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Anticipated synchronization in neuronal circuits unveiled by a phase-response-curve analysis
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Anticipated synchronization (AS) is a counterintuitive behavior that has been observed in several systems.
When AS occurs in a sender-receiver configuration, the latter can predict the future dynamics of the former for
certain parameter values. In particular, in neuroscience AS was proposed to explain the apparent discrepancy
between information flow and time lag in the cortical activity recorded in monkeys. Despite its success, a clear
understanding of the mechanisms yielding AS in neuronal circuits is still missing. Here we use the well-known
phase-response-curve (PRC) approach to study the prototypical sender-receiver-interneuron neuronal motif. Our
aim is to better understand how the transitions between delayed to anticipated synchronization and anticipated
synchronization to phase-drift regimes occur. We construct a map based on the PRC method to predict the
phase-locking regimes and their stability. We find that a PRC function of two variables, accounting simultaneously
for the inputs from sender and interneuron into the receiver, is essential to reproduce the numerical results obtained
using a Hodgkin-Huxley model for the neurons. On the contrary, the typical approximation that considers a sum
of two independent single-variable PRCs fails for intermediate to high values of the inhibitory coupling strength
of the interneuron. In particular, it loses the delayed-synchronization to anticipated-synchronization transition.
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I. INTRODUCTION

Anticipated synchronization (AS), as proposed originally
by Voss [1,2], is a particular kind of lag synchronization
that can occur in two unidirectionally coupled dynamical
systems (sender-receiver) when the receiver is subject to
a self-inhibitory feedback loop. It has been shown that a
dynamical system described by the equations

ṡ = f(s(t)),

ṙ = f(r(t)) + K[s(t) − r(t − td )] (1)

may present an AS solution given by r(t) = s(t + td ) [1,2].
In the counterintuitive AS regime, the receiver system can
predict the future dynamics of the sender for certain parameter
values. Anticipated synchronization has been found both
experimentally and numerically in different fields including
optics [3–5], electronic circuits [6], neuronal systems [7–13],
and more [14–17]. In neuronal systems, AS was originally
studied numerically by Ciszak and co-workers [7,8] using a
FitzHugh-Nagumo model with diffusive coupling. Chemical
synapses in a three-neuron sender-receiver-interneuron (SRI)
motif were included by Matias et al. [9]. Using the Hodgkin-
Huxley (HH) model, a transition from the more intuitive
delayed-synchronization (DS) regime to the AS regime was
found when changing the inhibitory conductance impinging
on the receiver neuron. Recently, the ideas introduced in [9]
were extended to neuronal populations [11] to explain the
observations of a positive Granger causality, which means
a well-defined unidirectional influence from a sender to a
receiver region, accompanied by either a positive or negative
phase lag in the recordings of the motor cortex activity of
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monkeys while performing a visual task [18,19]. Despite
the interest attracted by AS in neuronal circuits, a thorough
understanding of how this particular state is established is
missing.

In this paper we use the well-known phase-response-
curve (PRC; also called phase-resetting-curve) approach to
gain insight into the AS regime and in particular into the
DS-AS transition that occurs in the SRI motif of model
neurons shown in Fig. 1(a). In the pulsatile version, PRCs
describe how the spiking time of an oscillating neuron is
altered by synaptic inputs. PRCs have a long history in the
analysis of coupled oscillators [20]. More than 50 years ago,
for instance, this technique was used to understand how
excitatory and inhibitory pulses could decrease or increase
firing rates of pacemaker neurons [21]. Despite its generality,
the technique is particularly suitable when a neuron receives
one input per cycle. As reviewed by Goel and Ermentrout
[22], as well as by Canavier and Achuthan [23,24], pulsatile
PRC was applied in some particular cases, namely, models
of two uni- and bidirectionally coupled neurons, neurons
arranged in a ring configuration, and two-dimensional and
all-to-all networks. PRCs were also measured experimentally
in different biological systems, from neurons [25] to circadian
rhythms [26,27].

We aim at comparing the predictions from the PRC
technique with numerical simulations of the SRI motif whose
nodes are described by Hodgkin-Huxley neuronal models with
chemical synapses. The main novelty of this study is that
the PRC approach correctly predicts the existence of an AS
regime, as well as the transitions from DS to AS and from AS
to a phase-drift regime. Moreover, we show that in order to
address the phase-locked regime when one neuron receives two
inputs per cycle, a PRC function of two variables is required,
whereas the usual approximation that considers a sum of two
independent single-variable PRCs fails. We also show that the
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FIG. 1. (a) Three coupled neurons in a SRI configuration. Each
spike of the receiver (R) is perturbed by the synaptic current from
the sender (S) and the interneuron (I), whereas each spike of the
interneuron is only perturbed by the synaptic current from the
receiver. (b) The Poincaré map of this configuration provides the time
differences between the three neurons in the phase-locking regime.

prediction of a two-variable PRC approach remains valid when
the neurons in SRI motif have different free-running periods.
The paper is organized as follows. The SRI motif and neuronal
models are described in Sec. II. In Sec. III we develop the PRC
map for this system and compare the results with the numerical
integration of the full model. Finally, we summarize our results
in Sec. IV.

II. THE SENDER-RECEIVER-INTERNEURON MOTIF

In the SRI motif, the sender node S projects an excitatory
synapse onto the receiver node R, which also receives an
inhibitory projection from the node I. Moreover, the node
R projects an excitatory synapse onto node I, closing an
excitatory-inhibitory loop [see Fig. 1(a)].

Each node of the motif is described by the Hodgkin-Huxley
model [28], which consists of four differential equations
describing the evolution of the membrane potential and the
currents flowing across a patch of an axonal membrane [29]:

Cm

dV

dt
= GNam

3h(ENa − V ) + GKn4(EK − V )

+Gm(Vrest − V ) + Ic +
∑

Isyn, (2)

dx

dt
= ax(V )(1 − x) − bx(V )x. (3)

V is the membrane potential and x ∈ {h,m,n} are the gating
variables for sodium (h and m) and potassium (n). The
capacitance of a 30×30×π μm2 equipotential patch of
membrane is Cm = 9π pF. ENa = 115 mV, EK = −12 mV,
and Vrest = 10.6 mV are the reversal potentials of the Na+, K+,
and leakage currents, respectively. The maximal conductances
are GNa = 1080π nS, GK = 324π nS, and Gm = 2.7π nS,
respectively. Isyn accounts for the chemical synapses arriving
from other neurons and Ic accounts for an external constant

current. In the absence of synapses Isyn = 0 and for Ic = 280
pA the neuron spikes with a period equals to T = 14.68 ms.
The voltage-dependent rate variables in the Hodgkin-Huxley
model have the forms

an(V ) = 10 − V

100(e(10−V )/10 − 1)
, (4)

bn(V ) = 0.125e−V/80, (5)

am(V ) = 25 − V

10(e(25−V )/10 − 1)
, (6)

bm(V ) = 4e−V/18, (7)

ah(V ) = 0.07e−V/20, (8)

bh(V ) = 1

(e(30−V )/10 + 1)
, (9)

where all voltages are measured in millivolts and the resting
potential is shifted to 0 mV. All parameters are standard values
from Ref. [29].

For the synapses we assumed a current-based model given
by

Isyn(t) = gsynVsyn

∑
spikes

α(t − tspike). (10)

Vsyn is taken, without loss of generality, equal to 1 mV.
gsyn represents the maximal synaptic conductances which
are different for fast excitatory synapses mediated by AMPA
(gexc) and fast inhibitory synapses mediated by GABAA (ginh).
The internal sum is extended over all the presynaptic spikes
occurring at tspike.

The α(t) function that models the postsynaptic conductance
is described by the following equation:

α(t) = ± 1

τ− − τ+
[exp (−t/τ−) − exp (−t/τ+)]. (11)

The positive signal accounts for excitatory synapses, whereas
the negative accounts for inhibitory ones. The parameters τ−
and τ+ stand, respectively, for the decay and rise time of the
function and determine the duration of the synaptic response.
In the simulations we fix the maximum excitatory conductance
gexc = 1000 nS, τ− = 6.0 ms, and τ+ = 0.1 ms.

III. RESULTS

A. Phase map

In order to apply the PRC approach to the SRI configuration
shown in Fig. 1, one has to consider that the central neuron
receives two inputs per cycle when locked in the 1:1 solution:
one excitatory (from the sender) and another inhibitory (from
the interneuron). Following the approach initially developed
in Ref. [30], we define tR[n] as the spiking time at the nth cycle
of the receiver, which we take as the reference to measure time
differences. Let tS[n] and tI [n] be, respectively, the spiking
times of the sender and interneuron immediately after tR[n]
and TS , and TR and TI be the free-running periods of the
neurons, as shown in Fig. 1(b). To construct the return map,
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FIG. 2. Phase resetting curve for the interneuron as a function of
γ [see Eq. (12)]. γ ∗ is the stable fixed-point solution obtained with
the condition given by Eqs. (19).

we introduce the variables [depicted in Fig. 1(b)]

βn ≡ tS[n] − tR[n],

γn ≡ tR[n + 1] − tI [n],

αn ≡ tI [n] − tR[n]. (12)

From the above definitions, βn and αn measure, respectively,
the timing of the excitatory and inhibitory inputs relative to the
receiver cycle. γn measures the timing of the excitatory input
from the receiver relative to the interneuron cycle.

The PRC of a given neuron x, FX, is defined as the
difference between its free-running period and the period after
a perturbation is applied (so that positive PRCs imply period
shortening). We use the synaptic function in Eq. (11) as the
applied perturbation in such a way that Fx(δ) is the response
due to an input α[(t − δ)mod(Tx)], where Tx is the free-running
period of the neuron. For a periodic perturbation (with period
Tp), let δn be the time difference between the nth spike of
the neuron and the nth perturbation. The Poincaré phase map
δn+1 = δn + Fx(δn) + Tp − Tx provides the conditions for a
phase-locking regime in which δn+1 = δn = δ∗, as described
in detail in Ref. [31].

We start by analyzing the simplest case of the interneuron,
whose FI , shown in Fig. 2, depends only on the excitatory
input from the receiver. From Fig. 1(b) we can start building
the return map. The interval between two consecutive spikes
of the I neuron satisfies

TI + [−FI (γn)] = γn + αn+1. (13)

The analysis of the R neuron is more complicated, because
it receives two inputs from different neurons at different times
within one period. In the most general form, therefore, FR

depends on the two variables α and β that, as can be seen in
Fig. 1(b), satisfy the condition

TR + [−FR(βn,αn)] = αn + γn. (14)

Isolating γn we get

γn = TR − FR(βn,αn) − αn ≡ γn(βn,αn). (15)

This indicates that Eq. (13) can be rewritten in terms of αn,
αn+1, and βn. It is usually assumed that FR(βn,αn) can be
decomposed as the sum of two single-variable PRCs [23]. We

will show later that this approximation fails precisely in the
region of parameter space where AS occurs.

The interval between the nth spike of the receiver and the
(n + 1)th spike of the sender satisfies, as shown in Fig. 1(b),

βn + TS = TR + [−FR(βn,αn)] + βn+1. (16)

Finally, we obtain, using Eq. (16) and combining Eqs. (13)
and (15), the following two-dimensional map:

βn+1 = βn + FR(βn,αn) + TS − TR, (17)

αn+1 = αn + FR(βn,αn) − FI [γn(βn,αn)] + TI − TR. (18)

Two important assumptions were made here [32]. First, we
assumed that the inputs affect only the following spike of
each neuron, meaning that second-order effects of the PRC
are neglected [23,24]. Second, we considered that the three
neurons fire once in each cycle (which we know to be true
from numerical integration of the equations [9]).

B. Phase-locked solutions and stability

To gain insight into the transition from anticipated to
delayed synchronization (AS-DS), we look for the fixed-point
solutions of Eqs. (17) and (18). We start with the case where
the three neurons have the same periods.

1. Identical free-running periods

Assuming that the free-running periods of all three neurons
are identical, TS = TR = TI = T , the fixed-point solutions
(α∗,β∗) are given by

FR(β∗,α∗) = 0,

FR(β∗,α∗) − FI (γ ∗) = 0, (19)

where γ ∗ = γn(α∗,β∗) as defined in Eq. (15). In the phase-
locking regime one therefore has FI (γ ∗) = 0.

The analysis of the system of equations (19) can be done
in two steps. First we find the stable fixed-point solution for
the one-dimensional FI (γ ∗) (note in Fig. 2 that the curve has
two fixed points, the one with negative slope being the stable
one [23,24]). Second, since Eq. (13) implies α∗ = T − γ ∗,
the search of the zero of FR(α∗,β∗) only requires the line with
constant α∗ to be scanned.

In Fig. 3 we show FR(β,α) as a function of its two argu-
ments. This function is obtained by numerically integrating
the HH equations for the R neuron subject to one excitatory
and one inhibitory input at different times of the R neuron
period. These two inputs are given by Eq. (11), with their
appropriate parameters. For simplicity, and without loss of
generality, we keep the excitatory conductance gexc fixed,
while we change the values of ginh. The points of interest
in the figure are those that satisfy FR = 0. In order to find the
stable fixed-point solutions of Eqs. (19), we should scan the
values of the PRC in a vertical line in Fig. 3 corresponding
to the stable α∗ = T − γ ∗ value shown in Fig. 2. The stable
solution is the one that crosses zero with negative slope when
increasing β [filled circles in Figs. 3(a) and 3(b)]. It can be
clearly seen, when comparing panels (b) and (d) in Fig. 3,
that the combined effect of the two pulses is very different
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FIG. 3. Phase response curve of the receiver neuron due to two
inputs per cycle. The phase response curve FR is color-coded (in
milliseconds) as a function of its two variables α and β. In (a) and
(b) we plot the full function FR(β,α), whereas in panels (c) and
(d) we plot the approximation FR(α) + FR(β). In the upper (lower)
panels, ginh = 200 nS (ginh = 1000 nS). The filled circles correspond
to the stable fixed point, predicting delayed synchronization in panels
(a), (c), and (d), and anticipated synchronization in panel (b). The
prediction of panel (d) is incorrect (see text for details).

in the full PRC function than when we just add their effects
independently.

It is worth noting that different values of the inhibitory
conductance lead to severe changes in the FR(β,α) landscape,
particularly impacting the position of the fixed points relative
to the pulsating period [compare Figs. 3(a) and 3(b)]. This
change corresponds to a transition in the synchronization
regime (from DS to AS). Let us define the spike timing
difference τSR between sender and receiver (in the phase-
locking regime) as the difference between their closest spikes,
i.e., τSR = tR − tS . Consequently, if β∗ < T/2 [see Eqs. (12)
and Fig. 1(b)], then the system is in an AS regime characterized
by τ = −β∗. On the contrary, if β∗ > T/2, the system operates
in the DS regime which is characterized by τSR = T − β∗.

We now check the accuracy of the PRC prediction and com-
pare it with the numerical simulations of the full HH model.
We show in Figs. 3(a) and 3(b) two examples of FR(β,α) for
two different values of the inhibitory conductance ginh. For
the parameters of Fig. 3(a) (small inhibitory conductance), the
stable fixed point β∗ is clearly >T/2 for any value of α∗. The
system therefore operates in the DS regime, as long as a stable
γ ∗ (and consequently α∗) exists.

In addition, in Fig. 3(c) we show the results when one
employs the decomposition FR(β,α) ≈ FR(α) + FR(β). This
is the usual and simplest approximation when an oscillator
receives two inputs per cycle [23,24]. In this case, FR(β) and
FR(α) represent the phase response curves of the receiver
when it is subject to either an excitatory or an inhibitory
input, respectively. Note that the general qualitative results
of Fig. 3(c) are remarkably similar to those of Fig. 3(a).
Moreover, the fixed points in both figures are almost identical.
Indeed, these results predict well the stationary spiking time

difference τSR directly measured in the simulations of the full
Hodgkin-Huxley motif.

In Fig. 4(a) we plot the time difference τSR versus the
inhibitory conductance ginh. In the numerical simulations of the
full SRI motif (full circles), delayed synchronization [τSR > 0;
see time traces in Fig. 4(b)] is obtained for ginh � 800 nS,
whereas beyond this value an anticipated synchronization
regime takes over [τSR < 0; see time traces in Fig. 4(c)]. For
ginh � 1020 nS, a phase-drift regime is reached, in which the
receiver neuron fires slightly faster than the sender neuron.
This means that the system lost the phase-locking regime.
When compared with those of the PRC approach [filled
squares in Fig. 4(a)], namely, the fixed-point solutions of
Eqs. (19), results agree very well. The agreement extends for
the whole ginh range, including the second transition from AS
to the phase-drift regime. Interestingly, when we approximate
FR(β,α) by FR(β) + FR(α), a good agreement is obtained
only for relatively small ginh [filled triangles in Fig. 4(a)].

For larger value of ginh, the nonlinear interaction between
the pulses becomes more important and the approximation
breaks down. It can be seen from panels (b) and (d) that
the PRC landscapes are drastically different. In particular, in
Fig. 3(b) the yellow region at low β values is a signature of
anticipated synchronization, as also indicated in Fig. 4(d) (for
large gI values). It lies along the line β = α, corresponding
to the excitatory and inhibitory inputs arriving simultaneously
at the receiver. This simultaneity (which had been observed
numerically [9]) leading to the locked solution seems to be the
key nonlinearity which is well captured by the two-variable
PRC function. In Fig. 3(d), on the contrary, the approximation
fails to describe the AS regime, keeping the fixed-point
solution in the high-β∗ range, therefore predicting delayed
synchronization. This can also be seen in Fig. 4(e), by looking
at the projection along a constant α∗ value. With the full
FR(β,α) [Fig. 3(b)], an increasing inhibitory conductance
causes the fixed point to cross the zero-lag solution and
a small value of β∗ is obtained, predicting an anticipated
synchronization regime. This transition is also illustrated in
Fig. 4(d). For even larger values of ginh, a transition to the
phase-drift regime is obtained. Interestingly, the shape of
FR(β,α∗) shown in Fig. 4(d) for ginh = 1200 nS is reminiscent
of that of a type-I excitable neuron, which is consistent with
the absence of a locked regime.

It is interesting to note that the PRC in Fig. 3(b) shows
that there can only be AS in this model if the receiver and
interneuron are locked with 0 � α∗ � 4 ms. If the synaptic
dynamics is slower or there is an axonal conduction delay
between the receiver and the interneuron, making them
synchronize with a time difference larger than 4 ms, the
prediction of the PRC approach is that AS would not occur.

2. Different free-running periods

Up to now, we focused on the DS-AS transition assuming
identical free-running periods for all the neurons [9,11,13].
However, the PRC approach, as presented in Eqs. (17) and
(18), allows an extension to the case of different free-running
periods. Moreover, if TR does not change, the same FR(β,α)
shown in Figs. 3(a) and 3(b) is, in principle, still valid.
This, therefore, strengthens the predictive power of the PRC
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FIG. 4. Comparing numerical simulations with PRC predictions. (a) Time delay between sender and receiver as a function of the inhibitory
conductance ginh. (b) and (c) Time traces of the membrane potential given by Eq. (2) for two different ginh values: in (b) ginh = 200 nS
and in (c) ginh = 1000 nS. In panel (b) the system is locked in a delayed-synchronization regime while in panel (c) it is locked in the
anticipated-synchronization regime. (d) The one-dimensional FR(β,α∗) is plotted for a fixed value of α∗ = T − γ ∗, where γ ∗ is obtained from
Fig. 2, for different values of ginh. (e) The one-dimensional FR(β) + FR(α∗) is plotted for the same value of α∗ as in (d). The differences in
panels (d) and (e) reflect the discrepancies in the calculations of the fixed-point solutions for β.

approach. To probe it, we analyze a particularly relevant
scenario where the interneuron has a different period than
the others. In neuroscience, it is often the case that inhibitory
neurons spike faster than excitatory ones [31]. We therefore
focus on examining the dependence of the synchronization
regimes on the free-running period TI of the interneuron.

From Eqs. (17) and (18) the fixed-point solutions for TS �=
TR �= TI become

FR(β,α) = �TRS, (20)

FI (γ ; TI ) = �TIS, (21)

where �TRS = TR − TS and �TIS = TI − TS .
Note that we have now included an explicit dependence

of FI on TI . To avoid recalculating FI (γ ; TI ) for every TI ,
we use instead an approximation that assumes that changes in
the period amounts to a simple rescaling of the corresponding
phase response curve as

FI (γ ; TI ) ≈ TI

T
FI

(
γ

TI

T
; T

)
, (22)

where FI (γ ; T ) is the function shown in Fig. 2 for the case of
the three neurons having identical period T .

The analysis of Eq. (21) with Eq. (22) allows discriminating
two possibilities in terms of the FI :

(i) If TS > TI (or equivalently the sender frequency is
smaller than the interneuron frequency), the fixed-point solu-

tions exist until �TIS reaches the minimum value of FI (γ ; TI ).
At this value the two fixed points collide and disappear and
the system enters into a phase-drift regime.

(ii) If TI > TS (or equivalently the sender frequency
is higher than the interneuron frequency), the fixed-point
solutions exist until �TIS reaches the maximum of FI (γ ; TI ).
At this value the two fixed points collide and disappear and
the system enters into a second phase-drift regime.

In Fig. 5 we plot the time difference between sender and
receiver τSR as a function of the free-running period of the
interneuron TI . τSR is calculated with the fixed-point solutions
γ ∗ obtained from Eq. (22) in combination with Fig. 3(b). A
very good agreement can be seen when comparing the PRC’s
prediction with the numerical simulation of the full HH model.
For values of TI � 14.5 ms and TI � 18.7 ms the phase-locked
solution is lost and the system enters into a phase-drift regime.

IV. CONCLUDING REMARKS

In this paper we showed that a PRC technique can predict
the existence of an AS regime mediated by an inhibitory loop.
We have also used a PRC approach to gain insight into the
transition from delayed to anticipated synchronization and
anticipated synchronization to phase-drift regime in a sender-
receiver-interneuron motif. Initially we assumed identical
parameters and operating conditions for the three neurons.
The PRC of the receiver neuron was computed as a function
of two inputs per cycle: one arriving from the sender and
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FIG. 5. Comparison between the PRC prediction and the SRI
simulation for different free-running periods of the interneuron. Time
delay between sender and receiver as a function of the interneuron
period for the full simulation of the SRI motif (circles) and the
PRC prediction (squares). The vertical dashed line corresponds
to the free-running period of both the sender and the receiver.
The inhibitory conductance is ginh = 1000 nS, so that the function
FR(α,β) corresponds to that of Fig. 3(b).

another from the interneuron. We found that the description
of the PRC in terms of two variables is essential to correctly
match numerical results obtained from the full neuronal and
synaptic model. In particular, our PRC approach correctly
predicts the transition from the anticipated-synchronization
to the phase-drift regime. On the contrary, if the typical
approximation is used, considering the sum of two PRCs
from independent stimuli, the results significantly depart from
the numerical solutions, with the largest discrepancies at
intermediate to large values of the inhibitory conductance.

Moreover, this approximation does not account for either
the AS-DS transition or the AS–phase-drift regime transition
observed both numerically in the full neuronal model and with
the two-variable PRC.

We have also explored the PRC prediction when the neurons
had different free-running periods. Under this condition, the
PRC calculation is easily extended, in particular when only
the period of the interneuron element is varied. Assuming
that the PRC of the interneuron modifies according to a
simple rescaling factor when its period changes, we also
obtain a very good agreement with the numerical simulations,
highlighting the strength of the method. It is worth mentioning
that anticipated synchronization is not something restricted to
HH neuron models but is rather related to the characteristic of
the PRC curve and the bifurcation type of the dynamical model.
Further investigations including different types of synapses
and neuronal models (type-I vs type-II excitability) as well as
different pulsating regimes will be reported in a forthcoming
publication.
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