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Measuring geometric frustration in twisted inextensible filament bundles
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We investigate with experiments and mapping the structure of a hexagonally ordered filament bundle that
is held near its ends and progressively twisted around its central axis. The filaments are free to slide relative
to each other and are further held under tension-free boundary conditions. Measuring the bundle packing with
micro x-ray imaging, we find that the filaments develop the helical rotation � imposed at the boundaries. We
then show that the observed structure is consistent with a mapping of the filament positions to disks packed on
a dual non-Euclidean surface with a Gaussian curvature which increases with twist. We further demonstrate that
the mean interfilament distance is minimal on the surface, which can be approximated by a hemisphere with an
effective curvature Keff = 3�2. Examining the packing on the dual surface, we analyze the geometric frustration
of packing in twisted bundles and find the core to remain relatively hexagonally ordered with interfilament strains
growing from the bundle center, driving the formation of defects at the exterior of highly twisted bundles.
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I. INTRODUCTION

Twisted bundles of filaments are widely encountered in
ropes, yarns, animal tissue, and bacterial flagella [1–6]. A
twisted geometry has been shown to lead to strengthening in
materials ranging from textiles to carbon nanotube bundles
[7,8], rich timber in spider silk [9,10], and resonances in
photonic crystal fibers [11]. Despite their broad use, the organi-
zation of constituent quasi-one-dimensional (1D) filaments in
twisted bundles remain a long-standing and unsolved problem,
even for the simplest case of filaments with uniform circular
cross sections. Long appreciated by textile scientists [2,7,12],
the packing problem can be viewed from the perspective
of a 2D planar transect through the bundle, i.e., parallel,
untwisted bundles appear as constant diameter circle packings
and, hence, permit uniform, hexagonal close packing. In
contrast, application of twist inclines filaments with respect
to the plane, leading to planar sections filled with apparently
noncircular elements [13–15], whose shape and orientation
vary throughout the packing [16].

From the geometric perspective of packing variable-shape
elements in the 2D plane, it is intuitive that imposing twist
to an initially close-packed array requires the packing to
deform to avoid overlaps. Far less obvious is how precisely
the local and global features of the packing evolve with
progressively increasing twist. Spacing between quasi-1D
filaments is characterized by distance of closest separation,
dependent on both shape and orientation of filaments. The
local constraints of nonoverlap are easily formulated in the
plane normal to a given filament: Center-to-center separation
to all neighbors must not be less than the diameter, d, in
this plane. Without resorting to variable shape elements, the
relative variation of the reference plane and the local filament
orientation throughout the bundle makes it impossible to
represent the contact structure of the entire bundle simply in
that plane.

Remarkably, a recently developed approach shows that
interfilament distances are instead more straightforwardly
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represented by mapping filament positions onto a non-
Euclidean surface [3,16]. This dual surface has azimuthal
symmetry and a positive Gaussian curvature proportional to
the square of bundle twist. The geodesic distances between
points on the dual surface are equivalent to separations
between corresponding helical curves in the bundle. Thus,
the packing of constant-diameter disks on this dual surface
properly encodes both the local and global constraints imposed
by nonoverlap in 3D twisted, multifilament bundles within
a single 2D manifold. To date, this geometric mapping has
been exploited to understand complex patterns of topological
defects [17–19] and morphological selection [20] favored in
models of cohesive ground states of twisted bundles. However,
a physical demonstration of a filament bundle which actually
tests the underlying assumptions of the geometric mapping of
interfilament contact, to our knowledge, has never previously
been accomplished.

Here, we develop new experiments to understand the
evolution of a nominally hardcore repulsive bundle with twist
imposed and test the mapping equivalence by performing x-ray
tomography of the filament shapes and positions throughout
the 3D structure. Rather than the ground-state or equilibrium
structure, our interest is in the collective deformation of the
filament packing as the bundle is progressively twisted starting
from a parallel, closed-packed hexagonal arrangement. We
first show that the specific pattern of collective deformation in
twisted bundles is a consequence of the nontrivial constraints
on the interfilament spacing imposed by nonparallel orienta-
tion of the filaments. We then demonstrate that the mapping
of filament positions onto the quasi-hemispherical surfaces
accurately encodes the inter-filament contact distances. These
experiments verify that mechanically imposed longitude twist
of a bundle introduces geometric frustration to the lateral
packing of filament, requiring nonequal spacing of filaments
for any finite measure of twist.

II. EXPERIMENTAL SYSTEM

A schematic of the experimental system is shown in
Fig. 1(a). The bundle consists of hollow polypropylene rods

2470-0045/2017/95(5)/052503(7) 052503-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052503


PANAITESCU, GRASON, AND KUDROLLI PHYSICAL REVIEW E 95, 052503 (2017)

(b)

(c)

(d)

z

Lc θ

ρ

(a)

FIG. 1. (a) A schematic of a fiber bundle held within two
hexagonal clamps that are twisted through a prescribed angle α.
Bundle transects obtained with x-ray scanning corresponding to (b)
α = 0◦, (c) α = 129◦, and (d) α = 176◦.

arranged initially in a hexagonal lattice such that the bundle
sides corresponds to nine filaments. The filaments have circular
cross sections with diameter d = 3.1 ± 0.06 mm, thickness
t = 0.2 ± 0.01 mm, and length L = 150 mm. The bending or
flexural modulus of the filament is measured as discussed in
Appendix A with a standard 3-point bending test apparatus and
found to be 3.3 GPa. The stretching modulus of the filament
used is immeasurably high on this scale, and therefore the
filaments can be treated as inextensible. The bundle is held
together near its ends by two clamps with a hexagonal cross
section in which the filaments fit snuggly. The clamps are cast
out of vinylpolysiloxane with a Young modulus of 384 kPa
which allows the bundle cross section to expand as it is twisted.
The clamps, separated by distance Lc/d = 36, are then further
mounted inside rigid circular end caps of a circular cylinder.
A twist is applied by keeping the bottom fixed and rotating the
top clamp through a prescribed angle α as shown in Fig. 1(a).
The filaments are allowed to slide freely relative to each other
as they bend by adding a layer of talc. Thus, the filaments do
not experience any significant stretching along their length as
no tension is applied at the ends.

III. MEASUREMENT OF BUNDLE STRUCTURE

We probe the internal structure of the fiber bundle with a
Varian Medical Systems micro focus x-ray computed tomogra-
phy instrument by scanning a central region of the bundle away
from the clamps. Each scan consists of 148 transects equally
spaced along the bundle axis z and separated by 0.0226d.
Figure 1(b) shows a sample transect before twist is applied,
and Figs. 1(c) and 1(d) show examples for progressively higher

α. While the filament cross sections appear circular before
twist is applied, it can be noted that they appear increasingly
elliptical as the filaments tilt in response to twist. To quantify
the position and orientation of individual fibers, we first locate
the intersection of each filament in a horizontal slice using a
segmentation algorithm implemented in MATLAB. Then, the
cross section of each filament is fitted to an ellipse to extract its
center, and then tracked from one slice to the next to determine
the coordinates of its central axis [21]. These points are then
fitted with a helix characterized by its radius ρ and helical
rotation �, as discussed in Appendix B.

We then use those parameters to reconstruct the fiber bundle
corresponding to the length between the clamps in Figs. 2(a)
and 2(c). Each filament is denoted with a color corresponding
to the angle θ subtended by the filament with the bundle axis
according to the color bar. Figure 2(d) shows a plot of θ

measured as a function of ρ binned in d/2 intervals. For a given
imposed α, we observe that θ increases linearly from 0 at the
center of the bundle to the filaments furthest from the center. In
the case of the three bundles shown in Figs. 2(a) and 2(c), we
measure the angle of tilt of the 48 filaments in the outermost
layer and find the maximum tilt angle θmax = 0◦, 20.5 ± 1.4◦,
and 28.8 ± 1.9◦, respectively. For simplicity of annotation,
we round up the values of these angles to be θmax = 0◦, 20◦,
and 30◦.

We plot the measured helical rotation � as a function
of ρ binned in d/2 intervals in Fig. 2(e). We find that
� is indeed constant for each imposed twist with mean
helical rotation �md = (5.0 ± 0.6) × 10−2 for θmax = 20◦,
and �md = (6.8 ± 0.6) × 10−2 for θmax = 30◦. To understand
these mean values, one can calculate the helical rotation by
assuming that all filaments in the bundle are twisting through
the same angle α over the length Lc. Then, � = α/Lc. This
implies that �d = 4.7 × 10−2 and 7.4 × 10−2 for α = 129◦
and α = 176◦, respectively. These values can be noted to be
in agreement with the measured values within experimental
error.

Thus, one concludes that the filaments self-organize to
have roughly the same helical rotation, implying that fila-
ments maintain neighbor contacts along their length, which
is presumably favored in a compact bundle. An important
assumption the mapping model [3] is that � for the twisted
filament bundle is constant and the structure in any bundle
transect is the same as in any other transect to within a rotation.
Our system gives at least one example of an experimental
realization where this assumption is true.

IV. DUAL NON-EUCLIDEAN SURFACE

To understand the disruption of hexagonal packing in the
2D planar section with twist, we now analyze the bundle using
the mapping to the non-Euclidean surface given by [16]

X(ρ,φ) = ρ cos θ (ρ)(cos φx̂ + sin φŷ) + z(ρ)ẑ, (1)

where x̂, ŷ, and ẑ are Cartesian directions, φ is the azimuthal
coordinate, and

cos θ (ρ) = 1/
√

1 + (�ρ)2. (2)
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FIG. 2. [(a)–(c)] Reconstructed filament bundles color coded
according to the tilt angle θ of the filament shown in the color bar. The
maximum tilt angle θmax = 0◦ (a), θmax = 20◦ (b), and θmax = 30◦ (c).
(d) θ as a function of the helical radius ρ binned in d/2 intervals. The
lines are linear fits. (e) The average helical rotation � as a function
of the helical radius ρ binned in d/2 intervals. The bars correspond
to the root-mean-square of � measured for filaments in that bin, and
the horizontal dashed lines to the mean values �m.

The radial distance ρ is mapped to an arc-distance measured
from the top of “domelike” surface, with a profile that satisfies

∂z/∂ρ = −
√

1 − cos6 θ (ρ), (3)

which can be integrated to further obtain z(ρ) in Eq. (1). From
Eqs. (2) and (3), it is straightforward to show for small ρ (near
to the center of the bundle) z(ρ) � −√

3/2|�|ρ2, such that the
radius of curvature at ρ → 0 is rs(ρ → 0) = |d2z/dρ2|−1 =
|�|/√3, or, equivalently, the dual surface has a positive
Gaussian curvature Keff = 3�2 at its center. Intuitively, the

FIG. 3. Disks plotted on a surface given by Eq. (1) for (a) θmax =
20◦ and (b) θmax = 30◦. [(c) and (d)] The probability distribution
function (PDF) of distances shown in the legend. �ff and �dd are
observed to be similar and distinct from the PDF of �pp for both
(c) θmax = 20◦ and (d) θmax = 30◦.

positive curvature of this surface can be linked to the fact
that tilted outer filaments subtend a larger distance along the
azimuthal distance [by a factor 1/ cos θ (ρ)] than they would if
not tilted. Like the shortening of “latitudes” a distance ρ from
the pole of a globe, there is increasingly “less room” available
from filaments placed at further ρ from the bundle center than
there would be in a parallel bundle.

Figures 3(a) and 3(b) show the surfaces corresponding to
θmax = 200 and θmax = 300. The tangent planes of this curved
surface match the distance constraints of packing helical
filaments in the bundle normal to their backbone orientation.
Hence, equal-diameter d disks placed at mapped filament
positions represent the contact structure of circular filaments of
the same diameter, consistent with the apparent close contact of
neighboring disks on both surfaces. We first quantitatively test
the distance representation of the non-Euclidean surface and
then exploit the mapping to analyze and understand features
of the deformation pattern.

V. TESTING THE PACKING EQUIVALENCE

The equivalence between the twisted bundle packing and
the disk packing on a curved surface presumes that the mini-
mum distance between two nearest-neighbor filaments in the
bundle determined by center-to-center packing �ff maps onto
the geodesic distance normalized by the filament diameter,
�dd , measured between equivalent points on a 2D surface
of specific curved geometry. We first test this quantitatively
by comparing the probability distribution function (PDF) of
�ff and PDF of �dd (where both distances are normalized
by the filament diameter) in Fig. 3(c) for θmax = 200 and
in Fig. 3(d) for θmax = 300. In calculating �dd , we assume
the specific surface shape predicted by Eq. (1). In both
cases, we find that the PDFs match within experimental
errors, demonstrating that the perpendicular distance between
filaments indeed correspond to a mapped packing of disks on
the non-Euclidean surface. To contrast with the distributions
obtained if the distance between the filaments is measured
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FIG. 4. (a) Comparison of Eq. (1) (solid surface) with spherical
approximation for θmax = 30◦ (mesh) for θmax = 30◦. (b) δ2 as a
function of the Gaussian curvature Keff is observed to reach a
minimum when Keff/�2 = 3 for both twist angles consistent with
the quasihemispherical mapping.

in the planar transect �pp, we observe that those PDFs are
distinct. One clearly observes that PDF of �pp is qualitatively
shifted to larger separations, indicating that this perspective
fails to provide an accurate measure of true interfilament
spacing.

Next, we confirm that the shape given by the surface in
Eq. (1) provides the optimal accuracy in describing interfil-
ament spacing. Specifically, we consider mapping filament
positions to surfaces of variable positive Gaussian curvature.
We further confirm that the surface given by Eq. (1) indeed
corresponds to the minimum separation between the filaments
by mapping them onto surfaces which have smaller as well as
greater Gaussian curvature. To simplify the calculations, we
approximate the non-Euclidean surface given by Eq. (1) with
sphere of radius rs = K

−1/2
eff as shown in Fig. 4(a). We map

filament centers to spheres of variable radii rs and calculate
the agreement of interelement spacing through the parameter

δ2(rs) = 1

N

N∑

i=1

N−1
i

Ni∑

j=1

(
�

ij

ff − �
ij

dd

)2
, (4)

where j labels each of the Ni neighbors of the ith filament in
the bundle, N is the total number of filaments in the bundle,
and �

ij

dd is determined according to the geodesic distances on
the sphere of radius rs . We plot δ2 as a function of the Gaussian
curvature Keff = r−2

s of the corresponding sphere in Fig. 4(b)
for each θmax. Here, Keff is scaled by the corresponding � in
order to collapse the data onto a single curve. We observe that
δ2 has a minimum at Keff/�2 = 3, in precise agreement with
the Gaussian curvature predicted by the geometric mapping
calculated and reported in Ref. [16]. This demonstrates that
not only does the mapping of filaments to a positively curved
surface provide a quantitatively more accurate description of
interfilament spacing than the naive view in the planar cut

FIG. 5. Planar transect of the bundle corresponding to (a) θmax =
20◦ and (b) θmax = 30◦ in a plane perpendicular to the bundle axis
labeled according to the strain εn. [(c) and (d)] The corresponding
disk packing on the dual surface given by Eq. (1) viewed from above.
εn is observed to be significantly lower by comparison.

but also that the specific relationship between the bundle
twist � and positive surface curvature implied by Eq. (1) is
required to capture the metric constraints in helically twisted,
multifilament packings.

VI. PACKING ORDER AND STRAIN

An illustration of the discrepancy between the distance
representation of the planar cut of the bundle and of the
mapped packing on the curved surface can be made through a
comparison of the mean strain of interfilament distances. We
define a nearest-neighbor strain εn = (〈�〉 − 1), where 〈..〉
corresponding to averaging over the nearest neighbors, and �

is computed either using �pp or, instead, on the curved surface
described by Eq. (1), using �dd . We compare εn in the planar
transect in Figs. 5(a) and 5(b) with those on the non-Euclidean
surface in Figs. 5(c) and 5(d). A 3D view can be found in the
corresponding animated GIFs included in the Supplemental
Material [22].

While this mapping onto the surface shows that the
filaments remain more-tightly packed than might appear while
viewing a planar transect, it can be nonetheless noted that true
interfilament strains develop increasingly in the outer layers
of the filament bundles. One observes in both cases that the
strains predicted from filament positions in the 2D planar cut
[Figs. 5(a) and 5(b)] consistently overestimate the interfilament
strains measured in 3D or, equivalently, between the mapped
positions on the non-Euclidean surface [Figs. 5(c) and 5(d)].
These strains are the unavoidable consequence of geometric
frustration encountered when packing lattices on surfaces
with nonzero Gaussian curvature [23,24] and equivalently in
twisted bundles.
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To understand the nature of frustration on positively curved
(e.g., spherical) surfaces, consider an annular ring of elements
a distance r from the center of an initially flat 2D lattice,
which contains roughly dN(r) � 2πρ0dr elements, where ρ0

is the areal density. Forcing the lattice onto a spherical surface
of radius Rs while maintaining the same distance from the
center leads to a reduction of the perimeter of the annulus
(the latitude at r) to �(r) � 2πr(1 − r2/6R2

s ). Hence, if the
same dN(r) are forces to occupy this annulus, then the
lattice is put under compression in the hoop direction and
one which grows in magnitude with the distance from the
center as ∼(r/Rs)2. If the lattice elements resist compression,
like the nominally incompressible cross section of filaments in
these experiments, then some expansion outward is required
to remove or mitigate overlaps. This outward expansion, or
aspiration, is precisely what is observed in the cross section of
bundles in Figs. 1(c) and 1(d), where the outer filament radii
expand by 6% and 9%, for θmax = 20◦ and 30◦, respectively.
Thus, the incompressible lattice packing responds to imposing
of twist, by an outward expansion that removes overlaps along
the hoop direction, at the expense of breaking contacts between
radially separated neighbors, a deformation pattern visible in
the “true strain” maps of Figs. 5(c) and 5(d).

While low to modest twist bundles result in relatively
distributed patterns of inter-filament strain [as in Fig. 5(c)],
larger twists ultimately disrupt the quasitriangular packing,
leading to the formation of localized defects at the bundle
exterior. Previous theory [18] and simulations [25] of the
interfilament stresses in twisted cohesive bundles, as well
as the analogous problem of crystalline order on spherical
caps [26,27], has shown that large-N ground states favor
a similar development of lattice defects with dislocations
decorating their outer compressive regions of the bundle
above a critical twist. In the present athermal system, defect
motion is expected to be kinetically inhibited (e.g., by the
Peierls barrier [28]). Nonetheless, the localized deformations
highlighted by large strains in Fig. 5(d) may then be evidence
of incipient dislocations gliding in from the bundle surface to
relax geometrically imposed compression, a possible mode of
bundle plasticity.

VII. CONCLUSIONS

We find that the structure of twisted elastic observed is
consistent with a theoretical approach which postulates the
equivalence between a packing of twisted filaments and a
packing of disks on a non-Euclidean surface, a valuable tool
for understanding the complex local and global constraints
of packing imposed by twist. Our results further show the
robustness of the approach because the filaments in the
experiments have finite elasticity and residual friction. Perhaps
most nontrivial is the fact that the approach applies to bundles
that are held together and twisted mechanically only at the their
ends and yet naturally adopt the constant-pitch configurations
underlying the strict mapping from 3D spacing to a 2D non-
Euclidean surface. Applying the mapping to the experimental
data, we were able to calculate the pattern of interfilament
strains and show that the core of the bundle largely preserves
the hexagonal symmetry, which is less apparent from the
deformation pattern of the planar transect.

Further, by examining the constraints imposed by the
incompressibility of the filaments, we are able to explain the
resulting expansion of the outer bundle with increasing twist.
This study gives the first experimental evidence of how the
nontrivial constraints contact between extended and flexible
elements lead to new responses associated with imposition
on geometric frustration into an initially unfrustrated packing.
Future work will build on this work to develop and analyze
the precise nature of the collective response of the initially
unfrustrated packing to the imposition of geometric frustration
through bundle twist and, further, the mechanical work needed
to bend filaments and reorganize their packing on twist.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion under Grant No. DMR 1508186 (A.P. and A.K.) and DMR
1608862 (G.M.G.). We thank D. Hall for valuable discussions.

APPENDIX A: MEASUREMENT
OF THE FLEXURAL MODULUS

Figure 6(a) shows a schematic diagram of the standard
three point test used to determine the flexural modulus of the
filaments. A single filament is placed on two support pins
which are arranged orthogonal to the axis of the rod. The
weight of the filament is negligible because no observable
deflection due to gravity is observed. We obtained the load-
versus-deflection curve, shown in Fig. 6(b), by gradually
increasing the deflection in steps of 1 mm and measuring the
corresponding load with a Mark-10 force sensor.

Then, the flexural or bending modulus of elasticity is
obtained by using the definition

B = L3

48I

F

D
, (A1)

where F is the applied load, D is the deflection, L is the
filament length which is similar to the distance between the

FIG. 6. (a) A schematic of the 3-point flexural test system.
(b) The measured load versus deflection graph can be described by a
linear fit.
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supports, and I is the momentum of inertia of the filament
about its axis. For a hollow filament with an inner radius r1

and an outer radius r2, I = π
4 (r2

4 − r1
4). From the fit, we

obtain the flexural modulus to be 3.3 GPa.

APPENDIX B: FILAMENT SHAPE

The measured position of the center of each filament
obtained from x-ray images in 148 horizontal cross sections
connected by solid black lines is shown in Fig. 7. The data are
fitted with a helix with radius ρ and helical rotation � given
by the following parametric equations:

x = xc + ρ cos t, (B1)

y = yc + ρ sin t, (B2)

z = z0 + 1

�
t, (B3)

where, x, y, and z are Cartesian coordinates of the helix which
evolve with parameter t . A two-step algorithm, implemented
in MATLAB, is used to fit the data in which we first find the

FIG. 7. Helical fit to experimental data corresponding to θmax =
30◦. The color of the helix which is extended beyond the data for
clarity corresponds to the angle θ that the filament subtends with the
vertical axis of the filament bundle.

parameters xc, yc, and ρ for the best fitting circle in the x-y
plane and then fit z0 and �. Each line is denoted with a color
corresponding to the local twist angle θ of the filaments.
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