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Describing magnetorheology under a colloidal glass approach
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The equilibrium structure and dynamics of magnetorheological (MR) fluids are studied in this work by
simulations, where particles are modeled as dipoles with a quasihard spherical core. Upon increasing the
interaction strength, controlled experimentally by the magnetic field, elongated clusters grow and, for intense
fields, thick columns form, aligned with the field. The dynamics of the system is monitored by the mean-squared
displacement and density correlation functions, which show an increasing slowing down with the attraction
strength. The correlation function shows a two-step decay, with a separation between microscopic and long time
dynamics, a typical hallmark of undercooled fluids. We have therefore analyzed the dynamics of this MR fluid
using the typical concepts for undercooled fluids. Thus, the second decay of the density correlation function
is fitted with a stretched exponential, and the wave-vector dependence of the fitting parameters studied. Both
the amplitude and the time scale oscillate in phase with the structure factor. Our results support the idea that
the magnetorheological effect is in fact the manifestation of a colloidal system approaching an attractive glass
transition (or gel transition).
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I. INTRODUCTION

Externally controllable materials are of outstanding interest
in materials science, and in particular, in soft matter. Within
this specific frame, magnetorheological (MR) fluids deserve
special attention because their rheological properties can be
controlled by an external magnetic field [1]. Due to this
noninvasive simple control, MR fluids have been used in many
different applications, even before a full understanding of the
physics involved was reached. Although MR fluids appeared
on the scientific stage around 1950 [2–4], applications in
new technology are still developing [5], involving the use of
magnetic fields to control the thermal energy transfer [6,7],
biomedicine [8], precision polishing [9–11], sound propaga-
tion [12], isothermal magnetic advection [13], and chemical
sensing [14–16], among others.

Conventional MR fluids consist in two phases: (i) a solid
or disperse phase comprised of magnetizable microparticles,
and (ii) a continuous phase (bulk), where particles are
dispersed [1]. When an external magnetic field is applied,
particles are magnetized and behave as magnetic dipoles (in a
first approximation). Experiments and early simulations [17–
20] have shown that linear aggregates of particles form, aligned
in the direction of the magnetic field, leading to columnar
aggregates at intense fields. This provokes an important
increase in the system viscosity that can be of several orders of
magnitude. If the magnetic field exceeds a certain strength, a
threshold stress is observed, the so-called yield stress, to make
the system flow and viscoelasticity comes up [21]. This overall
phenomenology is known as the MR effect and it depends not
only on the magnetic field intensity, but also on the particle
concentration, the dimensions, morphology, or material of
particles [22]. However, most studies have focused on the
out-of-equilibrium and nonlinear regime, where the system is
subject to external stresses.
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The dramatic increase of the shear viscosity and devel-
opment of an elastic behavior is common also to the glass
transition [23]. In colloids, two different glass transitions have
been identified: the so-called repulsion-driven glass transition,
induced by the increase of the particle concentration, which is
similar to the glass transition in atoms or molecules, and an
attraction-driven glass transition [24,25], which is connected
to structure formation and gels [26]. Anisotropic interactions
and multibody interactions, have also been used to produce
gel formation, but the overall phenomenology is similar to
the attraction-driven glass transition, extended to much lower
densities [27,28]. Upon increasing the attraction strength, e.g.,
in colloid-polymer mixtures, an intricate percolating structure
forms, provoking a slowing down of the structural relaxation,
and ultimately viscoelastic behavior. Note that, whereas the
repulsion-driven glass transition takes place in a system with
liquidlike structure (i.e., without long-range structure), the
attractive one is observed in a structurally heterogeneous
system. Closer to magnetorheological fluids, dipolar fluids
have been studied by simulations, showing structure formation
(very similar to gels) together with an important dynamic
slowing down, when the temperature is lowered [29,30].
Motivated by this analogy, we try to rationalize in this work
the MR effect as a dynamic-arrest transition induced by the
external magnetic field.

We present here a simulation study, focused on both
the equilibrium structure and dynamics of a MR fluid. A
polydisperse system is used to avoid crystallization, which
would provoke a sudden arrest of the dynamics, as in
isotropic fluids. We have shown previously that polydispersity
effectively impedes crystallization, and the system develops
viscoelastic behavior continuously, as shown by the shear
and elastic moduli [31]. In this work, we concentrate on
the dynamics of the system, which is monitored with the
mean-squared displacement and density correlation functions,
measured with wave vectors parallel and perpendicular to
the external field, and correlate with it the structure of the
system. All states studied here are equilibrated. For strong
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interactions, large aggregates of particles form (columns), and
the correlation function decays in two steps. The wave vector
dependence of the long-time decay, signaling the structural
relaxation, is analyzed, which allows us to identify the modes
or length scales where relaxation is more hindered. The
long-time structural decay can be fitted with a stretched
exponential, and the amplitude and relaxation time oscillate
in phase with the structure factor, as in undercooled fluids.
Finally, we study the dynamical heterogeneities, another
hallmark of undercooled fluids [32]. Our MR fluid displays
a maximal non-Gaussian behavior in the time range between
the microscopic and structural relaxations, in agreement with
conventional undercooled fluids.

II. SIMULATION DETAILS

Simulations are run with microscopic Brownian dynamics,
mimicked by using the Langevin equation, namely, damped
Newtonian dynamics. For particle i, the Langevin equation
reads:

mi r̈i =
∑

j

Fij − γi ṙi + fi , (1)

where mi and γi are the particle mass and friction coefficient
with the solvent, Fij is the interaction force between particles
i and j , and fi is the Brownian force, which is linked
to the friction force by the fluctuation-dissipation relation:
〈fi(t)fj (t ′)〉 = 6kBT γ δ(t − t ′)δij , where kBT is the thermal
energy, and δ(x) and δij are the Dirac-δ function and the
Kronecker delta, respectively. Note that in the Langevin model,
the short-time dynamics is ballistic due to the inertial term,
left-hand side of Eq. (1), while experimental colloids follow
real Brownian dynamics, although the Brownian motion can
be hardly observable for large particles. In any case, Langevin
or Brownian dynamics resolve the microscopic and structural
dynamics, that, as shown below, is in the center of the analysis
of our results.

The particle-particle interaction contains two terms: a
dipolar term and a core-core repulsion. The dipolar force is
given by:

Fmag
ij = 3U0

(
1

|rij |
)4

[(2 cos2 θij − sin2 θij )̂r + sin 2θij θ̂ ],

(2)

where rij denotes the relative position vector between two
particles and θij is the angle that rij forms with the magnetic
field direction, r̂ and θ̂ represent the unit vectors in the direction
defined by the pair of particles and the angular vector, respec-
tively. The parameter U0 sets the strength of the attraction
and is given by the physical parameters of the system. Under
the linear magnetization approximation, and in the absence
of many-body effects, U0 = 4πμ0μcrβ

2a3
i a

3
j H

2
0 , where H0

is the modulus of the external magnetic field strength, μ0

is the magnetic permeability of the vacuum, μcr = μc

μ0
∼ 1

refers to the relative magnetic permeability of the continuous
phase and β is the contrast factor, β = (μp − μc)/(μp + 2μc),
with μc and μp the magnetic permeabilities of the continuous
medium and particles, respectively. Finally, ai and aj are the
radii of the interacting particles. Note that the range of the

dipolar interaction is longer than other conventional interaction
potentials. Thus, we have not used neighbor lists to speed up
the calculation of the interactions.

The core-core repulsion has an exponential form:

Frep
ij = − 3U0

16a4
exp

(
−100

|rij | − (ai + aj )

ai + aj

)̂
r, (3)

which is continuous and describes correctly the lateral attrac-
tive interaction between columns, given its short range [17,33].
Note that the core-core repulsion is proportional to U0, in order
to make the total potential (or force) proportional to U0. In this
way, only the intensity of the potential depends on U0, but
not its shape, which is expected to be closer to experimental
systems. The minimum of the interaction potential is at 1.986a

(taking ai = aj = a), independent of U0, while it shifts from
this value for U0 = 1kBT to rmin = 1.900 for U0 = 60 kBT ,
if the dependence on U0 is not included. To simulate hard
spheres, U0 is set to zero in the magnetic interaction, but
U0 = 1kBT in the core repulsion. Our system is different from
standard dipolar fluids [29,30] because the magnetic dipolar
moment depends on the external field, and is always oriented
parallel to it.

N = 1000 particles are simulated in a cubic box with
periodic boundary conditions. To avoid crystallization of
the system a polydisperse system is considered, mimicking
experimental MR fluids, although the size distribution is
much simpler in the simulated system. A flat distribution
of radii of width � = 0.2a, being a the average radius, is
used. Accordingly, the particle mass is calculated as mi =
m0(ai/a)3, and the friction coefficient as γi = γ0ai/a. Lengths
are measured in units of the mean radius, a, energy in units of
kBT , m0 is set to 1 and the damping coefficient γ0 is chosen
as 10

√
kBT m0/a, in these dimensionless units. The equations

of motion were integrated following Heun’s algorithm [34]
with a time step of δt = 0.0005a

√
m/kBT . A fixed volume

fraction is used, set to 5% (this concentration is lower than
the typical experimental one, but allows us to identify the
slowing down due to clustering of particles). The external field
is oriented along the z axis. The orientational order parameter
Q6 introduced by Steinhardt et al. [35] was used to monitor
the crystallization of the system. This showed that the size
distribution used here is enough to avoid crystallization [31].

III. RESULTS

At low particle concentration, the system evolves from a gas
state to form elongated transient clusters upon increasing the
interaction strength, U0, with the clusters oriented along the
field direction. Larger values of U0 provoke further clustering,
resulting in long thick columns that span through the system in
the direction of the external field. The dynamics of the system
therefore becomes progressively slower, as the diffusion in
large clusters is slower, increasing the viscosity and ultimately
arrests (ideally) if the bonds are strong enough to trap the
particles permanently [36,37].

If a monodisperse system is used, crystalline order within
the columns appears with a body-centered-tetragonal struc-
ture [38–42], which is the ground-state structure of both
electrorheological and MR fluids. This transition is also noted
in the dynamics by a sharp decrease of particle diffusion,
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FIG. 1. Snapshots of the simulation for different values of U0. The
magnetic field is applied in the vertical direction, except in the lowest
snapshot where it is perpendicular to the plane of the image. From the
top left to the bottom right: hard spheres; U0 = 0kBT U0 = 25kBT ;
U0 = 35kBT ; U0 = 60kBT ; top view of U0 = 60kBT in the lower
snapshot.

indicating the solidification of the system. We are not, however,
interested in this, and thus a polydisperse system is used to
observe a gradual solidification of the system upon increasing
the strength of the dipolar interaction U0 [31]. We expect that
the particular shape of the size distribution does not affect the
results qualitatively.

A. Structure

We focus first on the structure of the system for increasing
U0. Different snapshots of the system are presented in Fig. 1,
showing the formation of clusters, weak chains, and thick
columns. It must be mentioned that, by visual inspection of the
evolution of the system in the simulation, all of these structures
are transient. For U0 = 0 (recall that the core repulsion is
always present) the system is completely disordered; when
U0 = 25kBT we can hardly distinguish small aggregates,
which contain a small number of particles; clear elongated thin
structures are observed at U0 = 35kBT ; finally, at the highest
value of U0, 60kBT , thicker aggregates are formed along
the magnetic field direction. This visual evolution highlights
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FIG. 2. Parallel and perpendicular components of the pair corre-
lation function (top and bottom, respectively), for different values of
U0, as labeled. Recall that U0 = 0 corresponds to hard spheres.

the importance of lateral chain aggregation and reveals a
structural disorder even at high values of U0, indicating that
polydispersity indeed prevents crystallization. This evolution
is in agreement with previous results in the literature, showing
the formation of elongated clusters and columns in MR
fluids [36,37]. On the other hand, in dipolar fluids an intricate
network forms upon lowering the temperature, but they align
only when an intense external field is present [30].

The structure is studied quantitatively using the pair
distribution functions, g(r), and structure factors, S(q), taking
into account the anisotropy of the system. For g(r), the
component parallel to the field is calculated considering only
the pairs of particles closer than one radius when projected
onto the plane perpendicular to the field. For the perpendicular
component, only pairs with a distance smaller than one radius
in the field direction are accounted for. These restrictions affect
the total number of pairs of particles, so that the distribution
functions do not show the limit g(r → ∞) → 1.

Figure 2 shows the pair distribution function, g(r), along
the directions parallel to the external field (top panel) and
perpendicular (bottom panel). Increasing the field strength,
U0, induces quasi-long-range order in the direction of the field,
but almost no correlation in the perpendicular direction. This
indicates the formation of elongated clusters or chains aligned
with the external field, as shown by the smeared peaks at
multiples of 2a that grow when U0 increases (these peaks
are not sharp due to the size polydispersity [31]), and the
absence of peaks in the perpendicular direction. Only for the
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FIG. 3. Static structure factor for different values of U0 as labeled
with a wave vector parallel and perpendicular to the external field (top
and bottom, respectively). Recall that U0 = 0 corresponds to hard
spheres.

highest value of U0 studied, U0 = 60kBT , the perpendicular
component of g(r) shows a peak at r = 2a, and a tail extending
to long distance, reflecting the lateral aggregation of the chains
to form thick columns of several particles in diameter.

The static structure factor is studied next, to establish a
connection with experimental scattering techniques. In this
case, the anisotropy of the system is captured by the direction
of the wave vector, q. The structure factor, S(q), is defined as:

S(q) = 〈ρ(q)ρ∗(q)〉 = 1

N

〈∑
j,k

eiq·(rj −rk )

〉
, (4)

where the sum runs over all pairs of particles in the system
and the average implies ensemble averaging. Contrary to the
calculation of g(r), all pairs of particles are considered, without
restriction, but the direction of q is set.

The results are shown in Fig. 3 for q vectors parallel
and perpendicular to the external field, and the same values
of U0 as previous figures. In the parallel component, the
system is almost uncorrelated, S(q) = 1, for U0 = 0, and
develops pronounced oscillations as the particles cluster. It
is interesting to note that the most prominent peak is found
for the highest U0 at qa ≈ 2π , corresponding to a distance of
one radius approximately, contributed by the pairs of particles
separated by this distance but also by the corresponding
Fourier component of the pairs separated 2a, which are
dominant (as shown in the pair distribution function). The pairs
separated by a distance of one radius (in the field direction)

correspond to particles in neighboring columns, arranged with
a mismatch of one radius, to minimize the energy. Note that
this peak surpasses the first neighbor peak only when thick
columns of particles form, induced by the lateral attraction
between columns. The structure factor in the low-q region
decreases with increasing U0, indicating that the system is less
compressible (in this direction) by the formation of vertically
aligned structures.

The structure factor for wave vectors perpendicular to
the external field, on the other hand, shows a very different
behavior with a rise in the low-q region as the main feature, and
oscillations only for high U0. This indicates the depletion of
particles in the plane perpendicular to the field, and the lateral
aggregation of columns at high U0. In this case, side-by-side
chains of particles separated by 2a, but shift one radius in the
z direction (as required by the BCT-like structure), is the main
contribution to the dominant peak at qa ≈ π . The overall shape
of the structure factor in this q direction is strongly reminiscent
of colloidal gels, where a low-q peak develops due to the
heterogeneous structure and grows with the attraction strength.
This peak increases and moves to smaller wave vectors as the
attraction increases, until it arrests at the gel transition.

B. Dynamics

We move now to the study of the dynamics of the
system. Let us recall that our simulations follow Langevin
dynamics microscopically, i.e., with friction and random
forces explicitly included, in addition to the interaction and
external forces, and short-time ballistic dynamics. As shown
previously, denser structures form when the external magnetic
field increases, which is expected to hinder particle diffusion.
This is confirmed by studying the mean-squared displacement
(MSD), shown in Fig. 4 in the direction of the external field
(top panel) and transversal plane (bottom panel). This reveals
the slowing down of the system upon increasing U0—the
MSD develops an intermediate subdiffusive regime between
the short-time dynamics and long-time diffusion, indicative
of a transient trapping of the particles at a particular length.
Note, however, that this intermediate regime is different in
the field direction (Z axis) and the transversal plane (XY

plane), with a shorter localization length in the former than
in the latter. Similar differences have been reported in dipolar
fluids when an external field (intense enough to align the
clusters) is applied [30]. In undercooled fluids and colloidal
glasses and gels, a similar separation between microscopic
dynamics and long-time diffusion is observed, which grows
upon approaching the glass or gel transition. At the transition
point, long-time diffusion is suppressed and the MSD arrests
at a finite length, known as localization length. It is also worth
mentioning that although Langevin dynamics is ballistic at
short times, in contrast with Brownian dynamics followed by
real colloids, the increasing separation between microscopic
and structural relaxations is independent of the microscopic
dynamics, as shown previously for glasses [43,44].

The self-diffusion coefficient, obtained from the long-time
behavior of the MSD, is, nevertheless, very similar in both the
direction of the external field and perpendicular to it, as shown
in Fig. 5 (although the diffusion coefficient in the transversal
plane is systematically slightly larger). This indicates that the
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FIG. 4. Mean-squared displacements in the z direction (top) and
xy plane (bottom) for different interaction strengths, as labeled.

trapping mechanism is only one, namely, once the particle
can diffuse in one direction, it diffuses in all directions.
Interestingly, the diffusion coefficient can be fitted by an
Arrhenius form Dγ0 ∝ exp{−AU0/kBT }, with A = 0.106,
i.e., an activation energy U ∗

0 ≈ 9.5kBT . This behavior starts
when large elongated aggregates form, and continues for
increasing U0, even when particles form thick columns.

This behavior is strongly similar to that of supercooled
liquids or glasses, and more particularly, of colloidal gels.
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(Dγ0 = 5.214 exp{-0.1055 U0})

FIG. 5. Longitudinal and transversal diffusion coefficients as a
function of U0. The discontinuous line shows the Arrhenius fitting to
the data at larger U0.

There, a spherical attraction of low or moderate strength
induces reversible bonds between the particles, forming a
long-lived network, spanning in all three directions with a low
density of particles, and with a structural relaxation time that
increases with the attraction strength [45]. The dynamics of
this system is similar to that of glasses, and in fact, both of them
have been described with mode coupling theory, particularly
of dense gels [24,25]. Our system, also forms equilibrium
supraparticle structures with an overall low particle density
and large relaxation times, although the anisotropy of the
interaction makes them percolate in only one direction (set by
the external field). The dynamics of the system, as monitored
by the MSD, shows the typical shape of undercooled fluids,
with the transient trapping extending over longer times as the
glass is approached, until the trapping becomes permanent
(ideally) beyond the glass transition. In our case, however, the
Arrhenius behavior would indicate a continuous slowing down
of the dynamics without a glass transition, probably due to the
inefficient trapping of the particles in the lateral direction.

While the MSD shown above studies the single-particle
dynamics, it is also convenient to study the intermediate
scattering function or density correlation function, defined as:

	q(t) = 1

N

〈∑
j,k

eiq·(rj (t)−rk (0))

〉
, (5)

which measures the overall structural relaxation of the system,
and fulfills 	q(t = 0) = S(q). Figures 6 and 7 show the
normalized intermediate scattering function for different states
and wave vectors parallel and perpendicular to the external
field, respectively. Although the parallel component shows
a nontrivial behavior with the wave vector, both components
show that the structure relaxes completely for all wave vectors,
i.e., 	q(t → ∞) → 0, confirming that the columns shown in
the snapshots above are transient and will dissolve completely
for long enough times. In general, it is observable that the
relaxation time increases with U0, as expected from the
single-particle dynamics.

Following the analogy with supercooled fluids, we have
fitted the long-time decay of 	q(t) for the state with U0 with
the Kohlrausch-Williams-Watt (KWW) form,

	q(t) = Aqe
−(t/τq )βq

, (6)

which is typically used for the analysis of glasses and gels.
This form results from the sum of many exponential decays
weighted by some distribution of individual relaxation times,
with βq controlling the width of this distribution. Typically,
βq < 1, signaling a wide distribution of relaxation times,
resulting in a stretched exponential decay in 	q(t). The dashed
lines in Figs. 6 and 7 show the fittings for different wave
vectors. Indeed, the final decay of 	q(t) can be properly
described by this form, with acceptable accuracy. Stretched
exponentials are found in all cases.

This functional form is used to analyze the wave-vector
dependence of 	q(t), for both q parallel and perpendicular
to the magnetic field (for all wave vectors, the correlation
functions have been fitted for t > 5, describing the structural
long-time decay). The fitting parameters Aq and τq are shown
in Fig. 8 in the top and bottom panel, respectively, with the
structure factor for q parallel to the field. The top panel
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FIG. 6. Normalized density correlation function for three wave
vectors parallel to the magnetic field, as labeled. Different values of
U0, with the same code as Fig. 4 are shown. The dashed line shows
the KWW fitting to the final decay for the state with U0 = 60kBT .

highlights the strong oscillations of Aq , resulting in the
nontrivial behavior observed in Fig. 6. More interestingly,
Aq oscillates in phase with the structure factor, indicating
that the structure is responsible for the dynamic slowing
down. At low wave vectors, the amplitude raises due to the
polydispersity of the system, which freezes the mixing of
different species [46]. The time scale, τq , shows an overall
hydrodynamic q−2 behavior, with oscillations related to the
structure factor.

The intermediate scattering functions for q perpendicular
to the external field can be described with Aq ≈ 1 for
wave vectors up to qa ∼ 8 (where the statistics becomes
problematic), as shown by the fittings in Fig. 7. This result is
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FIG. 7. Normalized density correlation function for three wave
vectors perpendicular to the magnetic field, as labeled. Different
values of U0, with the same code as Fig. 4 are shown. The dashed
line shows the KWW fitting to the final decay for the state with
U0 = 60kBT .

somewhat unexpected, as the localization length is larger than
in the parallel case, which should produce smaller values of Aq .
Note, however, that the MSD measures the dynamics of single
particles, while the density correlation function monitors the
structural relaxation. The difference between both results,
indicates the importance of collective motion (such as motion
in clusters, branches, or breath modes). The time scale, on the
other hand, follows the expected q−2 trend, and oscillates in
phase with the structure factor for q perpendicular to the field,
as shown in Fig. 9.

The single-particle dynamics can be also studied with the
self part of the density correlation function, taking j = k in the
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summation in Eq. (5). The resulting correlation function shows
also a two-step decay, as the global function, and the second
decay can be fitted with the KWW stretched exponential.
The fitting parameters, characterizing the single-particle
dynamics, are included also in Figs. 8 and 9 (the same
time range is used in the fittings as in the total correlation
function, t > 5, for all wave vectors). The results indicate
that particles move mainly in clusters in the longitudinal
direction (as indicated by the τ s

q ∼ q−2 behavior) and confirm
the important decoupling between self-particle motion and
structural motion in the transversal plane, although the time
scales evolve similarly (Fig. 9).

Finally, we study another characteristic signature of col-
loidal glasses and gels, namely, the dynamical heterogeneities
of the system. This is normally studied using the non-Gaussian
parameter, α2, that measures the deviation of the distribution
of displacements from the Gaussian shape. In the isotropic
case, this is given by:

α2 = 3〈δr4(t)〉
5〈δr2〉2

− 1 (7)
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FIG. 9. Same as Fig. 8, for q perpendicular to the external field.

and it is zero for a Gaussian distribution of displacements. In
supercooled fluids, α2 starts from zero at t = 0, and describes
a maximum to tend to zero again at long times; the height of
the maximum grows as the glass transition is approached, and
its typical times correlate with the structural relaxation time.

In our case, the definition of α2 is slightly modified to
measure the distribution in the directions parallel and perpen-
dicular to the field; α2,z = 〈δz4(t)〉/3〈δz2〉2 − 1, and similar
definitions for the transversal directions. Figure 10 shows the
non-Gaussian parameter in both directions, for different states
increasing U0. Again the qualitative behavior of this parameter
is similar to that of supercooled fluids, showing strong devia-
tions from the Gaussian distribution in the time range when the
particles are transiently trapped. In agreement with the MSD
in Fig. 4, the particles are more tightly caged in the direction
of the magnetic field (smaller localization lengths and larger
non-Gaussian parameters), but the trapping extends over larger
time intervals in the perpendicular plane (longer plateaus and
wider peaks). The escape from this cage recovers the Gaussian
distribution in the particle displacement in both directions.

While these dynamical heterogeneities are present in all
glasses, in colloidal gels they are increased by the structural
heterogeneity of the system. In fact, different populations of
particles with different mobilities have been identified [47],
due to the structural heterogeneity of the system—the particles
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FIG. 10. Non-Gaussian parameter for the displacement in the
longitudinal direction (top) and transversal (bottom), as a function
of time, with the same code as Fig. 4.

in the skeleton of the gel are almost permanently caged, while
those in the surface or skin can escape more easily and diffuse
over large distances. In the MR fluid studied here, however,
these two populations are not present, as concluded from the
distribution of displacements having only one peak shown
in Fig. 11 for both directions parallel and perpendicular to
the external field. The distributions are calculated for every
state when the mean particle displacement in the coordinate
is equal to 10a2.

IV. CONCLUSIONS

Using simulations, we have studied in this paper the equi-
librium behavior of magnetorheological fluids, for increasing
values of the interaction strength (controlled experimentally
by an external static magnetic field). We have studied, and
correlated, the structure and dynamics, focusing on the latter.
Upon increasing the interaction strength, the particles form
elongated clusters aligned with the external field, forming thick
columns for intense fields. Concomitantly, the dynamics of the
system slows down significantly, showing two-step relaxation,
with a separation between the microscopic short-time and the
structural long-time dynamics.

The intrinsic anisotropy of the MR fluids imposes a
distinct behavior of the dynamics. While the trapping in
the direction of the external field is stronger than in the
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FIG. 11. Particle displacement distribution in the direction par-
allel to the magnetic field (top) and perpendicular (bottom). The
different lines mark the different states, as labeled. All distributions
are calculated when the mean-squared displacement is equal to 10a2.

perpendicular direction, the wave-vector dependence of the
density correlation function is rather involved. The second
decay is fitted with a Kohlrausch stretched exponential for
wave vectors parallel and perpendicular to the field. The
amplitude is larger in the perpendicular case than in the parallel
one, although the reverse trend is expected from single-particle
motion, and oscillates with the structure factor. The relaxation
time scale shows the hydrodynamic q−2 behavior at low q,
and oscillates also with S(q), although some differences have
also been observed. A strong decoupling between self-particle
motion and structural relaxation is noticed, particularly in the
transversal plane.

The results shown above suggest that the dynamical slowing
down, leading ultimately to the increase of the viscosity, shares
many similarities with the critical slowing down in colloidal
glasses or gels. The structural relaxation can be described with
a stretched exponential, and the wave-vector dependence of the
parameters indicates that the dynamical behavior is dictated by
the structure of the system, as in physical glasses. In particular,
given the structural heterogeneities and the low density, our
system is closer to particle gels.

Our results, thus, point to an interpretation of the MR
effect as an attractive glass or gel transition. This idea is
also supported by the observations of cluster growth in MR
fluids, which is also similar to that of aggregation in, e.g.,
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screened charged colloids, the initial steps in gel formation.
Our analysis, however, could not identify the gel point, i.e., the
critical value of U0. We hope this work will motivate further
studies to explore this approach to the MR effect, in particular,
adapting models from glass and gel transitions that confirm
the type of transition.
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