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Model of the best-of-N nest-site selection process in honeybees
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The ability of a honeybee swarm to select the best nest site plays a fundamental role in determining the future
colony’s fitness. To date, the nest-site selection process has mostly been modeled and theoretically analyzed for the
case of binary decisions. However, when the number of alternative nests is larger than two, the decision-process
dynamics qualitatively change. In this work, we extend previous analyses of a value-sensitive decision-making
mechanism to a decision process among N nests. First, we present the decision-making dynamics in the symmetric
case of N equal-quality nests. Then, we generalize our findings to a best-of-N decision scenario with one superior
nest and N − 1 inferior nests, previously studied empirically in bees and ants. Whereas previous binary models
highlighted the crucial role of inhibitory stop-signaling, the key parameter in our new analysis is the relative
time invested by swarm members in individual discovery and in signaling behaviors. Our new analysis reveals
conflicting pressures on this ratio in symmetric and best-of-N decisions, which could be solved through a
time-dependent signaling strategy. Additionally, our analysis suggests how ecological factors determining the
density of suitable nest sites may have led to selective pressures for an optimal stable signaling ratio.
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I. INTRODUCTION

Collective consensus decision-making [1], in which all
members of a group must achieve agreement on which of
several options the group will select, is a ubiquitous problem.
While groups may be subject to conflicts of interest between
members (e.g., see Refs. [2,3]), in groups where individuals’
interests align it is possible to look for mechanisms that
optimize group-level decisions [4]. In this paper, we model col-
lective consensus decision-making by social insect colonies,
in the form of house-hunting by honeybee swarms [5,6],
but similar decision-making problems manifest in diverse
other situations, from societies of microbes [7] to committees
of medical experts [8,9]. Much attention has been paid to
optimization of speed-accuracy tradeoffs in such situations
(e.g., see Refs. [10–14]), but theory shows that where decisions
makers are rewarded by the value of the option they select,
rather than simply whether or not it was the best available,
managing speed-accuracy tradeoffs may not help to optimize
overall decision quality [15]. Here we analyze a value-
sensitive decision-mechanism inspired by cross-inhibition in
house-hunting honeybee swarms [5,6]. One instance of value-
sensitivity is the ability to make a choice when the option
value is sufficiently high—i.e., it exceeds a given threshold.
In case no option is available with high-enough value, the
decision maker may refrain from commitment to any option,
in the expectation that a high-quality option may later become
available. As a consequence, value-sensitivity is relevant above
all in scenarios in which multiple alternatives exist and pos-
sibly become available at different times. Another interesting
property of the investigated decision-making mechanism is its
ability to break decision deadlocks when the available options
have equal quality. Deadlock breaking has been shown to be
of interest in a series of scenarios, including collective motion
[16,17], spatial aggregation [18,19], and collective transport
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[20]. Previous studies of value-sensitive decision-making have
been limited to binary decision problems, although it is known
that honeybee swarms and other social insect groups are
able to choose from among many more options during the
course of a single decision [21–25]. Here, we generalize
the model of Ref. [6] and examine its ability to exhibit
value-sensitive deadlock-breaking when choosing between N

equal alternatives, and also to solve the best-of-N decision
problem in which one superior option must be selected over
N − 1 equal but inferior distractor options.

II. MATHEMATICAL MODEL

A. General N-options case

Our work builds on a previous model that describes
the decentralized process of nest-site selection in honey-
bee swarms [5]. The decentralized decision-making process
is modeled as a competition to reach threshold between
subpopulations of scout bees committed to an option (i.e.,
a nest). The model is described as a system of coupled
ordinary differential equations (ODEs), with each equation
representing the subpopulation committed to one option; an
equation describing how the subpopulation of uncommitted
scout bees changes over time is implicit, since the total number
of bees in the system is constant over the course of a decision.
Uncommitted scout bees explore the environment and, when
they discover an option i, estimate its quality vi , and may
commit to that option at a rate γi . The commitment rate to
option i for discovery is assumed to be proportional to the
option’s quality, that is, more frequent commitments to better-
quality nests (γi ∝ vi). Committed bees may spontaneously
revert, through abandonment, to an uncommitted state at rate
αi . Here, the abandonment rate is assumed to be inversely
proportional to the option’s quality, that is, poorer options are
discarded faster (αi ∝ v−1

i ). This abandonment process allows
bees quickly to discard bad options, and endows the swarm
with a degree of flexibility since bees are not locked into
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their commitment state. In addition to these two individual
transitions, which we label as spontaneous, scout bees interact
with each other to achieve agreement on one option. In
particular, the model proposed in Ref. [5] identifies two
interaction forms: recruitment and cross-inhibition, which give
rise to interaction transitions. Recruitment is a form of positive
feedback, by which committed bees actively recruit, through
the waggle dance, uncommitted bees [21,26,27]. Therefore,
the rate by which uncommitted bees are recruited to option
i is determined by both the number of bees committed to i

and the strength of the recruitment process for i, labeled as ρi .
Similar to discovery, recruitment is assumed to be proportional
to the option’s quality (ρi ∝ vi). The other interaction form
that occurs in this decision process is cross-inhibition. Cross-
inhibition is a negative feedback interaction between bees
committed to different options; when a bee committed to
option i encounters, another bee committed to another option
j (with j �= i), the first may deliver stop signals to the second,
which reverts to an uncommitted state at a rate βij . For
binary choices, stop-signalling has previously been shown to
be a control parameter in a value-sensitive decision-making
mechanism, in particular setting a value threshold for deadlock
maintenance or breaking in the case of equal-quality options
[5,6]. In this study, in agreement with the assumptions made
above, we assume cross-inhibition proportional to the quality
of the option that the bees delivering the stop signal are
committed to. In other words, bees committed to better options
will more frequently inhibit bees committed to other options
(βij ∝ vi , see Sec. II B for more details).

As described above, the set of bees committed to the
same option is considered as a subpopulation, and the
model describes changes in the proportion of bees in each
subpopulation with respect to the whole bee population.
We assume that a decision is reached when one decision
subpopulation reaches a quorum threshold [28–30]. Precisely,
xi and xu denote the proportion of bees committed to option
i and uncommitted bees, respectively, with N options and
i ∈ {1, . . . ,N}. A version of the model that we analyze in this
study has been originally proposed for the binary decision case
(i.e., N = 2) in Ref. [5] and, later, extended to a more general
case of N options in Ref. [31]. Analysis of the value-sensitive
parametrization has been presented by Pais et al. in Ref. [6].
Here, we generalize this model and extend its analysis to the
best-of-N case. The general models is

dxi

dt
= γi xu − αi xi + ρi xu xi −

N∑
j=1

xj βji xi,

i ∈ {1, . . . , N}, (1)

xu = 1 −
N∑

i=1

xi

B. A modified parametrization for value-sensitive
decision-making

Following earlier work [5,6,12], we assume a value-
sensitive parametrization by which the transition rates are pro-
portional (or inversely proportional) to the option’s quality vi ,
as mentioned above. Previous work investigated the dynamics
of the system Eq. (1) with vi = γi = ρi = α−1

i and βij = β for

two options (i.e., N = 2) [6]. Such a parametrization displays
properties that are both biologically significant and of interest
for the engineering of artificial swarm systems [31,32]. One
of the main system characteristics is its ability to adaptively
break or maintain decision deadlocks when choosing between
equal-quality options, as a function of those options’ quality.
In fact, it has been shown that when the swarm has to decide
between two equally and sufficiently good options, it is able
to implement the best strategy: that is, to randomly select any
of the two options in a short time. However, in Appendix B we
show that the system’s dynamics qualitatively change for more
than two options, i.e., N > 2: by adopting the parametrization
proposed in Ref. [6], the swarm cannot break a decision
deadlock for more than two equally good options (see Fig. 5
and Appendix B).

In this study, we extend previous work by introducing
a modified parametrization that features value-sensitivity
also for N > 2. Unlike Ref. [6], we investigate a more
general parametrization, in which we decouple the rates of
spontaneous transitions (i.e., discovery and abandonment)
from the rates of interaction transitions (i.e., recruitment
and cross-inhibition), similar to Ref. [31]. The proposed
parametrization is γi = k vi , αi = k/vi and ρi = h vi , where
k and h modulate the strength of spontaneous and interaction
transitions, respectively.

For the cross-inhibition parameter, we consider the general
case in which βij is the product of two components: βij =
[A · D]ij , where A and D are two matrices and βij is the
ij th element of their product. The former, A, is an adjacency
matrix that expresses how subpopulations interact with each
other. Therefore, the entries aij of A are either 1 or 0 depending
on whether interactions between subpopulations i and j can
occur or not. The introduction of the adjacency matrix allows
us to define if inhibitory messages are delivered only between
bees committed to different options (i.e., cross-inhibition),
or also between bees committed to the same option (i.e.,
self-inhibition, as self refers to the own subpopulation). In this
study, in accordance with behavioral results in the literature
[5], we do not include self-inhibitory mechanisms; thus,
the adjacency matrix contains zeros along its diagonal (i.e.,
aii = 0,∀i). On the other hand, we consider that interactions
between different subpopulations are equally likely, and this
is reflected by having aij = 1,∀i �= j . The second component,
D, is a matrix that quantifies the stop-signal strength and
allows us to define, if needed, different inhibition strengths
for each sender-receiver couple. In other words, through D the
inhibitory signals can be tuned not only as a function of the
option quality of the inhibiting population but also as a function
of the option quality of the inhibited population. In this
analysis, we model dependence of cross-inhibition strength
solely on the value of the option that inhibiting bees are
informed about; thus, we investigate the system dynamics for
a diagonal cross-inhibition matrix with values h v1, . . . ,h vN

along its diagonal, where h is a constant interaction term (as
for recruitment), and the vi,i ∈ {1, . . . ,N}, are qualities of the
options the inhibiting populations are committed to. Hence, we
parametrize the cross-inhibition term as βij = AikDkj = hvi ,
which determines the other parameters of the system as Eq. (1):

γi = k vi, αi = k v−1
i , ρi = h vi, βij = h vi. (2)

052411-2



MODEL OF THE BEST-OF-N NEST-SITE SELECTION . . . PHYSICAL REVIEW E 95, 052411 (2017)

In the following, we introduce the ratio r = h/k between
interaction and spontaneous transitions. The ratio r acts as
the control parameter for the decision-making system under
our new formulation, whereas the strength of cross-inhibition
(stop-signalling rate) was the control parameter in the original
analysis [6]. This new control parameter has a simple and
natural biological interpretation, as the propensity of scout
bees to deliver signals to others (here, represented by the
interaction term h), relative to the rate of spontaneous
transitions (here, represented by the term k).

We show that the modified parametrization displays the
same value-sensitive decision-making properties of the binary
system that are shown in previous studies [6]. In particular,
we confirm that, in the symmetric case of two equal-quality
options, the ratio of interaction/spontaneous transitions, r =
h/k, determines when the decision deadlock is maintained or
broken [see Fig. 6(a)]. Additionally, we show in Fig. 6(b) that
the interaction ratio r determines the just-noticeable difference
to discriminate between two similar value options, in a manner
similar to Weber’s law, as demonstrated for the cross-inhibition
rate in Ref. [6].

C. The best-of-N decision problem

As well as presenting a general analysis of the system
dynamics for small N (N = 3), for larger values of N we
next analyze the best-of-N decision scenario with one superior
and N − 1 inferior options. This scenario is consistent with
empirical studies undertaken with bees [23], ants [24,25],
and with neurophysiological studies [33]. Considering such
a scenario allows us to investigate the system dynamics as
a function of four parameters: (i) the number of options N ,
(ii) the superior option s’s quality v = vs , (iii) the ratio between
the quality of any of the equal-quality inferior options and of
the superior option κ = vi/vs (with i �= s), and (iv) the ratio
between interaction and spontaneous transitions r = h/k. The
system of Eq. (1) with the parametrization given in Eq. (2) can
be rewritten in terms of these four parameters as

dx1

dτ
= v xu − x1

v
+ r v x1

⎡
⎣xu −

∑
j �=1

κ xj

⎤
⎦,

dxi

dτ
= v κ xi − xi

v κ
+ r v xi

⎡
⎣κ

⎛
⎝xu −

∑
j �=1,i

xj

⎞
⎠ − x1

⎤
⎦,

i = 2,..., N,

xu = 1 −
N∑

i=1

xi, (3)

where x1 is the population committed to the best (superior)
option (i.e., v = v1 � vi,∀i ∈ {2, . . . ,N}) and τ = k t is the
dimensionless time.

The system in Eqs. (3) is characterized by N coupled
differential equations and one algebraic equation. In Eqs. (A9),
we reduce this system to a system of two coupled differential
equations by aggregating the dynamics of the populations
committed to the inferior options. In Sec. III, we show that
this system reduction allows us to attain qualitatively correct
results for arbitrarily large N .

III. RESULTS

We first investigate the system dynamics for the case of N =
3 options, then we generalize our findings to arbitrarily large
N . The reduced system [Eq. (A9)] allows us to investigate the
dynamics for arbitrarily large numbers of options N without
increasing the complexity of the analysis. In Sec. III A, we
show the analysis results for the symmetric case of N equally
good options, while in Sec. III B, we report the results for
different quality options.

A. Symmetric case

We start by analyzing the symmetric case of N equal-quality
options (i.e., κ = 1). The simplicity of the reduced system
[Eq. (A9)] allows us to determine the existence of two
bifurcation points which are determined by the parameters
r , v, and N , and we show the bifurcation conditions in terms
of the control parameter r as

r1 = f1(v,N ), r2 = f2(v,N ). (4)

In Appendix D, we report the complete equations for Eqs. (4)
as functions of (v,N ) [see Eq. (D4)] or, more generally, of
(γ , α, ρ,β) [see Eq. (D2)]. In Fig. 1(a), we show the stability
diagram of the system Eq. (3) in the parameter space (r,v),
for N = 3. When the pair (r,v) is in area I, the system cannot
break the decision deadlock but remains in an undecided state
with an equal number of bees in each of the three committed
populations. This result can be also seen in Fig. 1(b), where
we display the bifurcation diagram for the specific case v = 5.
Here, low values of r correspond to a single stable equilibrium
representing the decision deadlock. Increasing the signaling
ratio, the system undergoes a saddle node bifurcation when r =
r1 in Fig. 1(b), at which point a stable solution for each option
appears and the selection by the swarm of any of the N equally
best-quality options is a feasible solution. However, for (r,v)
in area II of Fig. 1(a), the decision-deadlock remains a stable
solution and only through a sufficient bias toward one of the
options the system converges toward a decision. This system
phase can be visualized in the bifurcation diagram of Fig. 1(b)
and in the phase portrait of Fig. 2(b): The system escapes
from the decision-deadlock attraction basin if noise leads the
population to jump into a neighboring basin corresponding to
a unique choice.

The system undergoes a second bifurcation at r = r2 in
Fig. 1(b), that changes the stability of the decision-deadlock
from stable (r < r2) to partially unstable (saddle, r > r2).
Therefore, for sufficiently high values of the signaling ratio
[area III in Fig. 1(a)], the unique possible outcome is the
decision for any of the equally best-quality options. The
central solution of indecision remains stable (i.e., attracting)
with respect to only one manifold, i.e., the line for equal-size
committed populations, while it is unstable with respect to the
other directions (see the phase portraits of Figs. 2(c) and 2(d)
and the video in the Supplemental Material [34]). Instead, the
unstable saddle points that surround the central solution have
opposite attraction and repulsion manifolds. For this reason,
several unstable equilibria can be near to each other, as in
Fig. 1(b).
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FIG. 1. Dynamics of the complete decision system of Eq. (3) for the symmetric case κ = 1 (i.e., v1 = v2 = v3 = v). Panel (a) shows the
stability diagram as a function of the parameter r and the quality v for N = 3 options. The two curves represents the two bifurcations r1 (blue
solid) and r2 (red dashed) of Equations (4). There are three possible system phases: (I) decision-deadlock, (II) coexistence of decision deadlock
and stable solutions for any option, and (III) decision for any option. Panel (b) shows the bifurcation diagram for N = 3 and v = 5 as a function
of the parameter r . This illustrates the three system phases when varying the control parameter r . Note that, due to the 2D visualization, some
equilibria overlap and thus the bottom branches in panel (b) correspond to the two overlapping equilibria for the options x2 and x3. Panel (c)
shows a stability diagram that visualizes the dependence of the bifurcation points r1 (solid lines) and r2 (dashed lines) as a function of N for
varying v ∈ {1,2,3,5,10}, and reports the same three system phases.

The analysis of the system with three options reveals
three system phases as a consequence of the two bifurcations
determined by f1 and f2 [Eq. (4)]. Increasing the number of
options, the number of system phases increases. In particular,
for every other N , at odd values (i.e., N ∈ {5,7,9, . . . }), a new
bifurcation point between r1 and r2 appears. In Fig. 10, we
report the bifurcation diagrams for v = 5 and N ∈ {4,5,6,7}.
Despite the system phase increase, the main dynamics for
any N > 2 can be described by the three macrophases
described above: (I) decision-deadlock only, (II) coexistence
of decision-deadlock and decision, and (III) decision only.
In fact, the additional equilibria that appear for odd N are
all unstable saddle solutions (with orthogonal attraction and
repulsion directions with each other), which do not change
the stability of other solutions. Therefore, we focus our study

on the bifurcations defined by Eqs. (4) [i.e., Eq. (D4)], which
determine the main phase transitions.

Figure 1(c) shows the relationship between the bifurcation
points r1 and r2, the options’s quality v and the number of
options N . The effect of v on r1 and r2 remains similar to that
seen in Fig. 1(a), i.e., the bifurcation points vary as a function of
v when v is low, while they are almost independent of v when it
is large. More precisely, the influence of the quality magnitude
v on the system dynamics decreases quadratically with v [see
Eq. (D4)]. The number of options, N , influences differently
the two bifurcation points. While r1 grows quasilinearly with
N , instead r2 grows quadratically with N . Therefore, in
the symmetric case, the number of options that the swarm
considers plays a fundamental role in the decision dynamics.
In fact, too many options preclude the possibility of breaking

(a) (b) (c) (d)

FIG. 2. Phase portraits of the complete system (3) for N = 3 options in the symmetric case κ = 1 (i.e., v1 = v2 = v3 = v = 5). Blue dots
represent stable equilibria, and green dots represent unstable saddle points. Saddle manifolds are shown as red (repulsive) and blue (attracting)
lines. Panel (a) shows the system in a decision deadlock phase (i.e., phase I of panel (b), r = 1); in fact, there is only one stable solution with
all the three committed population with equal size. Panel (b) shows the coexistence of the decision deadlock and the decision for any option
(phase II, r = 3). Panel (c) shows the system for high values of r , in which the decision deadlock solution is an unstable saddle point, and
therefore the only stable solutions are the decision for any option (phase III, r = 10). The same phase portrait from another perspective is
shown in panel (d), where a set of trajectories (red lines) are shown. Looking at panel (d), the central unstable saddle node is unstable on the
displayed plane while is stable (i.e., attracting) on the direction orthogonal to the field of view of the plot (d) (i.e., the attraction manifold is the
line x1 = x2 = x3). The system does not possess any periodic attractors.

052411-4



MODEL OF THE BEST-OF-N NEST-SITE SELECTION . . . PHYSICAL REVIEW E 95, 052411 (2017)

A

E D
B C

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

r

x 1

A

B C

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

r

x 1

A B

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

r
x 1

FIG. 3. Dynamics of the complete decision system of Eqs. (3) for N = 3 options for the asymmetric case (κ < 1) and superior option’s
quality v = 5. The left panel shows the stability diagram as a function of the parameter r and the ratio between qualities κ . The parameter space
is divided in five different areas (see Fig. 8 to see a representative 3D phase portrait for each area). In area A, the system has a unique solution
corresponding to selection of the best option; in areas B and C, the system may select any of the possible options; in areas D and E the system
may end in a decision deadlock. The underlying density map show the population size of the stable solution for the best option. For low values
of r and similar options (top-left corner), this population is relatively small and may be not enough to reach a quorum threshold. The right
panels show three bifurcation diagrams as a function of the parameter r for κ ∈ {0.5,0.9,0.97}. Note that, due to the 2D visualization, some
equilibria overlap and thus the bottom branches of the bifurcation diagrams correspond to two overlapping equilibria for selection of options
x2 and x3.

the decision-deadlock and selecting one of the equally-best
options. This result suggests a limit on the maximum number
of equal options that can be concurrently evaluated by the
modelled decision-maker.

B. Asymmetric case

We next analyze the system dynamics in the asymmetric
best-of-N case where option 1 is superior to the other N − 1
same-quality, inferior options i (with i ∈ {2, . . . ,N}). Figure 3
shows the stability diagram for N = 3 options in the paremeter
space r,κ . The results show that low values of r allow the
system to have a unique solution (area A in the left panel of
Fig. 3). This is especially true when the difference between
the options is larger (i.e., low values of κ). However, such
stable solutions may not correspond to a clear-cut decision,
as the population fraction committed to the best alternative
may be too low to reach a decision threshold, as indicated
by the underlying density map in Fig. 3: if r is small and κ

sufficiently high, then only about half of the population will
be committed to the best option. Hence, a sufficiently high

value of r is required for the implementation of a collective
decision. For larger values of r , the system undergoes various
bifurcations leading to N stable solutions corresponding to
the selection of each available option (areas B and C of the
left panel in Fig. 3). Therefore, there is the possibility that
an inferior option gets selected. For high values of κ , two
additional areas appear, labeled D and E in Fig. 3. These areas
correspond to the coexistence of an undecided state together
with a decision state for the superior and/or the inferior options,
similarly to area II in Fig. 1(a). The bifurcation diagrams in the
right panels show the effects of r for fixed values of κ . When
the best option has double quality than the inferior options
(i.e., κ = 0.5, see the bottom-right panel), a low value of r

guarantees selection of the best option, whereas a sufficiently
high r may result in incorrect decisions by selecting any of
the inferior options (which are considerably worse than the
best one). As the inferior options become comparable to the
superior one, the range of values of r in which there exists
a single stable equilibrium in favour of the best options gets
reduced (see the middle-right panel for κ = 0.9 in Fig. 3), up
to the point that there is no value of r in which the choice
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FIG. 4. (a) Stability diagram for best option quality v = 5 in the parameter space r, κ for varying number of options N ∈ {2, . . . ,7}. For
each option, the system has five possible phases that are consistent with the phases described in caption the of Fig. 3. Here we label only areas
A (monostability) and B (multistability) to facilitate readability. (b) Maximum value of κ as a function of N ∈ {2, . . . ,7} and r ∈ (0,20] for
which the system has a unique attractor for the selection of the best-quality option, defined as the best option attracting commitment from at
least 75% of the total decision-making population.

of the superior option is the unique solution (see the top-right
panel for κ = 0.97 in Fig. 3). In this case, however, there is
little difference in quality between the superior and inferior
options, and the system dynamics are similar to the symmetric
case in which it is most valuable to break a decision deadlock,
hence to choose a sufficiently high value of r .

The dynamics observed for N = 3 options are consistent in
the case of N > 3. Figure 4(a) shows the stability diagram for
varying number of options N ∈ {2, . . . ,7} (see also Fig. 9). It
is possible to note that areas D and E get larger as N increases,
leading to a larger range of values in which one or more stable
decision states coexist with a stable undecided state, up to the
point that area C disappears for N � 5. This means that, as the
number of inferior options increases, the probability of making
a wrong decision increases as well, especially for high values
of κ . To minimize the probability of wrong decisions, the value
of r should be maintained as small as possible, but still high
enough to ensure that a decision is taken (i.e., with a sufficiently
large population committed to one option, see the density map
in Fig. 9). Finally, in Fig. 4(b) we show how the ability to solve
hard decision problems varies with r and N . To this end, for
each point in the space r,N , we show the highest value of κ

for which there exists a unique attractor for the superior option
corresponding to at least 75% of the population committed
(i.e., x1 � 0.75). Figure 4(b) demonstrates an approximately
linear relationship between r and N for a given value of κ .

IV. DISCUSSION

We have analyzed a model of consensus decision-making
that exhibits useful value-sensitive properties that have previ-
ously been described for binary decisions [6], but generalizes
these to decisions over three or more options. In order to

preserve these properties, the single control parameter in the
original model of Ref. [6], the rate of cross-inhibition between
decision populations, is replaced by a parameter describing
the relative frequencies with which individual group members
engage in independent discovery and abandonment behaviors,
compared to positive and negative-feedback signaling behav-
iors. This new control parameter is biologically meaningful
and experimentally measurable, so should be of interest for
further empirical studies of house-hunting honeybee swarms.

Previous work has investigated the role of signaling in
collective decision making in a somewhat different framework.
Galla [35] has analyzed a model of house-hunting honeybees
[36], where the cross-inhibition mechanism was not included.
In this model, increasing signaling (referred to as interde-
pendence) allows the swarm to select the best-quality option
more reliably. The interdependence parameter modulates the
strength of positive feedback; the higher the interdependence
is, the more a bee is influenced by other bees’ opinion in
determining a change of commitment. There are similarities
and differences between the meaning of the interdependence
parameter and the signaling ratio r that is introduced in this
paper. Similar to Refs. [35,36], increasing the value of the
ratio r corresponds to an increase in the signaling behavior
but, in contrast to previous studies, r is a weighting factor of
both positive and the negative feedback. However, note that
positive and negative feedback are not necessarily equal in
our model, as these mechanisms are also modulated by the
option’s quality. In agreement with Refs. [35,36], our results
underline the importance of interactions among honeybees in
the nest-site selection process. However, given the different
meanings of the control parameters, we find that increased
signaling behavior helps to break decision deadlocks (in case
of equal alternatives), but too high signaling might reduce the

052411-6



MODEL OF THE BEST-OF-N NEST-SITE SELECTION . . . PHYSICAL REVIEW E 95, 052411 (2017)

FIG. 5. Bifurcation diagram in 3D of the system (A3) with
N = 3 equal-quality options (i.e., v1 = v2 = v3 = v) as a function of
r = h/k ∈ (0,10] and β ∈ (0,10]. The vertical axis shows x ∈ [0,1],
which represents the proportion of bees committed to one of the
three identical options. Blue surfaces represent stable equilibria, while
green surfaces are unstable equilibria. We can see that for r = 1, the
decision deadlock is stable for any tested values of β. See Section B
for a formal proof of the decision deadlock for r = 1 and N = 3.

decision accuracy when the decision has to be made among
different quality options.

We also note some similarities between our results and
the bifurcation analysis of a model of the collective decision
making process in foraging ants Lasius niger [37]. This
model describes the temporal evolution of the pheromone
concentration along N alternative trails, each of which leads
to a different food source. The bifurcation parameter in
the analysis is an aggregate variable composed of the total
population size, the options’ qualities, and the pheromone
evaporation rate. Not all of these components are under the
direct control of the decision maker, and thus cannot be varied
during the decision process. In contrast, the control parameter
in our analysis, the signaling ratio r , can be modulated in
a decentralized way by the individual bees. Comparing the
bifurcation diagrams for deadlock breaking of Fig. 3(a) in
Ref. [37] with Fig. 10(a), the two models present similar
dynamics. The authors also present a hysteresis loop as a
function of relative food source quality (Fig. 4 in Ref. [37]),
which is similar to that found as a function of relative nest-site
quality in Ref. [6] (Fig. 5). Collective foraging over multiple
food sources is a fundamentally different problem to nest-site
selection, with exploitation of multiple sources frequently
preferred in the former, whereas convergence on a single
option is required in the latter [12]. Nevertheless, it could
be interesting to make further comparisons of the dynamics
of the model presented here and other nonlinear dynamical
models exhibiting qualitatively similar behavior.

A crucial point in our model is that honeybees need to
interact at a rate that is high enough to break decision deadlock
in the case of equal options, in addition to the influence of nest-
site qualities. This follows from our analysis of the symmetric
case (Sec. III A), where we observed that high signaling ratio
r allows the system to break the decision deadlock and to
select any of the equally best options. However, the analysis
of the asymmetric case (Sec. III B) revealed that a frequent
signaling behavior may have a negative effect on the decision

accuracy, and low r values should be preferred to have a
systematic choice of the best available option. These results
suggest that a sensible strategy may be to increase r through
time. An organism may start the decision process applying
a conservative strategy which reduces unnecessary costs of
frequent signalling behavior and that, at the same time, allows
quickly and accurately to select the best option if it is uniquely
the best. Otherwise, in the case of a decision deadlock (due
to multiple options having similar qualities), the system may
increase its signaling behavior in order to break symmetry and
converge toward the selection of the option with the highest
quality. This strategy is reminiscent of the suggested strategy
of increasing cross-inhibition over time to spontaneously
break deadlocks in binary decisions [6]. Further theoretical
evidence supporting such a strategy comes from the bifurcation
diagrams presented in the middle- and top-right panels in
Fig. 3, corresponding to asymmetric case with N = 3 similar
options, with κ = 0.9 and κ = 0.97, respectively (see also
Fig. 11 for further bifurcation diagrams with N ∈ {4,5,6,7}).
In these cases, an incremental increase in r would allow the
system to converge accurately towards the best option. In
contrast, immediately starting the decision process with a high
value of r might decrease the decision accuracy. For instance,
in Fig. 3 (right-center), starting with low values of r (i.e.,
r < 2.1) would bring the system to the stable attractor (blue
line) with less than half of the population committed to the
best option. A gradual increase of r lets the process follow
the (blue, stable) solution line, which leads to the selection of
option 1. On the other hand, a process that starts from a totally
uncommitted state with a value of r > 2.1 may end in the basin
of attraction corresponding to selection of an inferior option,
as a consequence of stochasticity of the decision process. Such
a strategy could easily be implemented in a decentralized
manner by individual group members slowly increasing their
propensity to engage in signaling behaviors over time; such a
direction of change, from individual discovery to signaling
behavior, is also consistent with the general requirement
of a decision-maker to gather information about available
options, but then to begin restricting consideration to these
rather than investing time and resources in the discovery of
further alternatives. Theorists and empiricists have previously
concluded that honeybee swarms achieve consensus through
the expiration of dissent [38], which occurs as bees apparently
exhibit a spontaneous linear decrease in number of waggle
runs for a nest over time [27]. However, the discovery of
stop-signalling in swarms requires that this hypothesis be
reevaluated, since increasing contact with stop-signalling bees
over time will also decrease expected waggle dance duration
[5]. Field observations report that recruitment decreases over
time in easy decision problems, while it increases overall in
difficult problems (e.g., five equal-quality nests) [39]. Further
theoretical work with our model would reveal whether it is
capable of explaining these empirically observed patterns.

Our analyses also suggest an optimal stable signaling ratio
that the decision-making system might converge to. While
the level of signalling required to break deadlock between
N equal options increases quadratically with N [Fig. 1(c)],
the level of signaling that optimizes the discriminatory ability
of the swarm in best-of-N scenarios increases only linearly
[Fig. 4(b)]. Optimizing best-of-N decisions therefore seems at
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odds with optimizing equal alternatives scenarios. However,
in natural environments the probability of encountering N

(approximately) equal-quality nest options will decrease
rapidly with N . On the other hand, the best-of-N scenario
here, while still less than completely realistic, should still
provide a better approximation to the naturalistic decision
problems typically encountered by honeybee swarms. Our
analysis shows that the level of signalling that swarms converge
to may be tuned appropriately by evolution according to typical
ecological conditions, namely the number of potentially
suitable nest sites that are typically available within flight
distance of the swarm. Swarms of the European honeybee
Apis mellifera are able to solve the best-of-N problem with
one superior option and four inferior options [23], presumably
reflecting the typical availability of potential nest sites in their
ancestral environment.

While our model is inspired by nest-site selection in honey-
bee swarms, we feel its relevance is potentially much greater.
For example, as mentioned in the Introduction, decision-
making in microbial populations may share similarities with
decisions by social insect groups [7]. In addition, cross-
inhibitory signaling is a typical motif in intracellular decisions
over, for example, cell fate [40], and single cells can exhibit
decision behavior similar to Weber’s law [41,42]. Weber’s law
describes how the ability to perceive the difference between
two stimuli varies with the magnitude of those stimuli and may
have adaptive benefits [43]. Several authors have also noted
similarities between collective decision-making and organiza-
tion of neural decision circuits, where inhibitory connections
between evidence pathways are also typical [12,44–47]. Sim-
ilarly, neural circuits following the winner-take-all principle
have dynamics regulated by the interplay of excitatory and in-
hibitory signals and present interesting analogies to the present
model [48,49]. Since organisms at all levels of biological com-
plexity must solve very similar statistical decision problems
that relate to fitness in very similar ways, we feel there is
definite merit in continuing to pursue the analogies between
collective decision-making models, such as that presented
here, and models developed in molecular biology and in neu-
roscience. Finally, we suggest that the simplicity of the model
presented here and its adaptive decision-making characteristics
might inform the design of artificial decentralized decision-
making systems, particularly in collective robotics (e.g.,
Refs. [31,32,50,51]) and in cognitive radio networks (e.g.,
Ref. [52]).
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APPENDICES

The Appendices are organized in five sections. In
Appendix A, we present the complete model in all the
parametrizations discussed in the article (from the most
general to the most specific). Then, we report the reduced

model in a similar set of parametrizations. In Appendix B, we
show that the parametrization used in the literature [6] cannot
break the decision deadlock in the symmetric case when the
number of options is larger than two. In Appendix C, we study
the dynamics of the system in the selected parametrization
for the binary case, i.e., N = 2. In Appendix D, we report
the formulas of the two main bifurcation points for the
symmetric case. This formula is particularly significant
because it is valid for any number of options. In Appendix E,
we report additional results on the system dynamics: we
report additional analysis performed on the system deciding
between three options, and we show that the results for N = 3
options are qualitatively similar for N > 3.

APPENDIX A: COMPLETE MODEL
AND REDUCED MODEL

The general model for N options is

dxi

dt
= γi xu − αi xi + ρi xu xi −

N∑
j=1

xj βji xi,

i ∈ {1, . . . , N}, (A1)

xu = 1 −
N∑

i=1

xi,

where xi represents the subpopulation committed to option
i and xu the uncommitted subpopulation. γi represents the
discovery rate for option i, αi the abandonment rate for
option i, ρi the recruitment rate for option i and βji the
cross-inhibition from subpopulation j to subpopulation i.

We introduce a first parametrization as

γi = k vi αi = k v−1
i ρi = h vi βii = 0 βij = β,

(A2)

with i �= j . By applying Eq. (A2) in Eq. (A1), we obtain

dxi

dτ
= vi xu − xi

vi

+ r vi xu xi −
N∑

j=1, j �=i

xi β xj ,

i ∈ {1, . . . , N}, (A3)

xu = 1 −
N∑

i=1

xi,

where r = h/k is the ratio of interaction over spontaneous
transitions, and τ = k t is the dimensionless time. The
parametrization of Eq. (A2) is a generalization of the one
proposed in the literature [6], since, using r = 1, the system
Eq. (A1) reduces to the old one and thus displays the same
dynamics.

This intermediate step allows us to visualize that for r � 1
there is no value of β that allows us to break the decision
deadlock in the case of N > 2 same-quality options (see
Fig. 5). This result motivates the change of parametrization
with respect to previous work [6]. Additional analyses that
confirm the presence of the decision deadlock for values of
r = 1 are provided in Appendix B.

We modify the parametrization of Eq. (A2) by linking the
signaling behaviors (recruitment and cross-inhibition) with the
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same value. The modified parametrization is

γi = k vi, αi = k v−1
i , ρi = h vi, βij = h vi, (A4)

and by applying Eq. (A4) in Eq. (A1), we obtain

dxi

dτ
= vi xu − xi

vi

+ r vi xi

⎡
⎣xu −

∑
j �=i

κji xj

⎤
⎦,

i, j = 1, . . . , N, (A5)

xu = 1 −
N∑

i=1

xi,

where κij = vi/vj the ratio between options’s values (and τ =
k t , again, is the dimensionless time).

1. The reduced model

In this study, we investigate the scenario in which there is
one superior option and N − 1 equal-quality inferior options.
Assuming that the best option is the option 1, the Equation (A1)
can be simplified through the following variable change:

xA = x1 xB =
N∑

i=2

xi, λ1 = λA λi = λB

λ ∈ {γ,α,ρ,β} i ∈ {2, . . . ,N}. (A6)

By applying Eq. (A6) to the complete system Eq. (A1), we
obtain

dxA

dt
= γA xu − αA xA + ρA xA xu − βB xA xB,

dxB

dt
= (N − 1) γB xu − αB xB + ρB xB xu

− N − 2

N − 1
βB x2

B − xA xBβA,

xu = 1 − xA − xB, (A7)

Similarly, Eq. (A5) can be simplified through the following
variable change:

xA = x1 xB =
N∑

i=2

xi, v = v1, κ = v1

vi

vi = κ v, i ∈ {2, . . . ,N}. (A8)

By applying Eq. (A8) to the complete system Eq. (A5), we
obtain

dxA

dτ
= v xu − xA

v
+ r v xA[xu − κ xB],

dxB

dτ
= (N − 1) κ v xu − xB

κ v

+ r v xB

[
κ

(
xu − N − 2

N − 1
xB

)
− xA

]
,

xu = 1 − xA − xB, (A9)
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FIG. 6. (a) Comparison of the stability diagrams in the binary and symmetric case (i.e., N = 2 and v1 = v2 = v) of the newly proposed
parametrization [Eq. (3)] and the previous work [6]. The bifurcation line that determines the two system phases is qualitatively similar, but
the bifurcation parameter is different: In the previous work it is the cross-inhibition signal β, here it is the interaction ratio r . (b) Stability
diagram of the system Eq. (3) as a function of the average quality v̄ = (v1 + v2)/2 and the quality difference 	v = |v1 − v2| for varying
r ∈ {0.6,1,1.4,1.8}, in the binary decision case. The lines show the relationship between the minimum quality difference to have the system
with an unique attractor for the best option and the quality mean. This relationship resembles the Weber’s law observed in psychological studies,
with r determining the coefficient. The results are similar to the ones obtained in Ref. [6], but using a different coefficient (in the previous work
the coefficient was the cross-inhibition, β).
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FIG. 7. Time-dependent solutions of the system of Eqs. (1) and
(2) for N = 3 options, spontaneous transitions strength k = 0.1,
interaction transitions strength h = 0.3, best option quality v = 10,
and varying inferior alternatives’ quality as κ ∈ {0.25,0.5,0.75}. The
main plot displays the dynamics of the population committed to the
best-quality option x1; the inset shows the dynamics of all populations
for κ = 0.5; note that the populations committed for the inferior
alternatives, x2 and x3, have overlaying trajectories. The horizontal
dashed line shows an example quorum threshold [30].

APPENDIX B: NEED FOR A MODIFIED
PARAMETRIZATION: DECISION DEADLOCK FOR N = 3

In this Appendix, we show that the model of Eq. (A3) with
r = 1 and N = 3 cannot break the decision deadlock for any
values of β � 0.

To prove this, we start from the reduced system given in
Eq. (A7) (we could also use the full three-dimensional system
but due to the higher number of equilibria this is more difficult).
Note that Eq. (A7) describes the reduced system before value-
sensitivity is introduced. In this form it is also equivalent to
the case r = 1.

We assume that αA = αB = α, βA = βB = β,
γA = γB = γ , and ρA = ρB = ρ. If we calculate the
equilibria we find that there are up to four different points.
One is always negative and unstable. Depending on the other
three stationary states (the symmetric solution, and two more)
and their stability, we determine if the decision maker ends
up in decision-deadlock, or not.

Investigating the existence of the equilibrium points, we can
write down a generalized condition determining the existence
of the two nonsymmetric equilibrium solutions that evolve at
the bifurcation point (cf. Refs. [5,6]). This reads

(−αβ + 2βγ + αβN − 3βγN + βγN2 + βρ − βNρ)2

−4(αγ−2αγN+αγN2)(−2β2+β2N − βρ + βNρ)

= 0. (B1)

A

B

CD
E
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0.2
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0.6

0.8

1.0

r

FIG. 8. Dynamics of the system Eq. (3) in the case of N = 3 options. In the top-left panel, we report the stability diagram in the parameter
space r , κ . The plot shows that there are five possible system phases, labeled with letters from A to E. The other panels show a representative
3D phase portrait for each phase. The letter in the bottom-right of each phase portrait indicates which phase they represent.

052411-10



MODEL OF THE BEST-OF-N NEST-SITE SELECTION . . . PHYSICAL REVIEW E 95, 052411 (2017)

(a) (b)

(c) (d)

FIG. 9. Stability diagrams for v = 5 and N ∈ {4,5,6,7}, in panels (a)–(d), respectively. The area A indicates the systems phase with a single
attractor in favor of the best option. Having an unique solution, in this area the system never converges for the selection of inferior options. The
underlying density map shows the population size of the stable solution for the best option. In the dark area the population for the best option
is not sufficient to reach a quorum to take a decision. For an increasing number of options, the dark area increases and low values of r are not
sufficient anymore to allow the swarm to take a decision for similar options (high κ). However, for sufficiently large values of r , the area A
shifts toward higher values of κ . This effect is also shown in Fig. 4 of the main text.

We may resolve this equation with respect to β.
(1) If we let N = 2, we obtain

β = 4αγρ

(ρ − α)2
, (B2)

as in the original model in Ref. [5].

(2) If we now introduce value-sensitivity, i.e., v1 = v2 = v

(2 equal options), and let N = 2, ρ = v, γ = v, α = 1/v, we
get

β = 4v3

(1 − v2)2
, (B3)

which coincides with the result reported in Ref. [6].
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FIG. 10. Bifurcation diagrams of the complete system [Eq. (3)] in the symmetric case (v = 5) for number of options N = 4 in panel (a),
N = 5 in panel (b), N = 6 in panel (c), and N = 7 in panel (d). Blue (dark gray) curves represent stable equilibria and green (light gray) lines
unstable saddle points. The vertical dashed lines are the bifurcation point predicted by the reduced system [Eq. (D4)]. These points always
precisely match with the bifurcation point of the complete system.

(3) If we let N = 3 [and accordingly v1 = v2 = v3 = v (3
equal options)], ρ = v, γ = v, α = 1/v, which is the extension
from two options (see model in Ref. [6]) to three options we
obtain for v > 1/2:

8v3

1 − 4v2
< β < 0. (B4)

In Eqs. (B2)–(B4) we gave the condition for the existence
of the two stationary points, which might be reached by
the decision-maker in addition to the symmetric solution.
These are related to pitchfork (N = 2) or limit point (N = 3)
bifurcations. If the parameter β does not range in these
intervals, then only the symmetric equilibrium is real and
positive, which is the condition for biological meaningful
states. This symmetric equilibrium is also stable. In particular,
Eq. (B4) shows that β needs to be negative to make the
stationary states in question occur. As, on the other hand,
β needs to be positive in order to describe cross-inhibition,
this case has to be excluded, and hence we have shown that
the parametrization introduced in Ref. [6] cannot describe
decision-deadlock breaking for three options, as only one

stable equilibrium exists (the symmetric solution) for r = 1
and all β � 0.

Also, note that the quality values associated with the avail-
able options should be v � 1. Otherwise, some of the available
states may take negative values, which is not a biologically
relevant solution. This applies to all the parametrizations
mentioned above.

APPENDIX C: EFFECTS OF THE MODIFIED
PARAMETRIZATION FOR N = 2

We study the dynamics of the systems Eq. (3) that uses a
modified parametrization with respect to previous work [5,6].
We test if, in the binary decision case (i.e., N = 2), the system
dynamics are comparable to the dynamics reported in the
literature.

Figure 6(a) shows a comparison of the stability diagrams
for the symmetric case of two options with equal value v. The
system dynamics are qualitatively similar, but the bifurcation
parameter is different. In Pais et al., the bifurcation is
determined by the cross-inhibition β, while in our parametriza-
tion it is determined by the ratio of interaction/spontaneous
transitions r = h/k.
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FIG. 11. Bifurcation diagrams of the complete system [Eq. (3)] in the asymmetric case for number of options N = 4 in panel (a), N = 5 in
panel (b), N = 6 in panel (c), and N = 7 in panel (d). In all plots, the superior option’s quality is v1 = 8 while the inferior options’ quality is
vi = 7.2, i ∈ [2,N ], that is, κ = vi/v = 0.9. Blue curves represent stable equilibria and green lines unstable saddle points. Notice the increase
of the range of values of r in which the undecided state persists. Note also that the stable state at decision for the superior option appears
earlier than the ones for the inferior alternatives. This supports a strategy to deal with the uncertainty in the decision-making scenario based
on the gradual increase of r , which would initially bring the system into an indecision state and subsequently jump to the selection of the
highest-quality option.

Additionally, Pais et al. [6] showed that the cross-inhibition
determines the minimum difference necessary to discriminate
between two similar-quality options in a manner similar to the
Weber’s law. We obtain similar results but using a different
parameter. In Fig. 6(b) we show that the interaction ratio r

determines the just noticeable difference.

APPENDIX D: BIFURCATIONS
IN THE SYMMETRIC CASE

In case of N equal-quality options, hereafter called the
symmetric case, the values of every transition rate are the same

for both equation A and B, i.e., γA = γB = γ , αA = αB =
α, ρA = ρB = ρ, and βA = βB = β. The reduced system of
Eq. (A7) becomes

ẋA = γ xU − αxA + ρxUxA − βxAxB

ẋB = (N−1)γ xU−αxB+ρBxUxB−βxB

(
xA+N−1

N−2
xB

)

xU = 1 − xA − xB, (D1)

System (D1) undergoes two bifurcations. The simplicity of
Eq. (D1) allows us to analytically derive the formula of the
two bifurcation points:

ρ1 = α(2γ (N − 1) + σ ) + 2
√

α
√

γ
√

α(N − 1) + σ (N − 2)
√

γ (N − 1) + σ + γ σ (N − 2)

σ
,

ρ2 = α(
√

γN
√

γN2 + 4σ + γN2 + 2σ ) + √
γ σ (N − 2)(

√
γN2 + 4σ + √

γN )

2σ
. (D2)
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In the symmetric case, the system Eq. (3) becomes

dxA

dτ
= v xu − xA

v
+ r v xA[xu − xB],

dxB

dτ
= (N − 1) v xu − xB

v

+ r v xB

[
xu − N − 2

N − 1
xB − xA

]
,

xu = 1 − xA − xB, (D3)

and undergoes two bifurcations at

r1 = 1

v2
− 2 + N + 2

√
2N − 3

v
,

r2 = (N − 3)N + 2 + 1

v2
+ N − 1

v

√
(4 + v2(N − 2)2).

(D4)

Note, that here the bifurcation points are expressed as a
function of N , r , and v.

APPENDIX E: SYSTEM DYNAMICS

1. Best of three

Figure 7 shows the time-dependent solutions of the system
with N = 3 options for varying values of κ ∈ {0.25,0.5,0.75}.

The plot shows the dynamics of the population committed to
the best-quality option x1. For decreasing values of κ , the
system converges faster to the stable equilibrium x1 = 1. The
system parameters are in a plausible range for the honeybee
nest-site selection process, leading to convergence times that
are comparable to field experiments, interpreting t in hour
units [23].

In Fig. 3, we identify five system phases (labeled as A, B,
C, D, and E) for the asymmetric case and N = 3. In Fig. 8, we
report a representant 3D phase portrait of the system Eq. (3)
for each of the five system phases.

2. Best of N

Figure 9 shows the stability diagrams for N ∈ [4,7] with an
underlaying density map showing the population size for the
best option. While area A corresponds to the most favorable
system phase, that is, there is one single attractor with a bias
for the superior option, however, in the dark shaded area, the
population size is relatively low and might be not enough
to reach a decision quorum. The dark area increases with
the number of options N and decreases with the difference
in option’s qualities (i.e., higher κ). Therefore, for similar
options, higher values of r (i.e., interactions) are necessary to
let the swarm make a decision.

Additionally, we report the bifurcation diagram for N ∈
[4,7] for both the symmetric case (Fig. 10) and for the
asymmetric case (Fig. 11).
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