dumbbell. (b) Schematic
diagram of the confinement chambers. Fixed walls are shown as
black solid lines and the mobile wall as red dotted lines. xw denotes
the abscissa of the median line of the mobile wall. Also shown is the
position Rk of a particle that has penetrated inside a fixed wall and
its projection p(Rk) on the surface of the wall. The repelling force
exerted by the wall on this particle is proportional to ‖Rk − p(Rk)‖.
The force constants associated with the repulsion potential on the left
side of the mobile wall (hL) and the right side of the mobile wall (hR)
are different.

a Gaussian distribution. In contrast with the active Brownian
spheres and run-and-tumble particles models [30–37], where
noise affects only the orientation of the velocity vector of the
spheres, the Brownian force here affects all (i.e., translation,
rotation, and vibration) degrees of freedom of the active
dumbbells. Besides the active and random forces, each particle
also interacts with the fixed and mobile walls and with particles
that do not belong to the same dumbbell through softcore
potentials that vanish beyond a certain threshold and increase
quadratically below the threshold.

The potential energy V of the system (not including the
active and random forces) is written as the sum of three terms,

V = Vs + Vev + Vw, (1)

where Vs describes the internal (stretching) energy of the
dumbbells, Vev the softcore repulsion between neighboring
particles that do not belong to the same dumbbell, and Vw the
confining potential exerted by the walls on particles that tend
to escape from the chambers. These three terms are expressed
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in the form

Vs = h

2

N∑
j=1

(‖R2j−1 − R2j‖ − a)2,

Vev = h

2

2N−2∑
k=1

2N∑
m=

{
k+1 (k even)
k+2 (k odd)

H (2a − ‖Rk − Rm‖)(2a − ‖Rk − Rm‖)2, (2)

Vw = hL

2

∑
k∈SL

‖Rk − p(Rk)‖2 + hR

2

∑
k∈SR

‖Rk − p(Rk)‖2 + h

2

∑
k∈SF

‖Rk − p(Rk)‖2,

where H (r) is the Heaviside step function, which insures that
particles that do not belong to the same dumbbell repel each
other only for separations smaller than 2a. In the expression
of Vw, p(Rk) denotes the orthogonal projection of the vector
coordinate Rk of a particle that has penetrated inside a wall
on the surface of this wall (see Fig. 1), and ‖Rk − p(Rk)‖
represents the penetration depth of this particle inside the wall.
SL, SR , and SF furthermore denote the sets of particles that
at the considered time t have penetrated inside the mobile
wall coming from the left (L) and right (R) compartments
and the set of particles that have penetrated inside fixed (F )
walls, respectively. For the sake of simplicity, the dumbbell
harmonic spring, softcore repulsive potential, and fixed wall
repulsive potential share the same force constant h.

B. Equations of motion

The equations of motion of the system are written in the
form

m
d2Rk

dt2
= Fk + mγ

(
v0nj (k) − dRk

dt

)
+ η(t),

(3)

mw

d2xw

dt2
= Fw − mwγ

dxw

dt
,

(k = 1,2, . . . ,2N ), where m denotes the mass of the particles
and mw the mass of the mobile wall; Fk is the force
felt by particle k resulting from the potential function V ;
γ is the damping coefficient of the medium; nj = (R2j −
R2j−1)/‖R2j − R2j−1‖ the unit vector pointing from the tail
to the head of dumbbell j ; j (k) denotes the integer part of
(k + 1)/2; mγ v0 nj (k) is the self-propulsion force of particle
k; and η(t) is the noise term force vector, whose components
have correlation functions that satisfy

〈ηi(t) ηj (t ′)〉 = m2γ v2
Bδi,j δ(t − t ′). (4)

In Eq. (4), v2
B characterizes the intensity of Brownian noise

and can be related to a temperature T through kBT = mv2
B/2,

with kB the Boltzmann constant. For vanishing self-propulsion
force (v0 = 0), Brownian energy distributes equally between
the various degrees of freedom of the dumbbells, with
mean energies mv2

B/2, mv2
B/4, and mv2

B/4, for translation,
rotation, and vibration, respectively, whatever the value of
the damping coefficient γ . In contrast, the velocity vector
of isolated dumbbells (Fk = 0 and vB = 0) subject only to
the self-propulsion force mγ v0 nj (k) tends to align along the

geometric axis of the dumbbell with a characteristic time that
decreases as 1/γ , while its norm converges towards v0 with
the same characteristic time, so that isolated dumbbells travel
asymptotically along straight lines at constant velocity v0. The
complexity of the dynamics that will be discussed below arises
in great part from the conflict between Brownian noise, which
provides the dumbbells with a rotational energy mv2

B/4, and
the self-propulsion force, which tends to align the velocity
vector of the dumbbells along their geometric axis with a
time constant 1/γ . Collisions with the wall or between two
dumbbells also contribute to the complexity of the dynamics by
reorienting the velocity vector of the dumbbells, the mean free
path between two dumbbell collisions scaling approximately
as 2LxLy/(Na). For most simulations discussed below, the
value of vB was increased at a constant value of v0, in order
to decrease the importance of self-propulsion and drive the
system towards thermodynamic equilibrium.

It is worth noting that Eq. (3) does not conserve momentum,
as is also the case for the active Brownian spheres and run-
and-tumble particles models [30–37], and is consequently best
suited to describe particles moving on a surface that acts as
a momentum sink, such as crawling cells [38] or colloidal
rollers [39] and sliders [40]. However, such systems often have
a large damping coefficient, while the damping coefficient is
allowed here to be small. Moreover, Eq. (3) implies that the
medium contributes to the forces exerted on the mobile wall
only through its action on dumbbell dynamics. The wall is
therefore assumed to be permeable to this medium and the
pressure exerted by active dumbbells must be considered as an
osmotic pressure [5,7].

For the purpose of numerical integration, the derivatives
in Eq. (3) were discretized according to standard Verlet-type
formulas and the equations of evolution were subsequently
recast into the form

R(n+1)
k = 4

2+γ�t
R(n)

k − 2 − γ�t

2 + γ�t
R(n−1)

k + 2(�t)2

m(2+γ�t)
F(n)

k

+2v0(�t)2

2 + γ�t
γ n(n)

j (k)+
2vB(�t)3/2

2+γ�t
γ 1/2ξ

(n)
k ,

x(n+1)
w = 4

2 + γ�t
x(n)

w − 2 − γ�t

2 + γ�t
x(n−1)

w

+ 2(�t)2

mw(2 + γ�t)
F (n)

w , (5)
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where superscripts (n − 1), (n), and (n + 1) indicate the
time steps at which the quantity is evaluated, the ξ

(n)
k are

random vectors with components extracted from a Gaussian
distribution with zero mean and unit variance, and �t is the
integration time step.

Simulations were performed with the same set of parame-
ters as in [20], that is, a = 1, Lx = Ly = 100, e = 8, r = 20,
m = 0.5, mw = 2, and h = hL = 4 but hR = 0.4 to introduce
a strong dissymmetry between the left and right sides of the
mobile wall. v0 was set to 2 in all the simulations discussed
below, except for the few ones where self-propulsion was
switched off (v0 = 0) for the sake of comparison with the
dynamics of a system at thermodynamic equilibrium. γ was
varied between 0 and 1 and vB between 0 and 2. Note that
for γ ≈ 0.01 the characteristic time for the alignment of the
velocity vector of a particle along the tail-to-head axis of the
dumbbell is of the same order of magnitude as the time it takes
for the particle to cross the empty chamber at velocity v0, while
velocity alignment is about 100 times faster than crossing for
γ = 1. Finally, simulations were performed with N = 50 or
500 dumbbells, which corresponds to surface coverage values
around 0.7% and 7%, respectively, when assuming that each
particle is a disk of radius a. All simulations were performed
with a time step �t = 0.002.

C. Simplified model with a single confinement chamber

In [20], it proved useful to investigate the dynamics of a
single active dumbbell enclosed inside a single chamber to
understand the results of simulations performed with many
dumbbells separated by a mobile wall. The same technique will
be used below to decipher the dynamics of active dumbbells
with Brownian noise. Briefly, the simplified model is obtained
from the system described in Fig. 1 by keeping only the left
confinement chamber and placing only one active dumbbell
therein. Moreover, it is assumed that the interactions between
the dumbbell and the four walls still obey Eq. (3) but the
collisions of the dumbbell against the right wall cause the
confinement chamber to move as a whole towards the right,
while preserving its shape and dimensions. In contrast, the
three other walls of the chamber experience no recoil upon
collision with the dumbbell. For the sake of clarity, the force
constant of the repulsive potential of the right wall is labeled hw

(instead of hL) for the modified system with a single chamber.
The complexity of the dynamics of active dumbbells

subject to Brownian noise is easily grabbed by examining
the properties of the trajectories of the dumbbell enclosed in
a single confinement chamber, such as, for example, its root
mean square translational velocity

√
〈v2

t 〉, which is plotted in
Fig. 2 for values of vB increasing from 0 to 2, as well as
for the dumbbell without self-propulsion (v0 = 0 and vB = 2).
For vB = 0, the curve displays a hyperbolic-tangent-like shape
saturating at v0 = 2 (see the related discussion in [20]), while
for the dumbbell without self-propulsion the translational
velocity is constant and equal to vB/

√
2 = √

2. What is quite
remarkable is the fact that the average translational velocity
of the active dumbbell subject to additional Brownian energy
is always (except for very small values of γ ) smaller than its
velocity for vB = 0. The reason is that the Brownian noise,
as mentioned above, also contributes to increase the rotational
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FIG. 2. Evolution, as a function of the damping coefficient γ ,
of the root mean square translational velocity

√
〈v2

t 〉 of a single
dumbbell enclosed in a single confinement chamber for v0 = 2 and
14 values of vB ranging from 0.0 to 2.0, as well as for the system
without self-propulsion (v0 = 0 and vB = 2); see the legend. Note
that the four plots for values of vB ranging from 0.0 to 0.05 nearly
superpose. The plots shown here were obtained for hw = 4.0, but
the plots obtained for hw = 0.4 are almost identical. Each plot was
obtained by integrating the equations of motion for 2.0 × 1012 time
steps, with γ increasing regularly between 0 and 1, and averaging√

〈v2
t 〉 over 2.0 × 109 successive steps.

and vibrational velocities of the dumbbell, which generates
in turn more energy dissipation, because the rotational and
vibrational velocities may be large even if the translational
velocity is small, and because the damping force acts on each
particle composing the dumbbell and not only on its center of
mass.

Finally, Fig. 3 gives a flavor of the extent to which the
trajectories of the active dumbbell are modified upon addition
of Brownian noise. Trajectories without Brownian noise (vB =
0) are shown in the left column and trajectories with Brownian
noise (vB > 0) in the right column. It is observed that the
trajectories of the dumbbell subject to Brownian noise retain
some resemblance with their noiseless counterparts up to vB ≈
0.1 (medium line), while the resemblance disappears rapidly
for larger values of vB. As seen in the bottom line of the figure,
for values of vB as large as the self-propulsion velocity v0, the
trajectories of the active dumbbell subject to Brownian noise
differ very profoundly from those of the noiseless dumbbell.

III. RESULTS AND INTERPRETATION

This section is devoted to the presentation and discussion
of the main results obtained with the models described above
upon variation of the intensity of the Brownian noise. The basic
motivation underlying the simulations is to drive the system
closer to thermodynamic equilibrium by increasing Brownian
noise and track the transition through the variations of the
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FIG. 3. Representative trajectories of the active dumbbell without
Brownian noise (vB = 0, left column) and with Brownian noise (vB >

0, right column) for the modified model with a single confinement
chamber and (a) hw = 4.0 and γ = 0.21, (b) hw = 0.4 and γ = 0.52,
and (c) hw = 0.4 and γ = 1.00. The confinement chamber moves
towards the right each time it is hit by the dumbbell. Represented in
this figure are only its initial (in blue) and final (in red) positions.
Each trajectory is integrated for 1000 time units.

mean position of the mobile wall, 〈xw〉. At thermodynamic
equilibrium, the mean forces exerted on both sides of the
wall equilibrate and the wall remains on average at the center
of the confinement chamber, except for tiny differences in
the mean penetration depth of the particles on both sides of
the wall. Significant departure of the mean position of the
wall from 〈xw〉 = 0 is then a measure of the rupture of the
balance between the forces exerted on both sides of the wall
and, in some loose sense, of the distance of the system from
thermodynamic equilibrium. The most natural expectation is
consequently that, for a given value of γ (corresponding to a
certain value of 〈xw〉 for the system without Brownian noise),
|〈xw〉| will progressively decrease down to 0 for increasing
values of vB. It will instead be shown that for certain values
of γ and for low enough dumbbell density, the evolution of
the system is actually significantly more complex and can be
understood only by deciphering the mechanisms which lead to
the rupture of the balance of the forces exerted on both sides
of the mobile wall.

γ
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FIG. 4. Evolution, as a function of the damping coefficient γ , of
the mean relative position of the mobile wall 〈xw〉/Lx for N = 500
active dumbbells obeying Eq. (3) obtained from simulations with
(a) v0 = 2 and values of vB ranging from 0 to 2 (see the legend),
or (b) v0 = 0 and vB = 2. The plot in (b) corresponds to a system
at thermodynamic equilibrium and those in (a) to systems out of
thermodynamic equilibrium. Each plot was computed from a single
simulation integrated for 5.0 × 109 steps, with γ increasing regularly
from 0 to 1 and 〈xw〉 being averaged over 5.0 × 107 successive steps.

A. Simulations with N = 500 dumbbells

Since they are simpler than those obtained at lower
dumbbell density, let us first analyze the results of simulations
performed with N = 500 dumbbells, which corresponds to
a surface coverage value around 7%. Figure 4 shows the
evolution of the mean relative position of the mobile wall,
〈xw〉/Lx , as a function of the damping coefficient γ for this
system (note that we discuss in Sec. IV the alternative choice of
γ /v2

B rather than γ as the abscissa axis of the graphs for readers
with a Brownian particles perspective). The plot in vignette
(b) was obtained from a simulation with v0 = 0 and vB = 2,
that is, for dumbbells without self-propulsion but subject to
Brownian noise. It is seen that 〈xw〉 ≈ 0 for all values of γ , as
expected at thermodynamic equilibrium. The plots in vignette
(a) were instead obtained from simulations with v0 = 2 and
values of vB ranging from 0 to 2, that is, for dumbbells out
of thermodynamic equilibrium. The red solid line (vB = 0) is
actually a confirmation of the plot shown in Fig. 3 of [20] for
dumbbells with self-propulsion but without Brownian noise. It
is seen that the mean position of the mobile wall is displaced
significantly towards the right for γ < 0.27 and towards the
left for γ > 0.27. The mechanisms leading to the rupture
of the balance between the mean forces exerted on both sides
of the mobile wall were investigated thoroughly in [20]. It
was found that nonmonotony in the plot of 〈xw〉/Lx versus γ

arises from the fact that two different mechanisms causing
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force unbalance dominate at different values of γ . More
precisely, for small values of γ , dumbbells that acquire a
large spin momentum upon collisions with the wall and hit it
repeatedly contribute to increase significantly the mean force
exerted on the harder side of the wall compared to the softer
side. A typical trajectory where the dumbbell returns rapidly
towards the wall because of the spin momentum acquired
during a first collision, thereby contributing efficiently to
this spin momentum mechanism, is shown in Movie S1
(see the Supplemental Material [41]), while the increase in
wall collision frequency resulting from this mechanism will
be illustrated more clearly in Sec. III C. In contrast, with
increasing γ , the mean force exerted on the softer side of the
wall increases steadily compared to the harder side, because
dumbbells are deflected more and more slowly away from the
soft side and interact for longer and longer times with it. A
typical trajectory, where the dumbbell penetrates deeply inside
the soft wall, aligns slowly with it, and interacts for a long time
instead of being deflected rapidly away, thereby contributing
efficiently to this slow deflection mechanism, is shown in
Movie S2 [41], while the increase in the mean duration of wall
collisions resulting from this mechanism is illustrated further
in Figs. S1 and S2 [41]. The spin momentum mechanism
dominates (and the mean position of the wall is displaced
towards the right) for γ < 0.27, while the slow deflection
mechanism dominates (and the mean position of the wall is
displaced towards the left) for γ > 0.27.

The other plots in vignette (a) of Fig. 4 show how the mean
position of the mobile wall evolves with increasing value of
vB. The prominent feature is obviously that the curves tend
to level off along the abscissa axis and that for vB ≈ v0 the
mobile wall remains close to the center of the confinement
chamber in the whole range of values of γ , as for systems
at thermodynamic equilibrium. Still, a closer examination of
the plots indicates that the two extremities of the curve do not
level off at the same rate. More precisely, the displacement
of the mean position of the wall towards positive values of
〈xw〉 around γ ≈ 0.18 vanishes for vB = 0.5, while for this
value of vB the distance of the mean position of the mobile
wall to the center of the chamber has been reduced by only
25% at γ = 1. The reason for this difference is that the two
mechanisms at the origin of force unbalance do not have the
same robustness against rotational noise. More precisely, as
already described above, the spin momentum mechanism that
prevails at low values of γ involves dumbbells that acquire
a large spin momentum when colliding with the wall and
return and hit it repeatedly (Movie S1 in the Supplemental
Material [41]). It is consequently sufficient that rotational noise
be strong enough to perturb significantly the trajectories of
the dumbbells over the time interval between two collisions
with the wall for this mechanism to become inefficient. In
contrast, the slow deflection mechanism is based on the fact
that dumbbells that collide with the softer side of the wall
are deflected more slowly away from the wall and push it for
longer times towards the left (Movie S2 [41]). It is therefore
mandatory that rotational noise be strong enough to perturb
significantly the trajectories of the dumbbells over a time scale
as short as the duration of one collision for this mechanism
to become inefficient. Hence, the spin momentum mechanism
no longer plays any role for vB � 0.5 and the plots for larger
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FIG. 5. Evolution, as a function of the damping coefficient γ , of
the mean relative position of the mobile wall 〈xw〉/Lx for N = 50
active dumbbells obeying Eq. (3) with v0 = 2 and ten different values
of vB ranging from 0 to 2 (see the legend). Each plot was computed
from the average of eight different simulations integrated for 1010

steps, with γ increasing regularly from 0 to 1 and 〈xw〉 being averaged
over 108 successive steps. See Fig. 14 for a graph showing the same
results plotted as a function of γ /v2

B instead of γ and Sec. IV for a
discussion of the choice of the abscissa axis.

values of vB in Fig. 4 reflect only the progressive weakening
of the slow deflection mechanism with increasing Brownian
noise.

In conclusion, the mean position of the mobile wall moves
back towards the center of the confinement chamber with
increasing Brownian noise, but the rate depends on the
particular mechanism at play for the corresponding value of
the damping coefficient γ .

B. Simulations with N = 50 dumbbells

Let us now turn our attention to the results of simulations
performed with only N = 50 dumbbells inside the confine-
ment chambers, which corresponds to a surface coverage
value around 0.7%, ten times smaller than in the previous
subsection. Figure 5 shows the corresponding evolution of
the mean relative position of the mobile wall, 〈xw〉/Lx , as a
function of the damping coefficient γ for vB = 0 (red solid
line), as well as nine other values of vB ranging from 0.05
to 2. The red solid line is again a confirmation of the plot
shown in Fig. 3 of [20] for dumbbells with self-propulsion
but without Brownian noise. Comparison of Figs. 4 and 5
indicates that, in the absence of Brownian noise, the mean
displacement of the mobile wall away from the center of
the confinement chamber is usually substantially larger for
N = 50 than for N = 500 and that the evolution of 〈xw〉/Lx

versus γ displays additional features for N = 50 compared
to N = 500, namely, several oscillations below γ = 0.15
and a broad bump between γ = 0.4 and γ = 0.7. Both the
reduction of the mean displacement of the mobile wall and
the cancellation of these additional features upon increase of

052603-6



RECOVERY OF MECHANICAL PRESSURE IN A GAS OF . . . PHYSICAL REVIEW E 95, 052603 (2017)

0.0 0.5 1.0 1.5 2.0
vB

-0.5

-0.3

-0.1

0.1

0.3

<
x w

>
 / 

L x

0.13
0.21
0.31
0.52
1.00

γ

FIG. 6. Evolution, as a function of the mean random velocity vB,
of the mean relative position of the mobile wall 〈xw〉/Lx for N =
50 active dumbbells obeying Eq. (3) with v0 = 2 and five different
values of the damping coefficient γ ranging from 0.13 to 1.0 (see the
legend). Each plot was computed from the average of eight different
simulations integrated for 1010 steps, with vB increasing regularly
from 0 to 2 and 〈xw〉 being averaged over 108 successive steps.

N from 50 to 500 are of course ascribable to the increase
of the rate of collisions between dumbbells, which interfere
destructively with the mechanisms leading to force unbalance.
We will come back to this point in Sec. IV.

As will become clearer in Sec. III C, the oscillations
observed below γ ≈ 0.4 in Fig. 5 reflect oscillations in the
frequency of the collisions between active dumbbells and the
mobile wall and are the signature of mechanical resonances
between the rotation velocity of the dumbbells and the recoil
speed of the mobile wall. As a consequence, for small values
of the dumbbell density, the net effect of the spin momentum
mechanism depends on the precise value of the damping
coefficient. This mechanism can displace the mean position of
the mobile wall either to the right (as for the main maximum
around γ ≈ 0.2) or to the left (as for the minimum around
γ ≈ 0.1). It can, however, be checked in Fig. 5 as well as in
Fig. 6, where 〈xw〉/Lx is plotted as a function of vB for selected
values of γ , that the mean position of the mobile wall reaches
the center of the confinement chamber for values of vB close
to 0.2, whatever the sign of the initial displacement.

The evolution with increasing value of vB of the broad
bump, which is observed between γ = 0.4 and γ = 0.7 for
vB = 0 (red solid line in Fig. 5), is more difficult to rationalize.
It is indeed seen in Figs. 5 and 6 that for γ ≈ 0.5 the mean
position of the mobile wall first strays significantly further
away from the center of the confinement chamber for values
of vB up to about 0.05, before moving back towards the
center of the chamber for values of vB larger than about 0.10.
This evolution cannot be explained by invoking only the two
mechanisms described above, because for such values of γ the
spin momentum is damped too rapidly to play any role, while
the progressive weakening of the slow deflection mechanism

can hardly explain the forth and back displacements of the
mean position of the wall. By the way, no attempt was made in
[20] to understand the origin of the bump in the plot of 〈xw〉/Lx

versus γ , while it appears here that it may be the fingerprint of
an important aspect of the dynamics of the active dumbbells.

This feature points clearly towards the need for a deeper
understanding of the dynamics of the active dumbbells. As
discussed below, this was achieved through the investigation
of the dynamics of the simplified model described in Sec. II C,
which consists of a single active dumbbell enclosed inside a
single confinement chamber.

C. Simulations with the simplified model with a single
confinement chamber

Simulations with the simplified model were performed
with two different values of hw, namely, 4.0 and 0.4, which
correspond, respectively, to the values of hL and hR for the
complete model. The average displacement per unit time of
the chamber towards the right was computed for each set of
values of hw, γ , and vB, and the value obtained for hw = 0.4
was subtracted from the value obtained for hw = 4.0, thus
yielding a differential displacement per unit time labeled
�vw. This quantity is plotted in Fig. 7 as a function of γ
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FIG. 7. Evolution of �vw as a function of the damping coefficient
γ for v0 = 2 and values of vB ranging (a) from 0.0 to 0.3, and (b)
from 0.5 to 2.0; see the legend. Also shown as a red solid line in (b)
is the plot obtained for the system without self-propulsion, that is, for
v0 = 0 and vB = 2. These plots were obtained for the modified model
with a single confinement chamber and a single active dumbbell
enclosed therein. �vw is the difference between the values of the
mean displacement of the chamber towards the right per unit time
obtained for hw = 4.0 and hw = 0.4. See the caption of Fig. 2 for
computational details.
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for values of vB ranging from 0 to 2. The very thin peaks,
which appear in the plot obtained for the noiseless system
[vB = 0, the solid red line in vignette (a) of Fig. 7], were shown
in [20] to be the fingerprint of pseudoperiodic trajectories.
These pseudoperiodic trajectories are destroyed (and the peaks
disappear from the plots) for the weakest Brownian noise used
in the present study (vB = 0.005, not shown in Fig. 7) and will
not be discussed any further below.

Beside these thin peaks, Fig. 7 displays features that
compare readily to those of Fig. 5. More precisely, the
broad maximum and the narrower oscillations observed at
low damping coefficient (γ � 0.4), which are due to the
spin momentum mechanism, level off for vB ≈ 0.2, while
the negative values of �vw observed at larger damping
coefficients, which are due to the slow deflection mechanism,
cancel for values of vB as large as the self-propulsion velocity
v0 = 2. The top and bottom lines in Fig. 3 illustrate the extent to
which the trajectories of the active dumbbell need be perturbed
by the Brownian noise for the mean forces exerted on walls
with very different repulsion force constants to equilibrate.
Quite interestingly, the plot of �vw versus γ displays an
additional local maximum around γ ≈ 0.55, which levels off
for values of vB as small as vB ≈ 0.1 and is obviously the
counterpart of the broad bump observed in Fig. 5. It is the
mechanism leading to this maximum that we must strive to
understand.

A first indication is provided by the plots of the scaled
collision frequency f/

√
〈v2

t 〉 as a function of γ for values of
vB ranging from 0 to 2, which are shown in Figs. 8 and 9
for hw = 0.4 and hw = 4.0, respectively. f is the number of
times the dumbbell hits the right wall per unit time, and

√
〈v2

t 〉
the root mean square translational velocity of the dumbbell
(see Fig. 2). Figures 8 and 9 show the evolution with γ

of f/
√

〈v2
t 〉 instead of f , because the collision frequency

increases almost linearly with the translational velocity of
the dumbbell and the plots are clearer after removal of this
dependence. In both figures, the broad maximum centered
around γ ≈ 0.2 on the curve for vB = 0 reflects the increase
in collision frequency due to the spin momentum mechanism.
Consequently, the oscillations observed on the left aisle of
the broad peak are the hallmarks of mechanical resonances
between the rotation velocity of the dumbbell and the recoil
speed of the confinement chamber, as mentioned in Sec. III B.
However, the most salient feature of these figures is the fact
that addition of Brownian noise induces a gradual decrease
in the collision frequency for γ � 0.3, which reflects the
weakening of the spin momentum mechanism by rotational
noise, as discussed above, while for γ > 0.3 a significant
increase in the collision frequency is instead observed upon
increase of the Brownian noise up to vB ≈ 0.1. This effect
is particularly marked for hw = 0.4, the collision frequency
being multiplied by a factor close to 2 for γ ≈ 0.7 and vB ≈ 0.1
compared to vB = 0. Examination of the trajectories of the
dumbbell for such values of γ and vB = 0 suggests that the
dumbbell spends the most time traveling parallel to the y

axis, thereby experiencing relatively few collisions with the
right wall of the chamber, while addition of a small amount
of Brownian noise is sufficient to reorient the translational
velocity almost randomly, thereby increasing the frequency of
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FIG. 8. Evolution of f/
√

〈v2
t 〉 as a function of the damping

coefficient γ for hw = 0.4, v0 = 2 and values of vB ranging (a) from
0.0 to 0.3, and (b) from 0.5 to 2.0; see the legend. Also shown as
a red solid line in (b) is the plot obtained for the system without
self-propulsion, that is, for v0 = 0 and vB = 2. These plots were
obtained for the modified model with a single confinement chamber
and a single active dumbbell enclosed therein. f is the number of
times the dumbbell hits the right wall per unit time and

√
〈v2

t 〉 the
root mean square translational velocity of the dumbbell (see Fig. 2).
The horizontal gray dot-dashed line is just a guideline for the eyes.
See the caption of Fig. 2 for computational details.

the collisions with this wall. This hypothesis can be checked
quantitatively by plotting the probability density p(θ ) for the
velocity vector of the center of mass of the dumbbell to
be oriented with an angle θ with respect to the x axis for
increasing values of vB. p(θ ) is shown in Fig. 10 for γ = 0.70
and hw = 0.4 (top plot) or hw = 4.0 (bottom plot). It is seen
that the probability density is indeed strongly peaked around
θ ≈ ∓π/2 for vB = 0, especially for hw = 0.4. Increasing vB

up to 0.05 (for hw = 4.0) or 0.10 (for hw = 0.4) is, however,
sufficient to let the distribution become almost flat, meaning
that the dumbbell has no longer any preferential orientation.

D. Third mechanism for the rupture of force balance

These simulations therefore pinpoint the existence of a
third mechanism leading to the rupture of the balance of
the mean forces exerted on both sides of the mobile wall
when the active dumbbell is not subject to Brownian noise.
Two mechanisms were identified in [20], namely, the spin
momentum mechanism, which is efficient at low values of the
damping coefficient, and the slow deflection mechanism, the
efficiency of which increases with the damping coefficient, but
this third mechanism, which is efficient at intermediate values
of γ , was missed. This mechanism relies on the preferential
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FIG. 9. Same as Fig. 8, but for hw = 4.0 instead of hw = 0.4.

alignment of the trajectories parallel to the mobile wall (but
not in contact with the wall) in the absence of Brownian
noise, due probably both to the geometry of the confinement
chambers (in particular the rounded corners) and the recoil of
the mobile wall when hit by a dumbbell. p(θ ) is more strongly
peaked around θ ≈ ∓π/2 for hw = 0.4 than for hw = 4.0,
so that the number of collisions and the mean force exerted
on the wall are reduced more significantly on the softer side
of the wall than on its harder side. Quite interestingly, this
parallel alignment mechanism tends to decrease the frequency
of collisions on both sides of the mobile wall, while the spin
momentum mechanism tends to increase the frequency of
collisions on both sides of the wall. Moreover, the parallel
alignment mechanism displaces the mean position of the
mobile wall towards the right (positive values of 〈xw〉), while
the slow deflection mechanism displaces it towards the left
(negative values of 〈xw〉), and the precise effect of the spin
momentum mechanism depends on the exact value of the
damping coefficient (for N = 50, 〈xw〉 is negative for γ = 0.13
and positive for γ = 0.21; see Figs. 5 and 6). Like the spin
momentum mechanism, the parallel alignment mechanism
is very sensitive to Brownian noise, because it suffices that
rotational noise perturbs the trajectory significantly over the
time interval it takes for the dumbbell to cross the chamber
for the mechanism to become ineffective, which is the case for
values of vB as small as vB ≈ 0.1.

Practically, for the system with N = 50 active dumbbells
without Brownian noise and for a damping coefficient around
γ ≈ 0.50, the balance of the mean forces exerted on both sides
of the mobile wall is disrupted by both the parallel alignment
mechanism, which tends to displace the mean position of the
wall towards the right, and the slow deflection mechanism,
which tends to displace the mean position of the wall towards

vB

vB

θ

θ

p(
θ)

p(
θ)
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(b)

FIG. 10. Probability density p(θ ) for the velocity vector of the
center of mass of the dumbbell to be oriented with an angle θ with
respect to the x axis for γ = 0.70, values of vB in the range 0 � vB �
0.3, and (a) hw = 0.4 or (b) hw = 4.0. The plots are symmetric with
respect to the θ = 0 axis. They were obtained for the modified model
with a single confinement chamber and a single active dumbbell
enclosed therein. Each plot was computed by integrating the equations
of motion for 3.0 × 1011 time steps, with vB increasing regularly
between 0 and 0.3, and averaging p(θ ) over 109 successive steps for
each bin.

the left. The effect of the second mechanism being larger than
the effect of the first one, 〈xw〉, is negative for vB = 0. As
discussed above, Brownian noise with weak intensity (vB ≈
0.1) is sufficient to spoil the parallel alignment mechanism,
while it has little effect on the slow deflection mechanism.
As a result, the mean position of the wall moves to even more
negative values of 〈xw〉 and strays further away from the center
of the chamber. However, for vB > 0.1 there consequently
remains only one mechanism causing force unbalance, namely,
the slow deflection mechanism, so that the mean position of
the mobile wall subsequently moves steadily back towards the
center of the chamber upon further increase of vB.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied numerically the properties
of a gas of underdamped self-propelled dumbbells subject to
Brownian noise of increasing intensity, in order to understand
how the notion of mechanical pressure is gradually recovered
as the system approaches thermodynamic equilibrium. For this
purpose, we considered an equal number of active dumbbells
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enclosed in the two chambers of a two-dimensional container
separated by a mobile asymmetric wall. Since the dumbbells
are capable of self-propulsion and the walls exert a torque on
them during collisions, the system is not at thermodynamic
equilibrium, the balance of mean forces exerted on both sides
of the asymmetric wall is broken, and mechanical pressure
cannot be defined properly [8]. As a consequence, the mean
position of the mobile wall does not coincide with the center
of the container and depends on several factors, including
the asymmetry of the wall, the damping coefficient, and the
density of the dumbbells. These out-of-equilibrium properties
have been investigated in detail in [20]. In the present work, we
have extended and completed this first study by subjecting the
active dumbbells to increasing Brownian noise, thereby driving
the system closer and closer to a gas of Brownian particles,
which is at equilibrium from the thermodynamic point of view,
and by analyzing the response of the system to such increasing
noise. The simulations confirm that the mean forces exerted
on both sides of the asymmetric wall equilibrate progressively
and that the notion of mechanical pressure is recovered for
sufficiently strong noise. The simulations also highlight more
subtle properties of the system. First, Brownian noise of
moderate intensity (vB 
 v0) is sufficient to let the mean forces
equilibrate for small values of the damping coefficient (up to
γ ≈ 0.2), while much stronger noise (vB ≈ v0) is required
for larger values of the damping coefficient. Moreover, the
displacement of the mean position of the mobile wall towards
the center of the container upon increase of the noise intensity
may not be monotonous but subject instead to changes of
direction. Examination of the dynamics of the system has
revealed that both phenomena relate to the mechanisms leading
to the rupture of force balance and, more precisely, to the
fact that there actually exist several mechanisms, which tend
to displace the mean position of the wall towards different
directions and display different robustness against an increase
of the intensity of Brownian noise.

Several points are worth commenting on before concluding
this work.

First, it is important to stress that the results obtained here
depend only marginally on the value of the mass of the mobile
wall. A doubt might arise, because standard results are usually
obtained under the assumption that walls are heavy and move
slowly (if at all) compared to gas particles, while the mobile
wall is assumed here to have a mass comparable to that of
the dumbbells. To check this point, a series of simulations were
performed with a wall mass ten times larger (mw = 20 instead
of mw = 2). While results differ slightly from those obtained
with a lighter wall, the general trends and conclusions remain
valid. As an illustration, the plot of 〈xw〉/Lx as a function
of γ for N = 500 active dumbbells is shown in Fig. 11 for
v0 = 2, vB = 0, and mw = 2 or mw = 20. It is observed that
the displacement of the mean position of the wall towards
positive values of 〈xw〉 for small values of γ and towards
negative values of 〈xw〉 for larger values of γ is preserved, in
spite of the fact that the amplitudes of the displacements differ
somewhat, especially at small values of γ . Similarly, the results
described above depend only slightly on the internal degree of
freedom of the dumbbells, that is, the distance between the two
particles. The force constant of the spring connecting these
particles [ h = 4 in the expression of Vs in Eq. (2)] is indeed
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FIG. 11. Evolution, as a function of the damping coefficient γ , of
the mean relative position of the mobile wall 〈xw〉/Lx for N = 500
active dumbbells obeying Eq. (3) with v0 = 2 and vB = 0. The solid
red line was obtained for a wall mass mw = 2, as all other simulations
discussed in this paper, while the dashed blue line was obtained
for mw = 20. Each plot was computed from the average of five
simulations integrated for 5.0 × 109 steps, with γ increasing regularly
from 0 to 1 and 〈xw〉 being averaged over 5.0 × 107 successive steps.
The two plots run almost parallel to each other for values of γ in the
range 0.35 � γ � 1.0 (not shown).

large enough for the dumbbells to be only slightly compressed
during most relevant events. Moreover, the period of free
vibration 2π (m/2h)1/2 = π/2 corresponds approximately to
the translation of the dumbbells over their own length and
is small compared to most time scales of the system. The
dumbbells are therefore expected to behave approximately like
rigid rods with small aspect ratio, although the description in
terms of particles and springs was used to avoid having to deal
with the more involved equations for rigid bodies. As a check,
the evolutions with γ of the mean position of the mobile wall
for N = 50 active dumbbells are compared in Fig. 12 for spring
force constants h = 4 (as for all other simulations of this work)
and h = 40. It is seen that the mean position of the wall depends
only slightly on h at low values of γ , where the spin momentum
mechanism dominates, as well as at large values of γ , where the
slow deflection mechanism dominates. In contrast, significant
differences are observed at intermediate values of γ , where
the parallel alignment mechanism dominates, which confirms
(see Sec. III D) that this mechanism is indeed rather sensitive
to very small perturbations of the system.

Regarding the role of the geometry of the confinement
chamber, it is worth emphasizing that both the spin momentum
mechanism and the slow deflection mechanism take place in
the vicinity of the mobile wall (see Movies S1 and S2 in
the Supplemental Material [41]), so that there is no reason
why they should be significantly affected by any reasonable
change in the geometry of the confinement chamber (this
holds for the mechanical resonances observed at small values
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FIG. 12. Evolution, as a function of the damping coefficient γ ,
of the mean relative position of the mobile wall 〈xw〉/Lx for N = 50
active dumbbells obeying Eq. (3) with v0 = 2 and vB = 0. The solid
red line was obtained for h = 4 in the expression of Vs in Eq. (2),
as all other simulations discussed in this paper, while the dashed
blue line was obtained for h = 40. Each plot was computed from the
average of eight different simulations integrated for 1010 steps, with
γ increasing regularly from 0 to 1 and 〈xw〉 being averaged over 108

successive steps.

of γ ). In contrast, changes in the geometry may affect the
frequency of occurrence of collisions contributing to the spin
momentum mechanism or the slow deflection mechanism, for
example, by modifying the statistical weight of the parallel
alignment mechanism discussed in Sec. III D or the distribution
of incidence angles. Additional simulations with a different
geometry (Lx = 50 and Ly = 200, instead of Lx = Ly = 100)
were performed to assess this point. The results shown in
Fig. 13 indicate that the mean displacements of the mobile wall
follow closely those obtained with the original geometry, albeit
with a somewhat reduced amplitude for all values of γ . This
probably reflects the fact that dumbbells travel more parallel
to the mobile wall, which in turn decreases the efficiency of
the two mechanisms leading to the rupture of the balance of
mean forces.

Let us now comment succinctly on the influence of
the dumbbell density. Simulations with the complete model
were performed with N = 50 or 500 dumbbells enclosed
inside the confinement chamber, which corresponds to surface
coverage values around 0.7% and 7%, respectively, when
assuming that each particle is a disk of radius a. These
simulations therefore pertain clearly to the dilute regime. More
important, however, is the fact already pointed out in Sec. II B
that the mean free path between two dumbbell collisions is
approximately equal to 2LxLy/(Na), that is, 4Lx for N = 50
and 0.4Lx for N = 500. This agrees with the observation that
for N = 50 most dumbbells cross the confinement chambers
without experiencing collisions with other dumbbells, while
they are usually involved in several collisions for N = 500.
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FIG. 13. Evolution, as a function of the damping coefficient γ ,
of the mean relative position of the mobile wall 〈xw〉/Lx for N = 50
active dumbbells obeying Eq. (3) with v0 = 2 and vB = 0. The solid
red line was obtained for Lx = Ly = 100, as all other simulations
discussed in this paper, while the dashed blue line was obtained for
Lx = 50 and Ly = 200. Each plot was computed from the average of
eight different simulations integrated for 1010 steps, with γ increasing
regularly from 0 to 1 and 〈xw〉 being averaged over 108 successive
steps.

The results obtained with N = 50 dumbbells are therefore
expected to be very close to the infinite dilution limit for this
precise geometry, while collisions among dumbbells do affect
significantly the results for N = 500. Collisions and Brownian
noise share some common points, in the sense that both of
them perturb the trajectories of the dumbbells in a randomlike
fashion. However, Brownian noise affects the trajectories
continuously, while collisions act over the narrow time window
during which colliding particles interact. As a consequence,
these two perturbations do not weaken the mechanisms leading
to the rupture of force balance in a similar way. For example,
comparison of Figs. 4 and 5 indicates that introducing N =
500 dumbbells in the confinement chamber has the same effect
as adding Brownian noise with vB ≈ 0.07 at γ ≈ 0.2, where
the spin momentum mechanism dominates, but with vB ≈ 0.40
at γ = 1.0, where the slow deflection mechanism dominates.
Similarly, comparison of Fig. 3 of [20] and Fig. 5 indicates that
introducing N = 5000 dumbbells in the confinement chamber,
which corresponds to a surface coverage around 70%, has
the same effect on the slow deflection mechanism as adding
Brownian noise with vB ≈ 1.0.

Last but not least, let us mention that the results presented
above may be exploited and interpreted in a slightly different
manner when considering that the model actually consists of
Brownian dumbbells perturbed by self-propulsion, instead of
self-propelled dumbbells perturbed by Brownian noise, which
is the implicit point of view that was assumed throughout
the paper. From the point of view of Brownian particles, the
strength of the perturbation induced by self-propulsion can
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be estimated from the Péclet number, which is the ratio of
the transport rate due to self-propulsion to the rate of diffu-
sion D = (mv2

B)/(2mγ ); that is, Pe = av0/D = 2γ av0/v
2
B .

Plotting the results of the simulations as a function of γ for
increasing values of vB, as was done in most figures, therefore
looks like performing convoluted cuts through the parameter
space, since perturbation is expected to increase as γ /v2

B .
From this perspective, it consequently appears more natural to
plot the results as a function of γ /v2

B rather than γ . To check
this viewpoint, the evolution of the mean relative position of
the mobile wall for N = 50 dumbbells is shown in Fig. 14
as a function of γ /v2

B , while it was plotted as a function of
γ in Fig. 5. If the response of the system were controlled
by the Péclet number, then all curves would collapse onto a
single master curve, while approximate collapse is observed
in Fig. 14 only for values of vB larger than 1, that is, in a
regime where the only mechanism leading to the rupture of
force balance is the slow deflection mechanism. Conversely,
the spin momentum mechanism is effective only for very large
values of Pe.

In conclusion, this work provides a clear illustration of the
fact that driving an autonomous system towards (or away from)
thermodynamic equilibrium may not be a straightforward
process, but may instead proceed through variations of the
relative weights of several conflicting mechanisms. It should be
stressed that, in the context of the model developed in [20] and
the present paper, interesting (complex) behavior is observed
essentially for small values or the damping coefficient, because
up to three different mechanisms leading to the rupture of
force balance may superpose for small values of γ , while a
single one is active for γ ≈ 1. This decrease in the number
of mechanisms with increasing damping coefficient is in turn
directly related to the drastic simplification of the trajectories
of the noiseless dumbbells, which evolve from intricate and
sensitive volutes at small γ to essentially straight lines at
large γ , and is consequently likely to be quite general (model
independent). As already mentioned, the model for dry active
matter discussed here is, however, best suited to describe
particles moving on a surface that acts as a momentum sink,
such as crawling cells or colloidal rollers and sliders, but these
systems usually have a large damping coefficient. While the
results described in the present paper are interesting from the
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FIG. 14. Same as Fig. 5, except that 〈xw〉/Lx is plotted as a
function of γ /v2

B instead of γ . The horizontal axis is consequently
proportional to the Péclet number Pe = av0/D = 2γ av0/v

2
B , that is,

the dimensionless swimming speed. It is natural to use γ /v2
B instead

of γ as the horizontal axis when considering that the model actually
consists of Brownian dumbbells perturbed by self-propulsion, rather
than self-propelled dumbbells perturbed by Brownian noise. For a
given value of γ /v2

B , the effects of inertia increase with decreasing
value of vB .

conceptual point of view, it may consequently prove difficult to
detect realizations thereof in real systems. On the other hand,
wet active matter, such as bacteria swimming in the bulk or
suspensions of catalytic colloidal rods, may have much smaller
damping coefficients. Although the equations of motion are
different (and more demanding from the numerical point of
view), it is probable that the superposition of mechanisms
leading to the rupture of force balance described here in the
context of dry active matter is also effective for these wet
active systems. This may be a point worth remembering, or
eventually even checking, when studying such systems.
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