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Exact solution for the force-extension relation of a semiflexible polymer under compression
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Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in
terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is
analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead
to larger elongations than for the elastic rod. The susceptibility defined as the derivative of the force-extension
relation displays a prominent maximum at a force that approaches the critical Euler buckling force as the
persistence length is increased. We also evaluate the excess entropy and heat capacity induced by the compression
and find that they vary nonmonotonically with the load. These findings are corroborated by pseudo-Brownian
simulations.
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I. INTRODUCTION

The elasticity of biopolymers such as actin, microtubuli,
or intermediate filaments is responsible for the mechanical
and structural stability of cells, their motility and intracellular
transport processes [1–6]. Networks of these cytoskeletal
polymers connected by regulatory proteins are exposed to
mechanical stresses, thereby exhibiting striking nonlinear
elastic behavior [7–16]. An adequate characterization of
the mechanical properties of these biological assemblies
constitutes a fundamental step toward the future design and
synthesis of artificial biomimetic materials [17,18]. Since the
macroscopic behavior of these filamentous materials strongly
depends on the properties of their constituents, a profound
knowledge on the nature of single filaments is necessary to
fully understand the elasticity of these networks [19].

Due to their semiflexibility, biopolymers show a peculiar
response to external forces [20–22], where the static and
dynamic properties are dominated by their enthalpic elasticity,
but conformational entropy still plays a significant role.
Experimental techniques such as optical [23,24] and magnetic
tweezers [25], transmission electron microscopy [26], and
(atomic) force spectroscopy [19,27] have been used to quantify
the mechanical properties in terms of force-extension relations
[28]. These capture the nonlinear effects emerging in the
stretching and buckling of semiflexible polymers such as
DNA [29–31], actin [32], and synthetic carbon nanotubes
[26], but also single molecules such as titin [33], which is an
important component in striated muscle tissues, and collagen
[34], present in, e.g., skin and bones.

To characterize theoretically the physics of the nonlinear
elastic behavior of semiflexible polymers, the wormlike chain
(WLC), also referred to as Kratky-Porod model [35], has been
analyzed in terms of the end-to-end distribution function in the
weakly-bending approximation [36] as well as in terms of the
exact low-order moments [37–40]. The WLC model has been
shown to be a reliable model for semiflexible polymers, as it
reproduces, e.g., the mechanical behavior of DNA [29] and
actin [32], while for microtubuli internal shearing of adjacent
protofilaments leads to an apparent length dependence of the
elastic moduli [41,42]. In these studies, approximate solutions
of the force-extension relation of stretched polymers have
been compared to experimental data in order to determine
mechanical properties such as the persistence length.

The approximations have been complemented by exact
expressions for stretched polymers in the plane [43], while
force-extension relations of polymers under a compressive
load have so far only been analyzed within the regime of
stiff polymers [44–47]. Therefore, a characterization of the
buckling behavior for a broad range of semiflexible polymers
is needed to predict elastic properties within experimental
observations.

Here, we provide an exact analytical solution for the
force-extension relation of a compressed semiflexible polymer
within the framework of the WLC model and compare the
results for polymers with different rigidity to computer simu-
lations. Boundary conditions imposed within the experimental
setup play a crucial role for the response of polymers to
external forces, as has been discussed earlier for stretched
polymers [48]. To quantify this effect, we also compare the
force-extension relations with two clamped ends, one free and
one clamped end, and two free ends. Thermodynamic proper-
ties, such as the in principle measurable excess heat capacity
of the semiflexible polymers induced by the compression, are
also discussed.

II. THE WORMLIKE CHAIN MODEL

For the elastic properties of a semiflexible polymer, we
rely on the WLC model [35], where the bending energy of an
inextensible semiflexible polymer is expressed by its squared
curvature,

H0 = κ

2

∫ L

0
ds

(
du(s)

ds

)2

. (1)

Here, s is the arc length, u(s) = dr(s)/ds denotes the tangent
vector of the polymer along its contour r(s), κ the bending
stiffness of the polymer, and L its contour length. The
corresponding partition sum Z0(uL,L|u0,0) of the polymer
with initial orientation u0 and final orientation uL is obtained as
a sum of Boltzmann weights over all possible configurations,

Z0(uL,L|u0,0) =
∫ u(L)=uL

u(0)=u0

D[u(s)] exp(−H0/kBT ), (2)

where the inextensibility constraint |u(s)| = 1 has to be
fulfilled. In addition, if the polymer is subject to a constant
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external force F, the stretching energy,

Hforce = −
∫ L

0
ds F · u(s), (3)

has to be added to the bending energy. Here, the force acts
along a fixed direction e with strength F such that F = F e.
Collecting terms, the full Hamiltonian of the system reads

H
kBT

=
∫ L

0
ds

[
κ

2kBT

(
du(s)

ds

)2

− f e · u(s)

]
, (4)

where f = F/kBT is the reduced force with units of an
inverse length. The persistence length �p = κ/kBT for 3D,
respectively, �p = 2κ/kBT for 2D, corresponds to the decay
length of the tangent-tangent correlations of the polymer and
permits a classification of polymers into three categories:
polymers with �p/L � 1 are referred to as flexible and
therefore more coil-like structured, �p/L ∼ 1 are semiflexible,
and �p/L � 1 are stiff, hence, rodlike [21,49]. The partition
sum Z(uL,L|u0,0) of such a polymer subject to an external
force is given by the path integral over all weighted, accessible
chain configurations. In particular, except for the prefactor
Z0 ≡ Z0(uL,L|u0,0), the partition sum can be viewed as the
generating function of a semiflexible polymer:

Z(uL,L|u0,0) =
∫ u(L)=uL

u(0)=u0

D[u(s)] exp(−H/kBT ), (5)

= Z0

〈
exp

(∫ L

0
dsf e · u

)〉
. (6)

The corresponding thermodynamic potential is the Gibbs free
energy defined by

G(T ,F ) = −kBT ln[Z(uL,L|u0,0)], (7)

with fundamental relation

dG = −SdT − 〈X〉dF, (8)

where S = S(T ,F ) denotes the entropy of the polymer
and 〈X〉 := ∫ L

0 ds 〈e · u(s)〉 is the mean end-to-end distance
projected onto the direction of the force.

Hence, the mean projected end-to-end distance is obtained
by

〈X〉 = −
(

∂G

∂F

)
T

= − 1

kBT

(
∂G

∂f

)
T

. (9)

In particular, the response of the polymer to the applied force
is encoded in the isothermal susceptibility,

χ =
(

∂〈X〉
∂F

)
T

= 1

kBT

(
∂〈X〉
∂f

)
T

, (10)

which characterizes the strength of the response with respect
to the applied force. Furthermore it serves as an indicator for
the buckling force of semiflexible polymers in analogy to the
critical Euler buckling force for stiff rods [50].

We can also obtain the linear susceptibility χ in terms
of the fluctuation-response theorem [49] for the semiflexible
polymer,

χ (T ,F ) = 1

kBT
〈(X − 〈X〉)2〉. (11)

In addition to these elastic properties, we obtain the change
in the entropy with respect to the force at constant temperature
by using the Maxwell relation:(

∂S

∂F

)
T

=
(

∂〈X〉
∂T

)
F

. (12)

Thus, the excess entropy �S(T ,F ) = S(T ,F ) − S(T ,F = 0)
can then be evaluated by

�S(T ,F ) =
∫ F

0
dF ′

(
∂〈X〉
∂T

)
F ′

. (13)

Similarly, the experimentally accessible excess heat capacity
�CF (T ,F ) = CF (T ,F ) − CF (T ,F = 0) is obtained by

�CF (T ,F ) =
∫ F

0
dF ′ T

(
∂2〈X〉
∂T 2

)
F ′

. (14)

A. Analytic solution

To determine the elastic and thermodynamic properties,
the partition sum has to be computed by solving for the path
integral [Eq. (5)]. Therefore, we discretize the path integral
in terms of the arc-length [51] and find that the partition sum
obeys an equation of the Schrödinger type, describing the
evolution of the partition sum along the contour of the polymer,

∂sZ(u,s|u0,0) =
[
f e · u + kBT

2κ
�u

]
Z(u,s|u0,0), (15)

where �u denotes the angular part of the Laplacian, and with
initial condition

Z(u,s = 0|u0,0) = δ(u,u0), (16)

such that the δ-function δ(·,·) enforces both orientations to
coincide.

Here we restrict the discussion to a polymer confined to
a plane. Consequently, the inextensibility constraint of the
orientation can be parametrized in terms of a polar angle,
u = (cos ϕ, sin ϕ)T , were the angle ϕ is measured with respect
to the direction of the applied force. Thus, the evolution of the
partition sum along the arc length reads

∂sZ(ϕ,s|ϕ0,0) =
[
f cos(ϕ) + 1

�p
∂2
ϕ

]
Z(ϕ,s|ϕ0,0), (17)

subject to the initial condition

Z(ϕ,s = 0|ϕ0,0) = δ(ϕ − ϕ0 mod 2π ). (18)

The Fokker-Planck equation [Eq. (17)] is reminiscent of the
Schrödinger equation of a quantum pendulum [52] and can
be solved analytically by separation of variables in terms of
appropriate angular eigenfunctions, exp(−λs)z(ϕ). Inserting
this ansatz into Eq. (17), we obtain[

λ + f cos ϕ + 1

�p

d2

dϕ2

]
z(ϕ) = 0. (19)

Here we focus on a polymer exposed to a compressive load,
in particular, we rewrite the reduced force as f = −|f |. A
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change of variables x = ϕ/2 and rearranging terms leads to
the equation[

d2

dx2
+ (a − 2q cos(2x))

]
z(x) = 0, (20)

which is known as the Mathieu equation [53,54] with defor-
mation parameter q = 2|f |�p and eigenvalue a = 4�pλ. Thus,
the general solution is expressed as a linear combination of
π -periodic even and odd Mathieu functions ce2n(q,x) and
se2n+2(q,x) with corresponding eigenvalues a2n ≡ a2n(q) =
4�pλn and b2n+2 ≡ b2n+2(q) = 4�pλn [53,54], respectively.
Note that in the case of a polymer under tension, where the
sign of the force is positive, f = |f |, a different change of
variables x = π/2 − ϕ/2 has to be used in order to arrive at
the Mathieu equation [43].

The Mathieu functions are essentially deformed sines and
cosines:

ce2n(q,x) =
∞∑

m=0

A2n
2m(q) cos(2mx), (21)

se2n+2(q,x) =
∞∑

m=0

B2n+2
2m+2(q) sin[(2m + 2)x]. (22)

The coefficients A2n
2m(q) and B2n+2

2m+2(q) are determined by
recurrence relations, which result from inserting the Fourier
series into Eq. (20):

a2nA
2n
0 − qA2n

2 = 0, (23)

(a2n − 4)A2n
2 − q

(
2A2n

0 + A2n
4

) = 0, (24)

(a2n − 4m2)A2n
2m − q

(
A2n

2m−2 + A2n
2m+2

) = 0, m � 2, (25)

and similar relations hold for the coefficients B2n+2
2m+2(q)

[53,54]. The Mathieu functions constitute a com-
plete, orthogonal and normalized set of eigenfunc-
tions:

∫ 2π

0 dx ce2n(q,x)ce2m(q,x) = δnmπ and similarly for
se2n+2(q,x). Hence, the full solution of Eq. (17) in terms of
the eigenfunctions reads

Z(ϕL,L|ϕ0,0)

= 1

2π

∞∑
n=0

[
ce2n(q,ϕ0/2)ce2n(q,ϕL/2)e−a2n(q)L/4�p

+se2n+2(q,ϕ0/2)se2n+2(q,ϕL/2)e−b2n+2(q)L/4�p
]
. (26)

Since the eigenvalues are ordered with increasing n, a0(q) <

b2(q) < a2(q) < b4(q) < ..., the series expansion converges
and can be evaluated numerically, which is discussed in more
detail in Appendix A.

We impose boundary conditions that reflect different exper-
imental setups accounting for clamped or free orientations at
the ends of the polymer. The presented partition sum [Eq. (26)]
represents the case of a clamped polymer with given initial and
final orientation. This can be complemented by two or more
scenarios. First, we look at a half-clamped polymer, where
the initial orientation is clamped and the final one is free.
The corresponding partition sum Z(L|ϕ0,0) is obtained via

integration over all final angles,

Z(L|ϕ0,0) =
∫ 2π

0
dϕLZ(ϕL,L|ϕ0,0),

=
∞∑

n=0

A2n
0 (q)ce2n(q,ϕ0/2) exp[−a2n(q)L/4�p], (27)

where A2n
0 (q) results from the integral over the even Mathieu

functions and the odd Mathieu functions do not contribute
anymore.

Further, integrating also over the initial angle the partition
sum corresponding to a free polymer reduces to

Z(L) = 2π

∞∑
n=0

[
A2n

0 (q)
]2

exp
[ − a2n(q)L/4�p

]
. (28)

Interestingly, the same result occurs for the semiflexible
polymer under tension [43], which reflects that the polymer
is free to align with the external force. To evaluate the
partition sums in Eqs. (26) and (27) numerically, we rely on an
implementation of the Mathieu functions in a computer algebra
system [55]. However, to determine the Fourier coefficients
A2n

0 (q) in Eqs. (27) and (28), it is more efficient to solve
numerically the eigenvalue problem of the recurrence relations
[Eq. (23)–(25)].

B. Linear response

The linear response χ (T ,F = 0) of the semiflexible poly-
mer to the compression force can also be obtained exactly
by expanding the full solution in Eqs. (26), (27), and (28)
to second order in the force. For a clamped polymer we
use the expansions of the Mathieu functions for ϕ0 = ϕL = 0
and the corresponding eigenvalues up to second order in the
deformation parameter q from Refs. [53,54]:

a0(q) = −q2

2
, a2(q) = 4 + 5q2

12
, (29)

a2n(q) = 4n2 + q2

2(4n2 − 1)
, (30)

ce0(q,0) = 1√
2

(
1 − q

2
− q2

32

)
, (31)

ce2(q,0) = 1 + q

6
− 73q2

1152
, (32)

ce2n(q,0) = 1 − q

2 − 8n2
+ (8n2 + 1)q2

32(1 − 4n2)2(n2 − 1)
. (33)

Note that for ϕ0 = ϕL = 0 the odd Mathieu functions do not
contribute to the partition sum. Inserting these expansions
into the full solution [Eq. (26)] one can derive both the
projected mean end-to-end distance as well as the force-free
susceptibility [Eq. (11)]. The explicit expressions are rather
lengthy for arbitrary parameters L and �p and will not be
shown here, but we will discuss them for a clamped polymer
in Sec. III, Fig. 3.

For the half-clamped polymer (ϕ0 = 0) only the first three
terms, n = 0, 1, 2, contribute to the order considered to the
partition sum in Eq. (27). Here, we use the expansions up to
second order in q of the Fourier coefficients A0

0(q) = (1 −

052501-3



CHRISTINA KURZTHALER AND THOMAS FRANOSCH PHYSICAL REVIEW E 95, 052501 (2017)

q2/16)/
√

2, A2
0(q) = q/4 and A4

0(q) = q2/96 obtained from
Refs. [53,54] and inserted these together with the expansions
from Eqs. (29)–(33) into the full solution [Eq. (27)]. Thus, the
partition sum reads

Z(L|ϕ0 = 0,0)

= π + π�p
|F |
kBT

(e−L/�p − 1)

+ π

24
�2

p

( |F |
kBT

)2(12L

�p
− 9 + 8e−L/�p + e−4L/�p

)

+O(|F |3), (34)

which results in a projected mean end-to-end distance

〈X〉 = (�p − �pe
−L/�p ) + �p|F |

12kBT
{�p[e−4L/�(12e2L/�

− 32e3L/� − 1) + 21] − 12L} + O(|F |2), (35)

and linear susceptibility

χ (T ,F = 0) = �p

12kBT
[�p(e−4L/�p − 12e−2L/�p

+ 32e−L/�p − 21) + 12L]. (36)

For the free polymer only the first two terms contribute and
the partition sum in Eq. (28) is evaluated similar to the partition
sum of a half-clamped polymer [Eq. (34)]. It reduces to

Z(L) = π2 + π2

2
�2

p

( |F |
kBT

)2(
e−L/�p + L

�p
− 1

)
+ O(|F |3).

(37)

Here the projected mean end-to-end distance vanishes for zero
force after averaging over the initial and final angles,

〈X〉 = �p|F |
kBT

[�p(1 − e−L/�p ) − L] + O(|F |2), (38)

and the linear susceptibility reads

χ (T ,F = 0) = �p

kBT
[�p(e−L/�p − 1) + L]. (39)

C. Pseudodynamics

To validate our analytical results, we also simulate the
semiflexible polymer under compression. To generate a set of
representative conformations of the polymer in equilibrium,
we rely on Brownian dynamics simulations that yield the
canonical ensemble as stationary state. Since we are not
interested in the dynamic properties here, features such
as hydrodynamic interactions, anisotropic friction, and the
overall translational motion are ignored. Thus, the purpose
of the pseudodynamics is merely to reproduce the equilibrium
properties.

We first discretize equidistantly the contour L of the
polymer in terms of the positions of the beads {Ri}Ni=0 and
corresponding tangent vectors {ui}N−1

i=0 , where ui = (Ri+1 −
Ri)N/L is of unit length |ui | = 1.

FIG. 1. Typical time evolution in simulation of a clamped (top)
and a half-clamped (bottom) polymer starting from a straight
configuration. The simulation is for a rather stiff polymer, �p = 10L,
subject to a strong compression force |F | = 2Fc.

The pseudodynamics for the orientation of the ith bead is
prescribed by the Langevin equation in the Itō sense,

dui(t) = −D̂rotui(t)dt + D̂rotu⊥
i (t)

(
N

L

�p

2
u⊥

i (t) · [ui−1(t)

+ ui+1(t)] − L

N
|f |u⊥

i (t) · e
)

dt

+
√

2D̂rotu⊥
i (t)dωi(t), (40)

for i = 1, . . . ,N − 2 and appropriately modified Langevin
equations at the boundary, i = 0,N − 1. Here, u⊥

i (t) is
the unit orientation rotated clockwise by an angle of π/2,
i.e., u⊥

i (t) · ui(t) = 0 and det[(ui(t),u⊥
i (t))] = 1. Furthermore,

ωi(t) is a Gaussian white noise process with zero mean and
variance 〈ωi(t)ωj (t ′)〉 = δij δ(t − t ′) for i,j = 0, . . . ,N − 1.
The scaled rotational diffusion of the orientations D̂rot sets
only the time scale in our case. We show in Appendix B that the
Langevin equations [Eq. (40)] in fact reproduce the canonical
ensemble of the semiflexible polymer problem.

The boundary conditions for a clamped polymer are
set by fixed initial and final orientation chosen into the
direction antiparallel to the compression force, in particular,
u0(t) = uN−1(t) = −e for all times t . A half-clamped polymer
fulfills the same boundary condition for the initial orien-
tation, u0(t) = −e, whereas the final orientation can freely
rotate.

Simulation snapshots (Fig. 1) reveal that a semiflexible
polymer shows qualitatively different buckling behavior with
respect to the boundary conditions. Since clamped polymers
cannot rotate their ends, they exhibit an S-shaped configuration
under a compressive load. In contrast, if the second end of the
polymer is free to rotate, it can align with the direction of
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the applied force and a hook-shape configuration is observed.
Considering two free ends, the polymer will just rotate under
the force, and thus its behavior is expected to be identical to
that of a polymer under tension.

To obtain reliable statistics in equilibrated configurations
we have conducted 120 realizations of a polymer with N =
300 segments and a time step of 10−5/D̂rot over a time
horizon of 103/D̂rot. Measurements are taken after the polymer
has reached equilibrium. For a free polymer the simulations
have been performed over a longer time horizon of 104/D̂rot,
however, with fewer realizations, since the free rotation of the
polymer requires long transients to reach equilibrium at low
forces.

In addition we have performed Monte Carlo simulations,
similar to Ref. [44], to crosscheck the results. They confirm
our analytical predictions for clamped polymers, but they start
to fail in terms of convergence and statistics when refining the
discretization to capture the semiflexibility of the polymers
and also the simulation of a free polymer has been demanding.

D. Classical Euler buckling

A stiff rod under compression at small forces does not yield
at all but starts to buckle at a critical force that is known as the
Euler buckling instability [50]. The critical force is determined
by the rigidity κ and the contour length L by

Fc = π2κ

(γL)2
, (41)

where γ accounts for the different boundary conditions. In
the case of a clamped rod, γ = 1, with one end fixed and one
translationally free; however, if one end of the rod is clamped
and one orientationally and translationally free, γ = 2 [50].

For small temperatures the Fokker-Planck equation
[Eq. (17)] of the partition sum can be approximated for a stiff
rod by an Eikonal approximation [51]. Here we set the partition
sum Z = exp(−G/kBT ), neglect terms of higher order in the
inverse temperature, and consequently obtain the approximate
equation for the Gibbs free energy,

∂sG − |F | cos ϕ G + 1

2κ
(∂ϕG)2 = 0. (42)

Using the method of characteristics leads to the equation of
motion for the angle,

κ
d2ϕ(s)

ds2
+ |F | sin ϕ(s) = 0, (43)

which is as anticipated reminiscent of the equation of motion
of a classical pendulum [52]. The same equation results as
Euler-Lagrange equation minimizing the total energy [Eq. (4)].
Starting from this equation, the force-extension relation for
|F | > Fc of a clamped and half-clamped rod is well known
[44,50],

〈X〉 =
√

2κ

|F |
∫ ϕL/2

0
dϕ

cos ϕ√
cos ϕ − cos ϕL/2

. (44)

These results will be compared to the elastic properties of
semiflexible polymers confined to two dimensions.

III. ELASTIC PROPERTIES

In this section we provide a discussion of the analytic
solution and simulation results for the force-extension relation
and the associated susceptibility.

A. Clamped polymer

The mean projected end-to-end distance 〈X〉 of a clamped
polymer is obtained by numerical differentiation of the Gibbs
free energy [Eq. (9)]. We find a smooth monotone crossover
from an almost stretched to a buckled configuration with
increasing compression force, in contrast to the classical Euler
buckling instability, where the first yielding takes place at
the critical force Fc [Fig. 2(a)]. Due to thermal fluctuations
already for vanishing forces, semiflexible polymers display
undulations, hence, their projected end-to-end distance is
shorter than their contour length, 〈X〉 < L. As anticipated,
in the regime of small forces higher flexibility leads to
shorter mean end-to-end distances, which approach zero for
completely flexible polymers, �p/L � 1. Qualitatively, the
linear response behavior appears to be correct up to forces
comparable to the classical Euler buckling force [see Figs. 2(a)
and 2(b)]. Interestingly, for increasing forces, |F | > Fc, the
end-to-end distance of semiflexible polymers intersects with
that of a stiff rod, indicating a stiffening of the polymer due to
thermal fluctuations. A similar trend occurs when comparing
different persistence lengths, hence, initially more flexible
polymers yield more strongly while for large forces they resist
harder than stiffer polymers.

Furthermore, we compare the susceptibility χ of semiflex-
ible polymers in response to the compression force to the
susceptibility of a stiff rod [Fig. 2(d)]. The latter vanishes
for forces smaller than the critical Euler buckling force,
reflecting that a classical rod does not yield. Directly at
the transition the classical susceptibility assumes the value
χ (Fc + 0) = 2L/Fc and decreases monotonically for larger
forces. In contrast, the susceptibility of semiflexible polymers
initially increases starting from χ (T ,F = 0) as predicted from
the linear response (not shown), then displays a maximum
at a force |Fmax|, which exceeds the Euler buckling force,
|Fmax| > Fc. Increasing the stiffness, this force approaches
the critical buckling force |Fmax| ↓ Fc, which suggests to use
|Fmax| as a measure to charactzerize the smooth transition
for fluctuating semiflexible polymers. For simplicity, we refer
to |Fmax| as the buckling force also in the case of nonzero
temperature. Interestingly, for stronger forces the projected
end-to-end distance becomes even negative (see Fig. 3), which
reflects the S-shaped configuration in Fig. 1.

B. Half-clamped polymer

Here, the force-extension relation behaves similarly to the
one for clamped polymers [see Fig. 2(b)]. Nevertheless, half-
clamped polymers yield more strongly even after taking into
account that the classical buckling force is reduced by a factor
of γ 2 = 4 due to the different boundary conditions. In fact,
the data demonstrate that the semiflexibility becomes more
important for half-clamped polymers.

Qualitatively, the monotonous transition from the straight-
ened to the buckled configuration of these polymers remains
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FIG. 2. End-to-end distance in the direction of the applied force (top) and susceptibility (bottom) of polymers with different persistence
lengths and boundary conditions, clamped (a) and (d), half-clamped (b) and (e), and free ends (c) and (f). The black dashed lines indicate the
linear response and the gray dashed line corresponds to the classical Euler buckling, Fc is the classical Euler buckling force Fc = π 2κ/(γL)2.
In (c) and (f) we use γ = 2 in Fc to normalize the forces. The forces |Fmax| are extracted from the maxima of the susceptibility. In (d) the
dashed line (ap. 10) represents the approximate susceptibility derived from the solution in Ref. [44]. Theory and pseudodynamics simulations
are shown with lines and dots, respectively.

unchanged, intersections with the end-to-end distance of a
stiff rod persist also here. The corresponding susceptibilities
[Fig. 2(e)] are less pronounced in comparison to clamped
polymers of the same stiffness [Fig. 2(d)]. Also, here we
characterize the transition by a buckling force |Fmax| taken
as the maximum of the susceptibility. For half-clamped ends
the approach |Fmax| ↓ Fc is slower than for clamped ends.

FIG. 3. Comparison of our analytic results to the approximate
solution (dashed lines) of Ref. [44] for different persistence lengths.
|Fmax| denotes the force at maximal susceptibility from the analytic
theory and |F c

ap| the critical force for the onset of buckling, taken
from Ref. [44]. The black dashed line indicates the linear response,
and the gray dashed line corresponds to the classical Euler buckling.

C. Free polymer

In contrast to clamped polymers, the force-extension rela-
tion of a free polymer exhibits qualitatively different behavior
[see Fig. 2(c)]. Direct inspection of the configurations (not
shown) reveals that the polymer essentially rotates and aligns
with the direction of the force. Thus, rather than compressing,
the force in fact stretches the polymer in the reverse direc-
tion, in particular, the projected end-to-end distances are all
negative. The analytic solution for the case of pulling has
been provided before [43], however, only an approximate
solution for rather flexible polymers of length L > 4�p has
been discussed in more detail. Thermal undulations prevent
the polymer to be in a completely straight configuration. Stiffer
polymers react to smaller forces than more flexible polymers
and extend nearly to their full contour length. For free ends the
force-extension relations approach monotonically the case of
a fully aligned rod as the stiffness increases, in contrast to the
other two boundary conditions. Similarly, the susceptibility
[Fig. 2(f)], is always maximal at vanishing forces, where it
assumes the value χ (T ,F = 0) as predicted by linear response
theory and is larger for increasing stiffness. Correspondingly,
no characteristic buckling force is extracted for this case, since
after all the polymer stretches rather than buckles in this case.

D. Approximate solution

An approximate solution of the force-extension relation
in the regime of rather stiff polymers has been presented
by Baczynski et al. [44] by integrating out short-wavelength
fluctuations. Their results predict qualitatively similar behavior
for clamped polymers in terms of the smooth buckling
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FIG. 4. End-to-end distance in the direction of the force for
pulling of clamped and half-clamped (inset) polymers with different
persistence lengths. We use the critical buckling force Fc to normalize
the forces. The black-dashed lines indicate the weakly-bending
approximation.

transition. Yet, already in the regime for small forces |F | � Fc

deviations to our analytic theory become apparent (see Fig. 3).
The differences decrease as stiffer polymers are considered.
Their approximate solution for stiff polymers exhibits far
weaker buckling than the predicted analytic solution and in
addition the force-extension relation remains positive for all
forces. This finding is not in agreement with the analytic
solution for semiflexible polymers as well as with the behavior
of a classical stiff rod, which both predict a negative projected
end-to-end distance for large forces, |F | � Fc. Hence, the
effect that the polymer assumes an S-shaped configuration
in response to the applied force is not captured within the
approximate theory.

For both the analytic and the approximate solution, the
force-extension curves of a stiff rod and the semiflexible
polymers intersect. The corresponding intersection force of
the force-extension has been computed in Ref. [44] and
confirms that this intersection takes place in the vicinity of the
Euler-buckling instability. In contrast to the critical buckling
force |Fmax| defined by the maximal susceptibility, the critical
buckling force |Fc

ap| of Ref. [44] has been defined as the onset
of the buckling of the polymer, shown in Fig. 3. Similar
to our analysis, it exceeds the critical Euler buckling force,
but always remains smaller than the maximal buckling force
|Fc

ap| < |Fmax|. Furthermore, the susceptibility extracted from
the approximate theory deviates significantly from our analytic
solution, yet, the force at the maximal susceptibility remains
similar [see Fig. 2(d)].

E. Pulled polymer

We have also evaluated numerically for the first time the
force-extension relation of a pulled polymer. The case of free
ends under pulling is up to a sign identical to compression,
as discussed above [see Fig. 2(c)]. In Fig. 4 we evaluate
the analytic solution provided by Ref. [43] and compare it
to the weakly-bending approximations [29,56] for a clamped

polymer,

〈X〉
L

= 1 + kBT

4L|F | − coth(L
√

2|F |/�pkBT )

2
√

2|F |�p/kBT
, (45)

and a half-clamped polymer,

〈X〉
L

= 1 − tanh(L
√

2|F |/�pkBT )

2
√

2|F |�p/kBT
; (46)

see Appendix C for a derivation. These approximations
accurately reproduce the force-extension relation of pulled
stiff polymers. However, the weakly-bending assumption is
not fulfilled for more flexible polymers at small forces, which
display deviations from the exact solution (see Fig. 4). The
force-extension relation of a (half-) clamped polymer exhibits
qualitatively similar behavior to that of a free polymer, and
aligns along the direction of the applied force.

IV. THERMODYNAMIC PROPERTIES

In addition to the elastic behavior, we discuss the thermo-
dynamic properties in terms of the excess entropy,

�S(T ,F ) = − ∂

∂T
[G(T ,F ) − G(T ,F = 0)], (47)

and the excess heat capacity �CF = T (∂�S/∂T )F in terms
of our exact solution.

For clamped polymers, we observe an increase of the excess
entropy �S at small forces and a decrease at forces exceeding
the Euler buckling force |F | � Fc [see Fig. 5(a)]. Thus, by
applying a small force the number of accessible configurations
of the polymer is increased, which reflects that by the S-shaped
configurations the fluctuations in the direction perpendicular
to the force become more important. Yet, for strong forces the
excess entropy decreases again and eventually even becomes
negative. In fact, the simulations show that for these strong
forces the clamping suppresses the undulations of the contour.

The temperature dependence of the excess entropy is
encoded in the heat capacity CF (T ,F ). We find that the
excess heat capacity is negative for forces |F | � Fc, whereas
it becomes positive and displays a maximum for larger forces;
see Fig. 5(a) (inset). Thus, the initial increase of fluctuations
upon compression is less important for more flexible polymers,
while the suppression for large forces is more relevant for
stiffer polymers.

Qualitatively similar results are obtained for half-clamped
polymers both for the excess entropy and the excess heat
capacity (not shown).

In contrast, free polymers behave qualitatively differently
in terms of their thermodynamic properties. In particular,
the excess entropy �S always decreases monotonically with
increasing force [see Fig. 5(b)]. Here the polymer reverses di-
rection and is effectively under tension, such that the force sup-
presses the thermal undulations and the polymer straightens
out. The corresponding excess heat capacity �CF increases
and displays a prominent maximum before approaching a
constant value for very large forces. As corroborated by the
simulations, this reflects that for more flexible polymers the
thermal fluctuations are less suppressed than for stiffer ones
[see Fig. 5(b) (inset)].
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FIG. 5. Excess entropy �S and excess heat capacity �CF (inset)
for (a) clamped and (b) free polymers as a function of the force |F |/Fc.
Temperature enters via �p/L = 2κ/LkBT = 1.4, 1.7, 2.0, 2.2, 2.5.

V. SUMMARY AND CONCLUSION

We have derived an analytic expression for the partition
sum of a semiflexible polymer under compression within
the framework of the WLC model for arbitrary stiffnesses.
The partition sum is represented as an expansion in terms
of Mathieu functions, which are the eigenfunctions of the
associated Fokker-Planck equation. Since the eigenvalues form
an ascending series to infinity, the infinite sum of decaying
exponentials can be evaluated numerically (see Appendix A).
Elastic properties such as the force-extension relation, the
susceptibility, and thermodynamic properties in terms of the
excess entropy and excess heat capacity of the polymers with
different persistence lengths, have been obtained as derivatives
of the exact Gibbs free energy. These properties have been
discussed for different boundary conditions reflecting various
experimental setups.

Our results for the force-extension relation of (half-)
clamped polymers predict a smooth crossover from an
equilibrated, almost straight rod to a buckled configuration.
Interestingly, the force-extension curves intersect in the
vicinity of the classical Euler buckling instability. Therefore,
stiffer polymers resist more strongly for small forces, yet at
forces larger than the buckling force they yield more strongly
than flexible ones. Furthermore, the susceptibilities display
a maximum in the vicinity of the classical Euler buckling
force and by the fluctuation-response theorem this implies

that the fluctuations of the projected mean end-to-end distance
become most important here. Our analysis reveals that for
large forces the weakly-bending approximation breaks down,
as is apparent already for a classical elastic rod. Therefore, the
weakly-bending approximation remains valid only for large
persistence lengths �p � L but is also restricted to small
compression forces |F | � Fc.

In contrast, a free polymer cannot resist a compres-
sion force, rather it rotates and aligns with the applied
force. Therefore, our solution for this case reproduces
the well-studied setup of a semiflexible polymer under
tension.

Apart from the weakly-bending approximation [44], also
different approximation schemes have been elaborated earlier
to understand the behavior of rather stiff polymers close
to the buckling transition. These studies have incorporated
corrections by thermal fluctuation to the theory of the classical
Euler buckling instability [45,46], which capture quantitatively
the force-extension relation for forces much smaller and much
larger than the critical Euler buckling force Fc and compare
it to simulations of semiflexible polymers modeled by a
bead-spring chain [45]. Including the lowest-order quartic
mode in the fluctuations predict qualitatively the same behavior
as our analytical theory for planar inextensible polymers close
to the critical Euler buckling instability [46]. In addition, the
buckling behavior of extensible polymers is also predicted
to delay the buckling transition within the regime of small
thermal fluctuations [47]. Alternatively to existing literature,
one can also start from the probability distribution of a
semiflexible polymer, which has been elaborated in the weakly
bending regime [36] and within a mean-field approach for
filament inextensibility [57], to compute approximately the
force-extension relation.

However, these approximations [36,44–47] remain valid
for stiff polymers or away from the buckling transition only,
as thermal fluctuations increase drastically for more flexible
polymers at the maximum of the susceptibility. In contrast, our
analytical theory provides the force-extension relation for the
full range of semiflexible polymers.

Also for pulled semiflexible polymers a lot of work
has been done in elaborating the force-extension relation
[58], ranging from weakly-bending approximations [29,56]
to various approaches to account for the inextensibility of a
wormlike chain [7,59–61]. Here, we have evaluated for the first
time the force-extension relation of pulled polymers using the
analytical solution provided by Ref. [43], where up to now
only approximations of the fore-extension relations of rather
flexible polymers have been discussed. As we have shown in
Appendix A, for flexible polymers the numerical evaluation of
the partition sum reduces to a few terms and can therefore be
approximated due to the properties of the eigenvalues by the
first term only, as has been observed earlier [43]. However, for
increasing stiffness of the polymer more terms contribute to
the partition sum, the approximation fails, and the full solution
is required to accurately reproduce these elastic properties. In
the limiting case of stiff polymers, we find excellent agreement
with the weakly-bending approximation for all forces (see
Fig. 4).

We anticipate, that our results serve as a reference for
experimentally measured force-extension relations and allow
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determining the persistence length for a broad range of semi-
flexible polymers. We have provided tables (see Supplemental
Material [62]) containing the numerical evaluation of the
force-extension relation for semiflexible polymers subject to
compression as well as pulling forces, in order to make the
developed theory accessible and applicable to experimental
observations.

Mathematically, the partition sum can be viewed as the
Laplace transform of the distribution of the projected end-to-
end distance. Therefore, the distribution can be obtained in
principle by an inverse Laplace transform; however, this is
numerically an ill-posed problem. Consequently, one should
rather consider the characteristic function, i.e., the Fourier
transform of the distribution, which is obtained formally by
analytic continuation in the force to complex values. The
Mathieu functions and the eigenvalues in this case can still be
obtained numerically by solving a matrix eigenvalue problem.
This approach has been applied recently for the mathematical
analog of a self-propelled particle [63].

Our solution method is not restricted to the plane but can
be extended to three dimensions. There the Mathieu func-
tions of the eigenvalue problem are replaced by generalized
spheroidal wave functions [63,64]. Similarly, our approach
can be extended in principle to account for a spontaneous
curvature such that the classical reference system consists of a
circular arc.

The equilibrium single-polymer behavior under tension or
compression plays a crucial role as input for elastic properties
of networks, and the regime of strong compression close to
buckling may be useful to characterize the mechanical stability
of such networks [7–16]. In particular, networks are often
modeled as entangled solutions of single semiflexible poly-
mers with entanglement points, where they cross or loop each
other, branching points or cross-links [7–9,12–16]. Already
in equilibrium, single polymers experience a stretching or
compression force induced by the surrounding network, and
consequently the mean distance between, for example, two
cross-links differs from the contour length of the polymers.
Here, our theoretical predictions for the elastic properties of
semiflexible polymers subject to different boundary condi-
tions, which depend on the properties of the entanglement
points or cross-links, allow adequate modeling and predict
the equilibrium properties of polymer networks. Furthermore,
exposing the network to mechanical stresses strongly depends
on the force-extension relation of these individual filaments
and crucially determines their elastic response. Up to now
only approximate force-extension relations have been ap-
plied in the analysis of networks [7–9,12,13,15], whereas
our characterization of (half-)clamped and free semiflexible
polymers allows analyzing the elasticity of inhomogeneous
networks composed of filaments with arbitrary stiffnesses. In
particular, the clamped boundary conditions might serve as a
starting point for modeling polymers connected by crosslinks,
where their orientation is fixed due to the specific bonds.
Differently, weaker entanglements can be accounted for by
applying half-clamped boundary conditions, where one end of
the polymer is allowed to rotate freely. Hence, the theoretical
predictions can be incorporated by using the tables provided
in the Supplemental Material [62] in further modeling studies

of networks, which would not alter the computational cost of
simulations significantly.

Similarly, the equilibrium behavior in free space constitutes
the reference for the relevant case of semiflexible polymers
immersed in a dense crowded medium [64–66]. Furthermore,
the equilibrium properties should serve as the basis also for
dynamic studies [67–69], in particular, the pseudodynamics
we have derived here constitutes a convenient starting point to
investigate the relaxation of undulation modes in the regime
where the weakly-bending approximation is no longer valid.
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APPENDIX A: NUMERICAL EVALUATION

Here, we discuss the numerical evaluation of the partition
sums in Eqs. (26), (27), and (28), which are sums of relaxing
exponentials with respect to the length L. Yet, the coefficients,
i.e., the Mathieu functions (ce2n(q,x) and se2n+2(q,x)), as
well as the exponents, i.e., the eigenvalues of the Mathieu
functions (a2n(q) and b2n+2(q)), are nonmonotonic functions
with respect to the force F ; see Fig. 6.

FIG. 6. (a) Even Mathieu functions ce2n(q,0) and (b) corre-
sponding eigenvalues a2n(q) with deformation parameter q = 2|f |�p,
reduced force f = F/kBT , and persistence length �p = 10L. Here,
Fc = π 2κ/L2 denotes the critical Euler buckling force of a clamped
polymer.
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In particular, we find that the zeroth eigenvalue, a0(q),
remains negative for all forces, whereas the second, a2(q), and
fourth eigenvalues, a4(q), change sign within the parameter
range considered. The other eigenvalues remain positive and
increase with increasing mode n for all relevant forces [see
Fig. 6(b)]. Consequently, the higher modes of the partition
sum become exponentially suppressed and therefore induce a
natural cutoff of the infinite series [Eqs. (26), (27), and (28)].

Moreover, with increasing mode n the Mathieu functions
become more important at intermediate and larger forces [see
Fig. 6(a)], and therefore many modes are expected to contribute
to the partition sum. Interestingly, we observe that the number
of modes necessary to achieve a desired accuracy of the elastic
properties highly depends on the force.

As an example, we consider the mean end-to-end distance
〈X〉 and determine the number of modes necessary to obtain
the accuracy |〈X〉n+1 − 〈X〉n|/L < 10−8, where 〈X〉n denotes
the mean end-to-end distance with n included modes. For a
clamped and a half-clamped polymer, the number of modes
increases and assumes a maximum in the vicinity of the critical
Euler buckling force and decreases again for larger forces; see
Figs. 7(a) and 7(b). Similarly, for a free polymer the number
of modes also increases, yet at smaller forces, and decreases
for large forces [Fig. 7(c)].

In addition, the number of modes rises drastically for stiffer
polymers, which makes numerical evaluation more tedious.
Furthermore, the number of modes for half-clamped boundary
conditions is largest, whereas about half the modes are required
for a free polymer.

APPENDIX B: DERIVATION OF THE PSEUDODYNAMICS

In general, equations of motion in terms of stochastic
differential equations can be derived from the Fokker-Planck
equation of the stochastic process [70]. At this stage, only the
equilibrium distribution of the polymer subject to an external
compression force is known and an equation of motion for the
probability density needs to be formulated. Therefore, we con-
struct a Fokker-Planck equation starting with the requirement
that the known equilibrium distribution of the WLC model
coincides with the stationary distribution of the stochastic
process. Therefore, we discretize the polymer equidistantly in
terms of the positions of the beads {Ri}Ni=0 and corresponding
tangent vectors {ui}N−1

i=0 , where ui = (Ri+1 − Ri)N/L with
unit length |ui | = 1. The discretized Hamiltonian takes the
form

H
({ui}N−1

i=0

)
kBT

= �̂p

4

N−2∑
i=0

(ui+1 − ui)
2 − f̂

N−1∑
i=0

e · ui , (B1)

where �̂p = �pN/L and f̂ = f L/N denote the scaled per-
sistence length and force (f̂ > 0 for tension and f̂ < 0 for
compression), respectively.

To fulfill the inextensibility constraint, we parametrize
the orientation ui = (cos ϕi, sin ϕi)T in terms of the polar
coordinates {ϕi} ≡ {ϕi}N−1

i=0 measured relative to the fixed
direction e of the force. Therefore, the probability density

in equilibrium is given by

Peq({ϕi}) = Z−1 exp

(
−H({ϕi})

kBT

)
, (B2)

such that
∫ [ ∏N−1

i=0 dϕi

]
Peq({ϕi}) = 1.

The discretized Hamiltonian in polar coordinates reads

H({ϕi})
kBT

= �̂p

2

N−2∑
i=0

[1 − cos(ϕi+1 − ϕi)] − f̂

N−1∑
i=0

cos ϕi.

(B3)

Next we derive the Fokker-Planck equation describing the
time evolution of the conditional probability density P ≡
P({ϕi},t |{ϕ0

i }) to find a discretized polymer with orientations
{ϕi} at time t , given that it was oriented with {ϕ0

i } at time t = 0.
It is expressed by

∂tP = −
N−1∑
i=0

∂ϕi
[Ui({ϕi})P], (B4)

where the velocity of the probability current is obtained by the
friction law, Ui({ϕi}) = ∑

k Kik({ϕi})Fk({ϕi}). We choose for
simplicity K = Nξ−1

r I, which denotes the rotational mobility
tensor and F the forces,

Fk = −∂ϕk
H − kBT ∂ϕk

lnP. (B5)

Here, the first term corresponds to the mechanical forces while
the second accounts for the thermal Brownian forces. Thus
one verifies that the equilibrium distribution Peq corresponds
to the stationary distribution, ∂tPeq = 0. Collecting results
we find for the time evolution of the conditional probability
density,

∂tP = D̂rot

N−1∑
i=0

(
∂ϕi

{
�̂p

2
[sin(ϕi − ϕi−1) − sin(ϕi+1 − ϕi)]

+ f̂ sin ϕi

}
P + ∂2

ϕi
P

)
, (B6)

with scaled rotational diffusion coefficient D̂rot = NkBT/ξr
and initial condition

P({ϕi},t = 0|{ϕ0
i },0) =

N−1∏
i=0

δ
(
ϕi − ϕ0

i mod 2π
)
. (B7)

Starting from the Fokker-Planck equation [Eq. (B6)] standard
methods [70] are used to obtain the Langevin equations for
the angles, governing the pseudodynamics of a semiflexible,
discretized polymer,

dϕi(t) = −D̂rot

{
�̂p

2
[sin(ϕi − ϕi−1) − sin(ϕi+1 − ϕi)]

+ f̂ sin ϕi

}
dt +

√
2D̂rotdωi(t), (B8)

where dωi(t) is the increment of a Gaussian white noise
process ωi(t) with zero mean 〈ωi(t)〉 = 0 and δ-correlated
variance 〈ωi(t)ωj (s)〉 = δij δ(t − s) for i,j = 0, . . . ,N − 1.
These equations can be transformed by Itō’s lemma [70] to
the equations for the tangent vectors in Eq. (40).
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FIG. 7. Number of modes n required to achieve an accuracy of |〈X〉n+1 − 〈X〉n|/L < 10−8 with respect to the force F for a clamped
(a), half-clamped (b), and free polymer (c) of different persistence lengths �p. Here, Fc = π 2κ/(γL)2 denotes the critical Euler buckling force.
In (c) we use γ = 2 in Fc to normalize the forces.

APPENDIX C: FORCE-EXTENSION RELATION FOR A
PULLED POLYMER IN THE

WEAKLY-BENDING REGIME

In the weakly-bending regime of a pulled polymer, f = |f |,
we can approximate Eq. (17) by

∂sZ(ϕ,s|ϕ0,0) =
[

1

�p
∂2
ϕ + |f |

(
1 − 1

2
ϕ2

)]
Z(ϕ,s|ϕ0,0),

(C1)

and use the Gaussian ansatz,

Z(ϕ,s|ϕ0,0) = exp[−M(s)ϕ2/2 + �(s)]. (C2)

Then the inverse variance M(s) and the normalization �(s)
have to fulfill the equations of motion,

d

ds
M(s) = |f | − 2

M(s)2

�p
, (C3)

d

ds
�(s) = |f | − M(s)

�p
. (C4)

Using the initial condition Z(ϕ,s = 0|ϕ0 = 0,0) = δ(ϕ), the
solutions of these differential equations read

M(s) =
√

|f |�p

2
coth

(√
2|f |
�p

s

)
, (C5)

�(s) = |f |s − 1

2
ln sinh

(√
2|f |
�p

s

)
+ 1

4
ln

(
�p|f |
8π2

)
. (C6)

To obtain the partition sum for a half-clamped polymer with
contour length L, we average over the final orientation,

Z(L|ϕ0,0) ≈
∫ ∞

−∞
dϕL exp

[ − M(L)ϕ2
L/2 + �(L)

]

= exp[�(L)]

√
2π

M(L)
, (C7)

which is correct if the angular fluctuations are small, M(s) �
1. This is fulfilled for stiff polymers L/�p � 1 or strong pulling
�p|f | � 1. Finally, we obtain the force-extension relations for
(half-) clamped polymers in the weakly-bending regime by
taking the derivative of the Gibbs free energy [Eq. (7)] with
respect to the force (see Sec. II).
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