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Lateral diffusion induced by active proteins in a biomembrane
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We discuss the hydrodynamic collective effects due to active protein molecules that are immersed in lipid
bilayer membranes and modeled as stochastic force dipoles. We specifically take into account the presence of
the bulk solvent that surrounds the two-dimensional fluid membrane. Two membrane geometries are considered:
the free membrane case and the confined membrane case. Using the generalized membrane mobility tensors, we
estimate the active diffusion coefficient and the drift velocity as a function of the size of a diffusing object. The
hydrodynamic screening lengths distinguish the two asymptotic regimes of these quantities. Furthermore, the
competition between the thermal and nonthermal contributions in the total diffusion coefficient is characterized
by two length scales corresponding to the two membrane geometries. These characteristic lengths describe the
crossover between different asymptotic behaviors when they are larger than the hydrodynamic screening lengths.
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I. INTRODUCTION

Biomembranes consisting of lipid bilayers can be regarded
as thin two-dimensional (2D) fluids, and membrane protein
molecules as well as lipid molecules are allowed to move lat-
erally [1,2]. These membrane inclusions are subject to the ther-
mal motion of lipid molecules, leading to random positional
fluctuations. Such Brownian motion plays important roles in
various life processes, such as the transportation of materials or
the reaction between chemical species [3]. To describe lateral
diffusion of membrane proteins, a drag coefficient of a cylin-
drical disk moving in a 2D fluid sheet has been studied theoreti-
cally in various membrane environments [4–10]. The obtained
drag coefficient was used to estimate the diffusion coefficients
of membrane proteins through Einstein’s relation under the
assumption that the system is in thermal equilibrium [11].

In recent experiments, however, it has been shown that
motions of particles inside cells are dominantly driven by
random nonthermal forces rather than thermal fluctuations
[12,13]. In these experimental works, they found that non-
thermal forces in biological cells are generated by active
proteins undergoing conformational changes with a supply
of adenosine triphosphate (ATP). These active fluctuations
lead to enhanced diffusion of molecules in the cytoplasm
[14,15]. Biomembranes also contain various active proteins
that act, for example, as ion pumps by changing their shapes
to exert forces to the adjacent membrane and solvent [2].
Lipid bilayers containing such active proteins have been
called “active membranes,” and their out-of-plane fluctuations
(deformations) have already been investigated both experi-
mentally and theoretically [16–18]. However, lateral motions
of inclusions in membranes that are induced by active proteins
have not yet been considered. Since such active forces give
rise to enhanced diffusion, one needs to take into account both
active nonthermal fluctuations as well as passive thermal ones
to calculate diffusion in membranes.

Recently, Mikhailov and Kapral discussed enhanced diffu-
sion due to nonthermal fluctuating hydrodynamic flows, which
are induced by oscillating active force dipoles [see Fig. 1(a)]
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[19,20]. They calculated the active diffusion coefficient of
a passive particle immersed either in a three-dimensional
(3D) cytoplasm or in a 2D membrane, and they showed that
it exhibits a logarithmic size dependence for the 2D case.
Moreover, a chemotaxis-like drift of a passive particle was
predicted when gradients of active proteins or ATP are present
[19]. Later, Koyano et al. showed that lipid membrane rafts, in
which active proteins are concentrated, can induce a directed
drift velocity near the interface of a domain [21]. In these
works, they considered membranes that are smaller in size than
the hydrodynamic screening length. Huang et al. performed
coarse-grained simulations of active protein inclusions in
lipid bilayers [22,23]. In Ref. [23], they showed that active
proteins undergoing conformational motions not only affect
the membrane shape but also laterally stir the lipid bilayer
so that lipid flows are induced. Importantly, the flow pattern
induced by an immobilized protein resembles the 2D fluid
velocity fields that are created by a force dipole.

Following Refs. [19,20], we assume that an active protein
behaves like an oscillating force dipole, which acts on the
surroundings to generate hydrodynamic flows that can induce
motions of passive particles in the fluid. In this paper, we inves-
tigate active diffusion and drift velocity of a particle in “free”
and “confined” membranes, which are completely flat and
infinitely large. In the free membrane case, a thin 2D fluid sheet
is embedded in a 3D solvent having typically a lower viscosity
than that of the membrane. In the confined case, which mimics
a supported membrane [24], a membrane is sandwiched by two
rigid walls separated by a finite but small distance from it. For
both the free and confined membrane cases, we employ general
mobility tensors that take into account the hydrodynamic
effects mediated by the surrounding 3D solvent [25–28]. Using
the general mobility tensors, we numerically calculate the
active diffusion coefficient and the drift velocity as a function
of the diffusing particle size for the entire length scales.
Furthermore, several asymptotic expressions are also derived
in order to compare with numerical estimates and thermal
contributions. Importantly, our result leads to characteristic
length scales describing a crossover from nonthermal to
thermal diffusive behaviors for large scales.

In the next section, we present the expressions for the active
diffusion coefficient and the drift velocity in 2D membranes
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FIG. 1. (a) The conformational change of an oscillating force
dipole representing an active protein. Within a turnover cycle of the
force dipole separated by a distance x(t), it exerts two oppositely
directed forces ±F(t) at time t . The integral intensity of a force
dipole is S (see the text). (b) Schematic picture showing a flat
and infinitely large membrane of 2D viscosity ηm that is located
at z = 0. The membrane is surrounded by a bulk solvent of 3D
viscosity ηs, and the two flat walls are located at z = ±h. The solvent
velocity is assumed to vanish at the surfaces of these walls. The
“free membrane” and the “confined membrane” cases correspond to
the limits of h → ∞ and h → 0, respectively. The yellow passive
particle undergoes Brownian motion due to thermal and nonthermal
fluctuations. The latter contribution is induced by active force dipoles
that are distributed homogeneously in the membrane with a 2D
concentration c0.

[19]. We also review the general mobility tensors for the free
and confined membrane cases [25–28]. Using these expres-
sions, we calculate in Sec. III the active diffusion coefficient
for the two geometries. In Sec. IV, we compare the thermal
diffusion coefficient with the obtained nonthermal diffusion
coefficient, and we discuss the characteristic crossover lengths.
In Sec. V, we obtain the drift velocities as a function of the
particle size. A summary of our work and some numerical
estimates for the obtained quantities are given in Sec. VI.

II. ACTIVE TRANSPORT AND MOBILITY TENSORS
IN MEMBRANES

A. Active diffusion coefficient

Active proteins in a 2D biological membrane, modeled as
oscillating force dipoles, produce nonequilibrium fluctuations
and cause an enhancement of the lateral diffusion of a passive
particle. We assume that the spatially fixed force dipoles are

homogeneously and isotropically distributed in the membrane,
and they exert only in-plane lateral forces. The total diffusion
coefficient is given by D = DT + DA, where DT is the thermal
contribution and is determined by Einstein’s relation (which
will be discussed in Sec. IV), and DA is the active nonthermal
contribution given by [19]

DA = Sc0

2

∫
d2r �ββ ′γ γ ′

∂Gαβ(r)

∂rγ

∂Gαβ ′(r)

∂rγ ′
, (1)

where r = (x,y) denotes a 2D vector and we have introduced
a notation

�ββ ′γ γ ′ = 1
8 (δββ ′δγ γ ′ + δβγ δβ ′γ ′ + δβγ ′δβ ′γ ). (2)

Throughout this paper, the summation over repeated greek
indices is assumed. In Eq. (1), S is the integral intensity of
a force dipole, c0 is the constant 2D concentration of active
proteins, and Gαβ(r) is the membrane mobility tensor, which
will be discussed later separately.

Within a fluctuating “dimer model” as presented in
Fig. 1(a), the magnitude of a force dipole is given by m(t) =
x(t)F (t), where x(t) is the distance between the two spheres
and F (t) is the magnitude of the oppositely directed forces.
The statistical average of the dipole magnitude vanishes, i.e.,
〈m(t)〉 = 0, whereas the integral intensity S of a force dipole
is given by S = ∫ ∞

0 dt 〈m(t)m(0)〉 [19]. Since we assume
that active proteins are homogeneously distributed in the
membrane as shown in Fig. 1(b), it is sufficient to consider
only the isotropic diffusion as given by Eq. (1).

In deriving Eq. (1), the size of a dipole is assumed to be
much smaller than the distance between the passive particle
and active force dipoles [19]. At large distances, almost any
object that changes its shape would create a flow field that
corresponds to some force dipole. It should be noted, however,
that the above expression is not accurate when the distance
between them becomes smaller. As for the mobility tensor
in 3D fluids, it is known that the Rotne-Prager mobility
tensor takes into account higher-order corrections to the Oseen
mobility tensor and gives a more accurate approximation at
short distances [20]. Such a better approximation has not been
worked out so far for 2D fluid membranes, and we shall only
consider the lowest-order contribution (see later calculations).
In the above, we have also assumed that force dipoles are
spatially fixed in the membrane. Since no forces are applied
to fix the dipoles, such an approximation is justified when
the dynamics of force dipoles is much slower than that of the
passive particle.

B. Drift velocity

Although we have assumed above that c0 is constant, active
proteins are often distributed inhomogeneously in the mem-
brane due to heterogeneous structures such as sphingolipid-
enriched domains [29,30]. According to the “lipid raft”
hypothesis, these domains act as platforms for membrane
signaling and trafficking [31]. Hence it is also important to
consider the effects of nonuniform spatial distribution of active
proteins and to see how it affects the lateral dynamics in
membranes.
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When a spatial concentration gradient ∇c of active protein
is present, it gives rise to an unbalanced induced force between
two points in the membrane. Hence passive particles are
subjected to a drift toward either lower or higher concentration
of active proteins, and a chemotaxis-like drift can occur.
When the absolute value of the concentration gradient |∇c| is
assumed to be constant, the induced drift velocity of a passive
particle in the direction ∇c is given by [19]

V = −S|∇c|
∫

d2r �ββ ′γ γ ′ n̂α

∂2Gαβ(r)

∂rγ ∂rδ

∂Gδβ ′ (r)

∂rγ ′
(r · n̂). (3)

Here, the unit vector n̂ = ∇c/|∇c| denotes the direction of
the concentration gradient of active proteins. We shall employ
the above expression to obtain the lateral drift velocity in a
membrane by using the membrane mobility tensor as discussed
below.

C. Membrane mobility tensors

Since we discuss active diffusion in an infinitely large
flat membrane, we use the 2D membrane mobility tensor,
which also takes into account the hydrodynamic effects of
the surrounding 3D solvent. We consider a general situation
as depicted in Fig. 1(b), where a fluid membrane of 2D shear
viscosity ηm is surrounded by a solvent of 3D shear viscosity
ηs. Furthermore, we consider the case in which there are two
walls located symmetrically at an arbitrary distance h from the
flat membrane [25–28].

We denote the in-plane velocity vector of the fluid mem-
brane by v(r) and the lateral pressure by p(r). Assuming that
the incompressibility condition holds for the fluid membrane,
we write its hydrodynamic equations as

∇ · v = 0, (4)

ηm∇2v − ∇p + fs + F = 0. (5)

The second equation is the 2D Stokes equation, where fs is the
force exerted on the membrane by the surrounding solvent,
and F is any external force acting on the membrane. If we
denote the upper and lower solvents with the superscripts ±,
the two solvent velocities v±(r,z) and pressures p±(r,z) obey
the following hydrodynamic equations, respectively:

∇̂ · v± = 0, (6)

ηs∇̂2v± − ∇̂p± = 0, (7)

where ∇̂ stands for the 3D differential operator.
We assume that the surrounding solvent cannot permeate

the membrane, and we impose the no-slip boundary condition
between the membrane and the surrounding solvent at z = 0
[4,5,25–28]. Hence we require the conditions

v±
z (r,0) = 0, vα(r) = v±

α (r,0), (8)

where α = x,y. Furthermore, the solvent velocity vanishes at
the walls located at z = ±h, i.e., v±

α (r, ± h) = 0.
By solving the above coupled hydrodynamic equations in

Fourier space with k = (kx,ky) being the 2D wave vector,
the 2D mobility tensor Gαβ(k) defined through vα(k) =

Gαβ(k)Fβ(k) can be obtained as [25–28]

Gαβ(k) = δαβ − k̂αk̂β

ηm
[
k2 + νk coth(kh)

] , (9)

where k = |k| and k̂α = kα/k, and the ratio of the two vis-
cosities ν−1 = ηm/(2ηs) defines the Saffman-Delbrück (SD)
hydrodynamic screening length [4,5]. Notice that ηm and ηs

have different dimensions, and ν−1 has a dimension of length.
To perform analytical calculations, the two limiting cases

of Eq. (9) are considered, i.e., the “free membrane” case and
the “confined membrane” case corresponding to the limits
of h → ∞ and h → 0, respectively [26–28]. For the free
membrane case, we take the limit kh � 1 in Eq. (9) and obtain
the following asymptotic expression:

GF
αβ(k) = δαβ − k̂αk̂β

ηm(k2 + νk)
. (10)

Hereafter, we shall denote the quantities for the free membrane
case with the superscript “F.” For the confined membrane case,
on the other hand, we take the opposite limit kh 	 1 and obtain

GC
αβ(k) = δαβ − k̂αk̂β

ηm(k2 + κ2)
, (11)

where κ−1 = (h/ν)1/2 is the Evans-Sackmann (ES) screening
length [7], and we use the superscript “C” for the quantities
related to the confined membrane case. We note that the ES
screening length κ−1 is the geometric mean of ν−1 and h so
that we typically have κ−1 < ν−1.

Taking the inverse Fourier transform of Eqs. (10) and (11),
we obtain the mobility tensors in real space for the two limiting
cases as [26–28]

GF
αβ(r) = 1

4ηm

[
H0(νr) − Y0(νr) + 2

πν2r2

−H1(νr)

νr
+ Y1(νr)

νr

]
δαβ

+ 1

4ηm

[
− 4

πν2r2
+ 2H1(νr)

νr

−2Y1(νr)

νr
− H0(νr) + Y0(νr)

]
r̂α r̂β (12)

and

GC
αβ(r) = 1

2πηm

[
K0(κr) + K1(κr)

κr
− 1

κ2r2

]
δαβ

+ 1

2πηm

[
−K0(κr) − 2K1(κr)

κr
+ 2

κ2r2

]
r̂α r̂β ,

(13)

respectively, where we have used the notations r = |r| and
r̂α = rα/r . In the above, Hn(z) are the Struve functions,
Yn(z) are the Bessel functions of the second kind, and Kn(z)
are the modified Bessel functions of the second kind. The
physical meaning of the above expressions was also discussed
in Refs. [32–34]. We note that if there is only one wall instead
of two, the definition of the ES length needs to be modified
as κ−1 → (2h/ν)1/2 [34]. In the next sections, we shall use
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FIG. 2. The plot of the scaled active diffusion coefficient DA as a
function of the scaled cutoff length δ = ν�c and ε = κ�c for the free
membrane case [solid line, see Eq. (14)] and the confined membrane
case [dashed line, see Eq. (19)], respectively. Here DA is scaled by
Sc0/(256πη2

m). The numbers in this plot indicate the slope of the
curves and represent the powers of the algebraic dependencies.

Eqs. (12) and (13) to calculate the active diffusion coefficients
and the drift velocity.

III. ACTIVE DIFFUSION COEFFICIENT

A. Free membranes

We first calculate the active diffusion coefficient for the free
membrane case by substituting Eq. (12) into Eq. (1). Since the
integrand in Eq. (1) diverges logarithmically at short distances,
we need to introduce a small cutoff length �c. Physically, �c is
given by the sum of the size of a passive particle (undergoing
lateral Brownian motion) and that of a force dipole [20]. In the
following, we generally assume that force dipoles are smaller
than the diffusing object, whose size is represented by �c.
This is further justified when we consider lateral diffusion of
a passive object that is larger than the SD or ES screening
lengths.

Introducing a dimensionless vector z = νr scaled by the
SD length, we can write the active diffusion coefficient for the
free membrane case as

DF
A = Sc0

32π2η2
m

∫ ∞

δ

d2z �ββ ′γ γ ′
∂gF

αβ(z)

∂zγ

∂gF
αβ ′(z)

∂zγ ′
, (14)

where δ = ν�c is the dimensionless cutoff, and gF
αβ(z) =

4πηmGF
αβ is the corresponding dimensionless mobility tensor

[see Eq. (12)]. We have first evaluated the above integral
numerically. In Fig. 2, we plot the obtained DF

A as a function
of δ = ν�c by the solid line. We see that the active diffusion
coefficient depends only weakly on the particle size at small
scales, whereas it shows a stronger size dependence described
by a power-law behavior at large scales. The crossover between
these two behaviors is set by the condition δ ≈ 1.

To understand the above behaviors, we next discuss the
asymptotic behaviors of DF

A for both small and large δ values.
Expanding the mobility tensor in Eq. (12) for νr 	 1 and
νr � 1, we have [34]

gF
αβ(z) ≈

(
ln

2

z
− γ − 1

2

)
δαβ + ẑαẑβ (15)

and

gF
αβ(z) ≈ 2

z
ẑαẑβ, (16)

respectively, where γ = 0.5722 . . . is Euler’s constant. By
substituting Eqs. (15) and (16) into Eq. (14), we can ana-
lytically obtain the asymptotic forms of the active diffusion
coefficient as a function of δ = ν�c.

As obtained in Ref. [19], we find for δ 	 1

DF
A ≈ Sc0

32πη2
m

ln
L

�c
, (17)

where a large cutoff length L is introduced because the
integral in Eq. (14) also diverges logarithmically at large
distances. To match with the numerical estimation, we obtain
L ≈ 0.682ν−1. The above logarithmic dependence on �c

means that DF
A depends only weakly on the particle size. We

also note that the above expression contains only the membrane
viscosity ηm, and does not depend on the solvent viscosity ηs.
This is because the hydrodynamics at small scales is primarily
dominated by the 2D membrane property.

In the opposite limit of δ � 1, on the other hand, we show
in Appendix A that the active diffusion coefficient becomes

DF
A ≈ 5Sc0

256πη2
s

1

�2
c

, (18)

which is an important result of this paper. This asymptotic
expression decays as 1/�2

c and depends now only on ηs,
indicating that the membrane lateral dynamics is governed
by the surrounding 3D fluid at large scales. From the obtained
asymptotic expressions in Eqs. (17) and (18), the behavior of
DF

A in Fig. 2 is explained as a crossover from a logarithmic
dependence to an algebraic dependence with a power of −2.

B. Confined membranes

Next we consider the confined membrane case. With the
use of Eq. (13), the active diffusion coefficient can be written
as

DC
A = Sc0

32π2η2
m

∫ ∞

ε

d2w �ββ ′γ γ ′
∂gC

αβ(w)

∂wγ

∂gC
αβ ′(w)

∂wγ ′
, (19)

where w = κr is a different dimensionless variable, ε = κ�c

is a differently scaled cutoff, and gC
αβ(w) = 4πηmGC

αβ is the
corresponding dimensionless mobility tensor [see Eq. (13)].
Performing the numerical integration of Eq. (19), we plot in
Fig. 2 the active diffusion coefficient DC

A as a function of
ε = κ�c by the dashed line. For small ε values, the behavior
of DC

A is similar to that of DF
A, while DC

A decays much faster
than DF

A for large ε values.
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To discuss these size dependencies, we use the asymptotic
expressions of Eq. (13) for κr 	 1 and κr � 1 given by [34]

gC
αβ(w) ≈

(
ln

2

w
− γ − 1

2

)
δαβ + ŵαŵβ (20)

and

gC
αβ(w) ≈ − 2

w2
(δαβ − 2ŵαŵβ), (21)

respectively. Note that Eq. (20) is identical to Eq. (15) when
w is replaced by z. Hence, in the limit of ε 	 1, the active
diffusion coefficient for the confined membrane case should
be identical to Eq. (17) and is given by [19]

DC
A ≈ Sc0

32πη2
m

ln
L

�c
. (22)

The large cutoff length should be taken here as L ≈ 1.12κ−1.
As mentioned before, the 2D hydrodynamic effect is more
important at small scales, and DC

A is logarithmically dependent
on the particle size.

In the large size limit of ε � 1, on the other hand, we also
show in Appendix A that DC

A behaves asymptotically as

DC
A ≈ Sc0

16πη2
s

h2

�4
c

, (23)

which is another important result. The obtained expression
decays as 1/�4

c , which is much stronger than Eq. (18) for the
free membrane case. According to Eqs. (22) and (23), the
behavior of DC

A in Fig. 2 can be understood as a crossover
from a logarithmic dependence to an algebraic dependence
with a power of −4.

IV. TOTAL DIFFUSION COEFFICIENT

Having obtained the active diffusion coefficients for the
free and the confined membrane cases, we now discuss the total
lateral diffusion coefficients in membranes by considering both
thermal and nonthermal contributions. Concerning the thermal
diffusion coefficient DF

T for the free membrane case, we use an
empirical expression obtained by Petrov and Schwille [35,36],

DF
T(δ) = kBT

4πηm

[
ln

2

δ
− γ + 4δ

π
− δ2

2
ln

2

δ

]

×
[

1 − δ3

π
ln

2

δ
+ c1δ

b1

1 + c2δb2

]−1

, (24)

where kB is the Boltzmann constant, T is the temperature,
and the four numerical constants are chosen as c1 = 0.737 61,
b1 = 2.748 19, c2 = 0.521 19, and b2 = 0.514 65 [36]. For the
free membrane case, there is no exact analytical expression of
the thermal diffusion coefficient that covers the entire size
range, except for the case in which a 2D polymer chain is
confined in a fluid membrane [26]. Equation (24) is known to
recover the correct asymptotic limits of the thermal diffusion
coefficients both for δ 	 1 [4,5] and δ � 1 [6].

On the other hand, the thermal diffusion coefficient DC
T

for the confined membrane case was explicitly calculated by
Evans et al. [7] and also by Ramachandran et al. [8–11]. In
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FIG. 3. The plot of the scaled thermal diffusion coefficient DT as
a function of the scaled cutoff length δ = ν�c and ε = κ�c for the free
membrane case [solid line, see Eq. (24)] and the confined membrane
case [dashed line, see Eq. (25)], respectively. Here DT is scaled by
kBT/(4πηm). The numbers in this plot indicate the slope of the curves
and represent the powers of the algebraic dependencies.

this case, the resulting expression is given by

DC
T (ε) = kBT

4πηm

[
ε2

4
+ εK1(ε)

K0(ε)

]−1

. (25)

In Fig. 3, we plot DF
T as a function of the particle size δ by the

solid line, and DC
T as a function of ε by the dashed line for the

whole size range. Their asymptotic behaviors are discussed
separately below.

When we consider the total diffusion coefficient D =
DT + DA, we shall neglect the contribution from thermal
fluctuations of force dipoles. These fluctuations can arise when
force dipoles contain structural internal degrees of freedom.
However, such a contribution to the diffusion coefficient is
small compared to DT because it should be proportional to the
product of kBT and the concentration of force dipoles c0.

A. Free membranes

For the free membrane case, the total diffusion coefficient
is given by DF = DF

T + DF
A, where the active nonthermal

contribution DF
A was discussed in the previous section. Using

Eqs. (24) and (17) in the limit of δ 	 1, we asymptotically
have [4,5]

DF ≈ kBT

4πηm

(
ln

2

ν�c
− γ

)
+ Sc0

32πη2
m

ln
L

�c
, (26)

where both contributions are proportional to ln(1/�c).
For δ � 1, on the other hand, we obtain from Eqs. (24) and

(18) [6]

DF ≈ kBT

16ηs

1

�c
+ 5Sc0

256πη2
s

1

�2
c

. (27)
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Since the �c-dependencies in Eq. (27) are different between
the thermal and nonthermal contributions, we can introduce a
new crossover length defined by

�∗ = 5Sc0

16πkBT ηs
. (28)

This length scale characterizes a crossover from the 1/�2
c-

dependence to the 1/�c-dependence. When �c 	 �∗ (but still
ν−1 	 �c), the nonthermal contribution dominates over the
thermal one, while in the opposite limit of �c � �∗ the thermal
contribution is of primary importance.

B. Confined membranes

In the case of confined membranes, the total diffusion
coefficient now becomes DC = DC

T + DC
A. In the limit of

ε 	 1, we have from Eqs. (25) and (22) [7,8]

DC ≈ kBT

4πηm

(
ln

2

κ�c
− γ

)
+ Sc0

32πη2
m

ln
L

�c
, (29)

where both contributions exhibit a logarithmic dependence on
�c as in the free membrane case.

In the opposite limit of ε � 1, we find from Eqs. (25) and
(23) [7,8]

DC ≈ kBT

2πηs

h

�2
c

+ Sc0

16πη2
s

h2

�4
c

. (30)

Similar to the free membrane case, we can consider another
characteristic length defined by

�∗∗ =
(

Sc0h

8kBT ηs

)1/2

. (31)

This length scale characterizes a crossover from the 1/�4
c-

dependence to the 1/�2
c-dependence. We note that �∗∗ is

essentially the geometric mean of �∗ and h. Numerical
estimates of these two characteristic length scales will be
discussed in Sec. VI.

V. DRIFT VELOCITY

A. Free membranes

In this section, we calculate the drift velocity V of a passive
particle due to a concentration gradient of active force dipoles.
For the free membrane case, we substitute Eq. (12) into Eq. (3)
and obtain

V F = − S|∇c|
16π2η2

m

∫ ∞

δ

d2z �ββ ′γ γ ′

× n̂α

∂2gF
αβ(z)

∂zγ ∂zδ

∂gF
δβ ′(z)

∂zγ ′
(z · n̂), (32)

where δ = ν�c and gF
αβ(z) = 4πηmGF

αβ as before. Performing
the numerical integration of Eq. (32), we plot in Fig. 4 the drift
velocity V F as a function of δ by the solid line. Similar to the
active diffusion coefficient DF

A, the drift velocity V F depends
weakly on the particle size at small scales, while it exhibits a
stronger size dependence at large scales. Such a crossover also
occurs around δ ≈ 1.

We next discuss the asymptotic behaviors of V F for small
and large δ values. With the use of Eqs. (15) and (16), we show

10-2 100 102

10-8

10-5

10-3

100

FIG. 4. The plot of the scaled drift velocity V as a function of the
scaled cutoff length δ = ν�c and ε = κ�c for the free membrane case
[solid line, see Eq. (32)] and the confined membrane case [dashed line,
see Eq. (35)], respectively. Here V is scaled by S|∇c|/(128πη2

m). The
numbers in this plot indicate the slope of the curves and represent the
powers of the algebraic dependencies.

in Appendix B that the asymptotic behaviors of V for δ 	 1
and δ � 1 are

V F ≈ S|∇c|
32πη2

m

ln
L

�c
(33)

and

V F ≈ 13S|∇c|
256πη2

s

1

�2
c

, (34)

respectively, where we choose L ≈ 1.85ν−1. Note that Eq. (33)
was previously derived in Ref. [19] for a 2D membrane, while
Eq. (34) is a new result. As we see in Eqs. (33) and (34), there
is a crossover from a logarithmic to an algebraic dependence
with a power of −2 when δ is increased. These behaviors
are consistent with the numerical plot in Fig. 4 for the free
membrane case.

B. Confined membranes

Finally, we calculate the drift velocity for the confined
membrane case. Substituting Eq. (13) into Eq. (3), we now
obtain

V C = − S|∇c|
16π2η2

m

∫ ∞

ε

d2w �ββ ′γ γ ′

× n̂α

∂2gC
αβ(w)

∂wγ ∂wδ

∂gC
δβ ′(w)

∂wγ ′
(w · n̂), (35)

where ε = κ�c and gC
αβ(w) = 4πηmGC

αβ as before. In Fig. 4,
we present numerically calculated V C as a function of ε by
the dashed line. As ε is increased, we see a crossover from a
logarithmic to an algebraic dependence, although V C decays
faster than V F at large scales.
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TABLE I. Summary of the asymptotic dependencies of the thermal diffusion coefficient DT, the active diffusion coefficient DA, and the
drift velocity V on the passive particle size �c. The numbers after the asymptotic expressions correspond to the equation numbers in this paper.

Cases Limits DT DA V

free membrane ν�c 	 1 ln(1/�c) (26) ln(1/�c) (17) ln(1/�c) (33)
(hk � 1) ν�c � 1 1/�c (27) 1/�2

c (18) 1/�2
c (34)

confined membrane κ�c 	 1 ln(1/�c) (29) ln(1/�c) (22) ln(1/�c) (36)
(hk 	 1) κ�c � 1 1/�2

c (30) 1/�4
c (23) 1/�4

c (37)

The asymptotic behaviors of V C for small and large ε values
can be discussed similarly. Using Eqs. (20) and (21), we obtain
in Appendix B the asymptotic expressions of V C for ε 	 1
and ε � 1 as

V C ≈ S|∇c|
32πη2

m

ln
L

�c
(36)

and

V C ≈ 3S|∇c|
16πη2

s

h2

�4
c

, (37)

respectively, and we choose L ≈ 3.05κ−1 to coincide with the
numerical integration. We note that Eqs. (33) and (36) are
identical and depend only on ηm for small sizes [19].

From Fig. 4 and Eqs. (33), (34), (36), and (37), we see
that the drift velocity V is always positive. This means
that passive particles move toward higher concentrations of
active proteins, and a chemotaxis-like drift takes place in
the presence of protein concentration gradients [19–21]. The
dominant viscosity dependence of V switches from ηm to ηs

as the particle size exceeds the corresponding hydrodynamic
screening length, namely ν−1 or κ−1.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated lateral diffusion induced
by active force dipoles embedded in a biomembrane. In
particular, we have calculated the active diffusion coefficient
and the drift velocity for the free and the confined membrane
cases by taking into account the hydrodynamic coupling
between the membrane and the surrounding bulk solvent. The
force dipole model in Refs. [19,20] and the general membrane
mobility tensors obtained in Refs. [25–28] have been employed
in our work. When the size of a passive diffusing particle
is small, the active diffusion coefficients for the free and
the confined membranes represent the same logarithmic size
dependence, as shown in Eqs. (17) and (22), respectively [19].
In the opposite large size limit, we find algebraic dependencies
with powers −2 and −4 for the two cases, as given by Eqs. (18)
and (23), respectively. These are the important outcomes of this
paper, and they are also summarized in Table I together with
other asymptotic expressions.

In our work, we have assumed that the total diffusion
coefficient is provided by the sum of thermal and nonthermal
contributions. For small particle sizes, we have shown that both
the total DF and DC exhibit a logarithmic size dependence [19],
whereas different contributions have different size dependen-
cies for large particle sizes. From this result, we have obtained

two characteristic length scales that describe the crossover
from nonthermal to thermal behaviors when the particle size
is larger than the hydrodynamic screening length. The drift
velocity in the presence of a concentration gradient of active
proteins exhibits the same size dependencies as the active
diffusion coefficient for the two membrane geometries.

Here we give some numerical estimates of the obtained
crossover length scales. Using typical values such as kBT ≈
4 × 10−21 J, ηs ≈ 10−3 Pa s, h ≈ 10−9 m, S ≈ 10−42 J2 s, and
c0 ≈ 1014 m−2 [19], we obtain �∗ ≈ 2 × 10−6 m [see Eq. (28)]
and �∗∗ ≈ 6 × 10−8 m [see Eq. (31)]. On the other hand, the SD
and the ES screening lengths are typically ν−1 ≈ 5 × 10−7 m
and κ−1 ≈ 2 × 10−8 m, respectively [4,5,7,8]. Hence �∗ and
�∗∗ are typically larger than ν−1 and κ−1, respectively.
Moreover, the values of S and c0 can vary significantly in
one membrane to another, as pointed out in Ref. [19]. For
example, when active proteins are confined in raft domains
[29–31], the 2D concentration c0 can be much larger. When, for
example, c0 ≈ 1015 m−2 (while S is the same as above) [21],
the crossover length can be estimated as �∗ ≈ 2 × 10−5 m
and �∗∗ ≈ 2 × 10−7 m. If �∗ and �∗∗ are much larger than
the screening lengths ν−1 and κ−1, respectively, as in this
case, the three different scaling regimes of the total diffusion
coefficient are expected as the particle size is increased, i.e.,
ln(1/�c) → 1/�2

c → 1/�c for the free membrane case, and
ln(1/�c) → 1/�4

c → 1/�2
c for the confined membrane case.

Momentum in a membrane is conserved over distances
smaller than the hydrodynamic screening length (either ν−1

or κ−1), whereas it leaks to the surrounding fluid beyond that
length scale [32–34]. Within a membrane, the velocity decays
as ln(1/r) at short distances, as shown in Eqs. (15) and (20),
due to the momentum conservation in two dimensions. These
2D behaviors also lead to the logarithmic dependence of the
active diffusion coefficients in Eqs. (17) and (22). For the free
membrane case, the velocity decays as 1/r at large scales
as shown in Eq. (16) due to the momentum conservation in
the 3D bulk. This behavior is reflected in the first term of
Eq. (27) for the thermal diffusion coefficient [6]. As shown in
Eq. (21), however, the velocity decays as 1/r2 at large scales
for the confined membrane case. This behavior essentially
arises from the mass conservation in two dimensions while the
total momentum is not conserved due to the presence of the
walls, which break the translational symmetry of the system
[32–34]. The corresponding contribution is the first term of
Eq. (30) for the thermal diffusion coefficient [7,8].

The active diffusion coefficient DF
A obtained in Eq. (18) for

the free membrane case essentially reflects the hydrodynamics
of the surrounding bulk 3D solvent. Hence our result can be
compared with that in Ref. [19] obtained for a purely 3D fluid
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system:

D3D
A ≈ Sc3D

0

60πη2
s

1

�c
, (38)

which decays as 1/�c and is different from Eq. (18). In fact,
such a difference arises from the different dimensions of the
dipole concentrations, i.e., c0 is the 2D concentration in our
case, while c3D

0 is the 3D concentration in Ref. [19]. A similar
comparison can also be made for the drift velocity of free mem-
branes in Eq. (34) and that in Ref. [19] for a 3D fluid system:

V 3D ≈ S|∇c3D|
30πη2

s

1

�c
. (39)

The same reason holds for the different �c-dependence.
At this stage, we also comment that both the active

diffusion coefficient DA and the drift velocity V exhibit the
same �c-dependence. Although the integrands in Eqs. (1) and
(3) look apparently different, their physical dimensions are
identical because the first derivative of the mobility tensor in
Eq. (1) corresponds to the product of the second derivative and
(r · n̂) in Eq. (3). This is the simple reason that they exhibit
the same �c-dependence. One can also easily confirm that
V is positive when we make use of the membrane mobility
tensor, because the integrand in Eq. (3) is the product of
the first and the second derivatives of the mobility tensor,
which have opposite signs. This leads to V > 0 indicating a
chemotaxis-like drift, as mentioned before.

In this work, we have assumed that active proteins generate
forces only in the lateral directions. On the other hand, actual
active motors such as bacteriorhodopsin can also exert forces to
the surrounding solvent [16–18]. Although we did not take into
account such normal forces that induce membrane undulation,
consideration of normal forces as well as lateral ones will
provide us with a general understanding of active diffusion in
biomembranes [37].

We have also assumed that the force dipoles are fixed in
a membrane and are distributed homogeneously. It would be
interesting to consider the case when active proteins can also
move laterally in the membrane and even interact with each
other through a nematic-like interaction [38]. The full equation
of motion now involves potential-of-mean-force interactions
in the multiparticle diffusion equations that describe the
combined motions of the passive particle and active proteins
in the membrane. Although the dynamics of the active
protein concentration is essentially determined by a diffusion
equation, it is a complicated problem because not only thermal
diffusion but also active nonthermal diffusion should be taken
into account. Our work is a step toward such a full description
of very rich biomembrane dynamics.
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APPENDIX A: DERIVATION OF EQS. (18) AND (23)

Since Eqs. (17) and (22) have been obtained in Ref. [19],
we show here the derivation of Eqs. (18) and (23). Substituting
Eq. (16) into Eq. (14), we get

DF
A = Sc0

8π2η2
m

∫ ∞

δ

d2z �ββ ′γ γ ′

× ∂

∂zγ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑαẑβ ′

z

)
, (A1)

where z = νr. Since

∂

∂zγ

(
ẑαẑβ

z

)
= 1

z3
(δαγ zβ + δβγ zα) − 3

z5
zαzβzγ , (A2)

the integrand in Eq. (A1) becomes

∂

∂zγ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑαẑβ ′

z

)

= 1

z4
δβγ δβ ′γ ′ + 1

z6
[δγ γ ′zβzβ ′ − 2(δβγ zβ ′zγ ′ + δβ ′γ ′zβzγ )]

+ 3

z8
zβzβ ′zγ zγ ′ . (A3)

By operating �ββ ′γ γ ′ , we have

�ββ ′γ γ ′
∂

∂zγ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑαẑβ ′

z

)
= 5

8z4
. (A4)

After the integration, we obtain Eq. (18).
Similarly, we substitute Eq. (21) into Eq. (19) and obtain

DC
A = Sc0

8π2η2
m

∫ ∞

ε

d2w �ββ ′γ γ ′

× ∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δαβ ′ − 2ŵαŵβ ′

w2

)
,

(A5)

where w = κr. Since

∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)

= − 2

w4
(δαβwγ + δβγ wα + δαγ wβ) + 8

w6
wαwβwγ ,

(A6)

we obtain

∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δαβ ′ − 2ŵαŵβ ′

w2

)

= 4

w6
δβγ δβ ′γ ′ + 4

w8
[δββ ′wγ wγ ′ + δβ ′γ wβwγ ′

+ δβγ ′wβ ′wγ + δγ γ ′wβwβ ′ − 2(δβγ wβ ′wγ ′

+ δβ ′γ ′wβwγ )]. (A7)

By operating �ββ ′γ γ ′ , we have

�ββ ′γ γ ′
∂

∂wγ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δαβ ′ − 2ŵαŵβ ′

w2

)

= 4

w6
. (A8)

After the integration, we obtain Eq. (23).
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APPENDIX B: DERIVATION OF EQS. (34) AND (37)

In this appendix, we show the derivation of Eqs. (34) and (37). Substituting Eq. (16) into Eq. (32), we obtain

V F = − S|∇c|
4π2η2

m

∫ ∞

δ

d2z �ββ ′γ γ ′ n̂α

∂2

∂zγ ∂zδ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑδ ẑβ ′

z

)
(z · n̂). (B1)

In the above, the derivatives are

∂2

∂zγ ∂zδ

(
ẑαẑβ

z

)
= 1

z3
(δαδδβγ + δαγ δβδ) − 3

z5
(δαδzβzγ + δβδzαzγ + δαγ zβzδ + δβγ zαzδ + δγ δzαzβ) + 15

z7
zαzβzγ zδ (B2)

and

∂2

∂zγ ∂zδ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑδ ẑβ ′

z

)
= − 1

z6
[2δβ ′γ ′(δαγ zβ + δβγ zα) − (δαγ ′δβγ + δαγ δβγ ′)zβ ′]

− 3

z8
[(δαγ ′zβzγ + δβγ ′zαzγ − δαγ zβzγ ′ − δβγ zαzγ ′ + δγ γ ′zαzβ)zβ ′ − 2δβ ′γ ′zαzβzγ ]

− 3

z10
zαzβzβ ′zγ zγ ′ . (B3)

By operating �ββ ′γ γ ′ , we have

�ββ ′γ γ ′
∂2

∂zγ ∂zδ

(
ẑαẑβ

z

)
∂

∂zγ ′

(
ẑδ ẑβ ′

z

)
= −13zα

8z6
. (B4)

After the integration, we obtain Eq. (34).
Next we substitute Eq. (21) into Eq. (35) and find

V C = − S|∇c|
4π2η2

m

∫ ∞

ε

d2w �ββ ′γ γ ′ n̂α

∂2

∂wγ ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δδβ ′ − 2ŵδŵβ ′

w2

)
(w · n̂). (B5)

Here the derivatives are

∂2

∂wγ ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
= − 2

w4
(δαβδγ δ + δαγ δβδ + δαδδβγ ) + 8

w6
(δαβwγ wδ + δβδwαwγ + δαδwβwγ

+ δαγ wβwδ + δβγ wαwδ + δγ δwαwβ) − 48

w8
wαwβwγ wδ (B6)

and

∂2

∂wγ ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δδβ ′ − 2ŵδŵβ ′

w2

)
= − 4

w8
[3δβ ′γ ′(δαβwγ + δαγ wβ + δβγ wα)

− (δαβδγβ ′ + δαγ δββ ′ + δαβ ′δβγ )wγ ′ − (δαβδγ γ ′ + δαγ δβγ ′ + δαγ ′δβγ )wβ ′]

+ 16

w10
[(δαβwβ ′wγ − δββ ′wαwγ − δαβ ′wβwγ

+ δαγ wβwβ ′ + δβγ wαwβ ′ − δβ ′γ wαwβ)wγ ′

− (δβγ ′wαwγ + δαγ ′wβwγ + δγ γ ′wαwβ)wβ ′ + 3δβ ′γ ′wαwβwγ ]. (B7)

By operating �ββ ′γ γ ′ , we find

�ββ ′γ γ ′
∂2

∂wγ ∂wδ

(
δαβ − 2ŵαŵβ

w2

)
∂

∂wγ ′

(
δδβ ′ − 2ŵδŵβ ′

w2

)
= −12wα

w8
. (B8)

After the integration, we obtain Eq. (37).
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