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Random walks on activity-driven networks with attractiveness
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Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in
social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously
distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties
are characterized by these two features. We study how these properties affect random-walk processes unfolding
on the network when the time scales describing the process and the network evolution are comparable. We derive
analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases
informed by empirical observations of social networks. Our work shows that previously disregarded properties of
real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations
between them, substantially affect the dynamical process unfolding on the network.
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I. INTRODUCTION

Small-world phenomena along with heterogeneity in the
number and frequency of contacts are among the most well-
known properties of social networks [1–3]. They are often
referred to as late or time-integrated properties [4,5] because
they emerge integrating interactions over long time scales.
Traditionally, the modeling efforts put forward to characterize
social systems and dynamical processes unfolding on their
fabrics focused mainly on these features [1,6], neglecting the
dynamics acting at much shorter time scales. This was due to
the challenges of introducing the temporal dimension in any
mathematical construct and to the lack of real time-resolved
datasets. While the former obstacle remains largely unsolved,
significant progress has been made to tackle the latter [4,5,7].
Indeed, the digital revolution has enabled scientists to access a
wealth of offline and online data describing social interactions
in time. Access to the temporal dimension allows us to
observe the properties of social behavior that are invisible
in time-integrated datasets, and it can help to characterize
microscopic mechanisms driving the dynamics of social acts
at all time scales [8–18]. As a result, an intense research effort
has been recently devoted to modeling the temporal dynamics
characterizing the emergence and evolution of networks.
Furthermore, much attention has been directed to understand
the effects of these dynamics on processes unfolding on the
network, such as the spreading of infectious diseases, idea,
rumors, or memes [3,8,19–42].

Observations in a range of real social networks show
that the propensity of individuals to engage in social acts
is highly heterogenous [8–10,18,21]. Also, it was found that
the establishment of connections is highly correlated in time
[9–11,43–45]. Several studies have focused on understanding
the effects of local memory in the creation of links. It was
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shown that different types of local reinforcement mechanisms
are able to mimic characteristic aspects of social networks such
as the emergence of strong and weak ties [9–11,46–48].

However, in certain circumstances local mechanisms alone
cannot explain the creation of social ties. For example,
in online social networks such as Twitter, individuals can
interact with popular figures and access topical pieces of
information. Arguably, the creation of these connections does
not follow the same local rules driving the emergence of
close social ties. Instead, at least to some extent, they may
be driven by global effects such as interest in celebrities or
the information provided by popular accounts. Despite the
widespread diffusion of these platforms, the modeling of
global mechanisms for link creation and the understanding
of its effects on diffusion processes unfolding on the network
remain largely unexplored. This is especially true when short-
time scales and thus time-varying dynamics are considered.

In this paper, we propose a temporal model of interactions
driven by global popularity. In particular, we extend the
activity-driven framework [8] in which nodes are assigned
an activity defining their propensity to establish contacts per
unit time. In its first formulation, active nodes connect to
others through a memoryless and random selection process [8].
More realistic mechanisms based on local reinforcement of ties
were then proposed [9,10,46]. Here, we present a variation in
which nodes are characterized by an attractiveness [49–52],
or a popularity index, that may or may not be correlated
with activity and drive the contact selection process. In
particular, we consider a classic linear preferential attachment
[53]. We then study a random-walk process unfolding at
the same time scale in which the connections are created.
For the sake of simplicity, we consider the fundamental
random-walk process, which has recently been investigated on
different kinds of temporal networks [20,21,28,30,40,54,55].
We find analytical solutions for the stationary state of the
process as well as its mean first-passage time (MFPT) that
match the results produced by numerical simulations. The
solutions are general and allow us to characterize analytically
the interplay between activity and attractiveness considering
also their correlations. We ground our results with empirical
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observations by measuring such correlations on different real
datasets, and we discuss their repercussions on the random
walks.

The paper is organized as follows. In Sec. II, we introduce
the network model. In Sec. III, we study the interplay between
activity and attractiveness in real networks. In Sec. IV, we
study the stationary state of the random walks diffusing on the
model. In Sec. IV A, we study the MFPT. Finally, in Sec. V
we discuss our conclusions.

II. TIME-VARYING NETWORK MODEL

In the activity-driven network framework [8], the N nodes
of the network are assigned an activity rate a describing
their propensity to engage in social acts [8–10,18,21]. Here,
we consider nodes characterized also by another quantity,
namely their attractiveness b, describing their popularity in
the system [49,50,56]. In general, these two quantities are
correlated and extracted from a joint distribution H (a,b). At
each time step, a node i is activated with probability ai�t

and connects to m others. The generic node j is selected
with probability bj/〈b〉N . Each link has a duration of �t . In
Fig. 1, we show the statistical features of the emerging network
considering N = 105, m = 6 for an uncorrelated system in
which H (a,b) = F (a)G(b) ∼ a−2b−2.5, integrating over time
τ . Here, τ is expressed in units of the average time between
consecutive activations a−1

0 , where a0 = ∑
i ai = 〈a〉N [57].

As is clear from the figure, the heterogeneity in activity
and attractiveness induces heavy-tailed degree, strength, and
weight distributions. This is analogous to what is observed in
the case of nodes with heterogeneous activity.

III. CORRELATION BETWEEN ACTIVITY
AND ATTRACTIVENESS IN REAL NETWORKS

The activity measures the propensity of nodes to initiate a
social interaction, while attractiveness quantifies the probabil-
ity of being selected to participate in such interactions, i.e.,
popularity. These two quantities and their correlation can be
studied in real networks, provided that interactions are directed
and allow us to distinguish between the activation and selection
process. Here, we consider two datasets. The first describes
wall-post interactions between 45 813 Facebook users over
a time span of 1591 days [58,59]. The second describes
email replies among 26 885 users involved in the Linux
kernel development over 2921 days [60]. For the sake of this
model, we consider the out-strength and in-strength of nodes
as proxies for their activity and attractiveness, respectively.
Hence, the activity and attractiveness of node i are computed as
ai = si,out/

∑
j sj,out and bi = si,in/

∑
j (sj,in), where si,in and

si,out are the node in-strength and out-strength integrated across
the entire time span, respectively. Activity and attractiveness
are computed aggregating across the whole period of data
collection. In fact, observations in a range of real datasets
such as coauthorship networks [8,10], online social networks
[8,21], mobile phone networks [9], and networks created by
R&D alliances between firms [18] show that the form of the
activity distribution is independent of the aggregation window.
In Fig. 2 we show the distributions of activity and attractiveness
in the two datasets. Not surprisingly, in the two datasets both

FIG. 1. Statistical properties of the time-aggregated network.
Probability density function of nodes of given in- and out-degree (a)
and strength (b) for different values of time-window τ . Probability
density function of links of given weight for different values of
the time-window τ (c). Results are shown for N = 105, m = 6,
F (a) ∼ a−2, G(b) ∼ b−2.5. For τ = 104 the average in-degree is
〈kin〉 = 0.6, for τ = 105 it is 〈kin〉 = 5.7, and for τ = 106 it is
〈kin〉 = 57.9. Note that the average out-degree equals the average
in-degree.

activity and attractiveness follow heavy-tailed distributions
spanning several orders of magnitude [61]. In Fig. 3 we plot
the correlation between activity and attractiveness considering
each node in the two datasets. A positive correlation is clear,
and in both cases the median follows a power law with an
exponent very close to 1, i.e., a ∼ bβ , β ∼ 1.

IV. RANDOM WALK

We consider a Markovian and homogeneous random
walk [62] unfolding on networks generated with the model
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FIG. 2. Distribution of activity and attractiveness in real datasets.
Probability density function of activity (a) and attractiveness (b) for
the Linux dataset (a) and the Facebook dataset (b). In the Linux
network there are N = 2.7 × 104 nodes, E = 1.0 × 106 edges, and
the period of measurement lasts T = 2921 days. For the Facebook
network, there are N = 4.6 × 104 nodes, E = 8.6 × 105 edges, and
T = 1591 days

described above. We focus on the case in which the walker
moves at the same time scale describing the evolution of
links, moving from node to node when a link is present. The
properties of the diffusion process are thus highly affected by
the dynamics driving the evolution of the connections.

Let us define Pi(t) as the probability that the walker is in
node i at time t . This quantity follows the following master
equation:

P (i,t + �t) = P (i,t)

⎡
⎣1 −

∑
j �=i

��t
i→j

⎤
⎦ +

∑
j �=i

P (j,t)��t
j→i ,

(1)

where ��t
i→j is the propagator of the random walk that

describes the probability that the walker moves from i to j

in a time interval �t . A link between i and j can be created as

FIG. 3. Correlation between activity and attractiveness in real
datasets. Heat map showing the correlation between activity and
attractiveness in two real datasets describing interactions between
people involved in the development of Linux (a) and on Facebook
(b). The continuous line describes the median correlation and the
dashed line denotes a power-law fit with exponent β.

a consequence of the activation of i or j . The probability that
i is active and selects j is

p(i → j ) = mai�tbj

N〈b〉 . (2)

In this case, the instantaneous degree of i is

ki = m + m〈a〉�tbi

N〈b〉 . (3)

Indeed, i will generate m links and will potentially receive
links from other active nodes. The probability that j is active
and selects i is instead

p(j → i) = maj�tbi

N〈b〉 . (4)

The instantaneous degree of i will be

ki = 1 + m〈a〉�tbi

N〈b〉 . (5)

In the limit �t → 0, the events described by Eqs. (2) and (4)
do not happen simultaneously. Putting it all together, it is easy
to show that, for �t → 0,

��t
i→j = mai�tbj

N〈b〉
1

m + m〈a〉�tbi

N〈b〉
+ maj�tbi

N〈b〉
1

1 + m〈a〉�tbi

N〈b〉

� �t

N〈b〉 (aibj + majbi). (6)

In the limit �t → 0 we can write the equation describing
the evolution of Pi(t) by substituting the expression of the
propagator in Eq. (1):

Ṗ (i,t) = −P (i,t)

N〈b〉
∑
j �=i

(aibj + majbi)

+
∑
j �=i

P (j,t)

N〈b〉 (ajbi + maibj )

= −P (i,t)

〈b〉 [ai〈b〉 + mbi〈a〉] + bi

N〈b〉
∑

j

P (j,t)aj

+ mai

N〈b〉
∑

j

P (j,t)bj . (7)

We obtain a system-level description of the process by
grouping nodes in the same activity class a and attractiveness
b, assuming that they are statistically equivalent [63]. Then,
we define the walkers in a given node of class a and b at
time t as Wab(t) = [NH (a,b)]−1W

∑
i∈a&∈b Pi(t), where W

is the total number of walkers in the system. By considering
the continuous a and b limit, Eq. (7) can be rewritten as

Ẇab(t) = −Wab(t)

〈b〉 [a〈b〉 + mb〈a〉]

+ b

〈b〉
∫∫

a′Wa′b′ (t)H (a′,b′)da′db′

+ ma

〈b〉
∫∫

b′Wa′b′ (t)H (a′,b′)da′db′ (8)

= −Wab(t)

〈b〉 [a〈b〉 + mb〈a〉] + b

〈b〉φ1 + ma

〈b〉φ2, (9)
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where φ1 = ∫∫
a′Wa′b′ (t)H (a′,b′)da′db′ and φ2 = ∫∫

b′Wa′b′

(t)H (a′,b′)da′db′. In the stationary state, the changes of
Wab(t) are zero, thus we have

Wab(t) = bφ1 + maφ2

a〈b〉 + mb〈a〉 . (10)

The stationary state features a and b in both numerator and
denominator. Hence, the dynamical properties of the random
walk are a function of the interplay between the two quantities.
It is important to notice that at the stationary state, φ1 and φ2

are constant. Their value can be computed self-consistently by
solving this system of integral equations:

W = N

∫∫
H (a,b)

bφ1 + maφ2

a〈b〉 + mb〈a〉da db,

φ2 =
∫∫

bH (a,b)
bφ1 + maφ2

a〈b〉 + mb〈a〉da db, (11)

where the first equation follows from the conservation of
walkers in the system.

We test the analytical solutions against numerical simula-
tions that are run following the Gillespie algorithm [57]. As a
first step, let us consider the uncorrelated case in which both a

and b are extracted from a power-law distribution: H (a,b) =
F (a)G(b), where F (a) = Aa−γ1 and G(b) = Cb−γ2 . In both
cases, values are extracted in the range x ∈ [10−3,1]. In Fig. 4,
we plot the comparison between the average number of walkers
per nodes of class a and b separately. In Fig. 5, we plot instead
Wa,b(t) as a heat map. In both cases, the agreement between
simulations and analytical predictions is clear.

Taken together, the two figures present a rich picture. First,
they show that the larger the activity, the larger the capability
of gathering walkers. The trend holds up to a saturation point
after which an increase in activity does not translate to an
increase of walkers, similarly to what is observed in Ref. [20]
for the case of constant attractiveness, i.e., the random tie
selection process (see also Fig. 4, bottom panel, black filled
line). Second, an opposite trend is revealed for increasing
values of b as, before saturation, the larger the attractiveness
the smaller the number of walkers in the stationary state. While
this finding could seem counterintuitive, it can be understood
considering the structure of the instantaneous network where
walkers move. In the limit �t → 0, the degree of an active
node i is ki ∼ m, while the degree of a node j connected by i

is kj ∼ 1 as nonactive nodes do not “have time to” accumulate
multiple connections. Thus, even extremely attractive nodes,
which are involved in many connections across time, appear
instantaneously as nodes with degree 1. Consequently, a node
selected by i receives on average a fraction 1/m of the walkers
of i, but it sends all its walkers to i. This fact explains the
decreasing trend of W (b) and shows at a fundamental level the
effects of temporal interactions on diffusion processes taking
place on the same time scale. As a consequence, in the case of
a random-tie selection process, nodes with large activity are
able to collect more walkers than in the case of heterogeneous
b, due to the tendency to select nodes holding fewer walkers
than average in the latter case.

FIG. 4. Stationary state of the random-walk process. The average
number of walkers per node of class a (a) and b (b) computed
analytically (continuous lines) and through numerical simulations
(dots, squares, and triangles) for different values of exponent of
the attractiveness distribution γ2. Error bars are standard deviations
obtained by averaging across 103 different network configurations.
In the above panel, they are not visible on the scale of the graph. We
considered N = 105, m = 6, W/N = 200, and γ1 = 2. The black
line shows the case in which bi = 1/N for all nodes.

FIG. 5. Stationary state of the random-walk process for nodes of
class (a,b). Heat map giving the average number of walkers Wab per
node of class (a,b) computed through numerical simulations (a) and
analytically (b). Colors are attributed based on Wab as shown in the
colorbar on the bottom of the figure. We considered N = 105, m = 6,
W/N = 200, γ1 = 2, and γ2 = 2.
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FIG. 6. Stationary state of the random walk in the aggregated
case. The average number of walkers per node of class a (a) and b

(b) computed analytically for τ = 0 (continuous line) and through
numerical simulations for several values of τ (dots, squares, and
triangles). Dashed lines are shown as a guide for the eye. Error bars
obtained by averaging across 103 different network configurations are
not visible on the scale of the graph. We considered N = 105, m = 6,
W/N = 200, γ1 = 2, and γ2 = 2.5.

To further understand these effects, we study the case
of random walks unfolding on static networks obtained by
integrating activity-driven networks with attractiveness over
time windows of size τ . In doing so, we let nodes activate and
connect to other nodes for a time τ . Then, we let the random
walk unfold on the union of such networks. Note that, in this
case, interactions are not instantaneous. In Fig. 6, we show
the stationary state of the process as a function of the nodes’
activity and attractiveness for different value of τ . In contrast to
what is observed when the diffusion process and the topology
evolve at the same time scale, here the walkers concentrate
also on highly attractive nodes. This result is expected. The
stationary state of random walks unfolding on any static
network is linearly proportional to the degree [1,62]. In our
case, nodes with large attractiveness are likely to be hubs,
characterized by large degree values. These effects are more
evident for increasing values of the time-aggregation window.
Indeed, the larger τ is, the larger is the degree of highly
attractive nodes. For similar reasons, the same qualitative
behavior is observed also for nodes with high activity.

Considering the observations in real datasets, we turn our
attention now to scenarios in which activity and attractiveness

FIG. 7. Stationary state of the random walk in the correlated
case. The average number of walkers per node of class a (a) and b

(b) computed analytically (continuous lines) and through numerical
simulations (dots, squares, triangles, and crosses) for different values
of the correlation exponent β. Error bars obtained by averaging across
103 different network configurations are not visible on the scale of the
graph. We considered N = 105, m = 6, W/N = 200, and γ1 = 2.

are correlated. In particular, we consider for each node a
deterministic correlation of the form b ∼ aβ , or more generally
b = J (a), where J is a generic function. The joint probability
can then be written as H (a,b) = F (a)δ(b − J (a)), where δ(x)
is the Dirac delta. In Fig. 7, we show the stationary state of the
random walks for several values of β.

For β < 1, trends are not far from the uncorrelated case.
For larger activity, nodes have a higher capability of gathering
a walker, and W (a) saturates for large values of a, while the
opposite trend holds for W (b). Indeed, the negative correlation
reinforces what is observed in the uncorrelated case since
nodes with low activity have also high attractiveness. Hence,
we observe that the larger β is, the smaller is the number of
walkers collected by nodes with low activity and the faster
W (a) saturates.

Instead, for β > 1, the larger the activity, the lower the
capability of gathering walkers. In this case, the set of
nodes more frequently engaged in active interaction also has
attractiveness much larger than the average node. These nodes
tend not to hold walkers but to exchange them continuously.
Instead, walkers are likely to be trapped in nodes that are
unlikely to engage in interaction.
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FIG. 8. Mean first-passage time. The average MFPT as function
of a (a) and b (b) computed analytically (continuous lines) and
through numerical simulations (dots, squares, and triangles) for
different values of the exponent of the attractiveness distribution γ2.
Error bars are standard deviations obtained by averaging across 103

simulations. We considered N = 103, m = 6, and γ1 = 2.

For β = 1, since the rate at which the node is activated and
the probability to be selected are exactly the same, W (a) and
W (b) are constant.

A. Mean first-passage time

We now consider the mean first-passage time (MFPT),
defined as the average number of time steps needed for a
walker to visit a node i starting from any other node in the
system [62,64,65].

Let us consider p(i,n) as the probability that the walker
reaches i (the target) for the first time at time t = n�t .
Considering that each node could be connected directly to
any other, we have

p(i,n) = ξi(1 − ξi)
n−1, (12)

where ξi is the probability that the walker jumps in node i in
a time interval �t , that is,

ξi =
∑

j

W (aj ,bj )

W
��t

j→i . (13)

Indeed, the propagator by definition encodes the probability
that walkers moves from j to i, and W (aj ,bj )/W describes
the probability that the walker is in j at time t (in the stationary

FIG. 9. Mean first-passage time for nodes of class (a,b). Heat map
for the average values of MFPT per node of class (a,b) computed
through numerical simulations (a) and analytically (b). Colors are
attributed based on the value of MFPT as shown in the colorbar on
the bottom of the figure. We considered N = 103, m = 6, γ1 = 2,
and γ2 = 2.

state). Thus, we can estimate the MFPT as

MFPTi =
∞∑

n=0

n�tp(i,n) = �t

ξi

= N〈b〉w
bi

∑
j W (ajbj )aj + mai

∑
j W (ajbj )bj

= 〈b〉w
biφ1 + maiφ2

. (14)

It is interesting to notice how in static and annealed networks
(where the time scale of the random walk is either much faster
or slower with respect to changes in the topology where it is
unfolding), ξi is equivalent to the stationary state of the random
walk, i.e., ξi = Wi/W . In time-varying networks this is not the
case as the walker can be trapped in an inactive or unpopular
node for several time steps [20]. Consequently, the expression
of ξ considers explicitly the dynamical connectivity patterns
to account for such delays.

In Fig. 8 we test the validity of the analytical expression for
the MFPT. We fixed γ1 and considered different values of γ2

assuming uncorrelated activities and attractiveness. In Fig. 9
we show the comparison between the average values of MFPT
for nodes of class a and b. In both cases we find very good
agreement between theory and simulations. It is interesting to
observe that the effect of heterogeneous attractiveness is to
introduce delays in the transport dynamics since the MFPT is
larger for all nodes with respect to the random-tie selection
process case (Fig. 8, bottom panel, black line).

V. CONCLUSIONS

We presented a model of time-varying networks in
which nodes are characterized by activity and attractiveness,
regulating their propensity to initiate an interaction and
their popularity, respectively. In particular, we extended the
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framework of activity-driven networks by introducing a tie
selection mechanism based on a global linear preferential at-
tachment. We grounded our model with empirical observations
by measuring activity and attractiveness from the out-strength
and in-strength of nodes in two real time-varying networks
describing interactions between (i) users on Facebook and
(ii) people involved in the development of a software. Inter-
estingly, we observed that both activity and attractiveness are
heterogeneously distributed and correlated. In the two datasets,
the correlation is positive.

We then studied the interplay between activity and at-
tractiveness and its effects on the prototypical random-walk
process. We derived analytical expressions for the stationary
state and for the MFPT of the process unfolding on the time-
varying network model. We thoroughly tested the analytical
predictions via large-scale numerical simulations, obtaining
very good agreement between the two. Overall, the results
shed light on how the presence of temporal connectivity
patterns significantly alters the standard picture obtained
in static and annealed networks. The presence of a global
tie selection process and the possible correlation between
activity and attractiveness introduce nontrivial effects. The
stationary state and MFPT are significantly different from
those obtained in activity-driven networks characterized by

a random tie selection mechanism. In the uncorrelated case,
the effect of heterogeneous attractiveness is to limit the
capability of very active nodes to gather walkers. In the case
of positive correlations between activity and attractiveness,
observed in real scenarios, the stationary state of the process
is substantially altered: The average number of walkers per
node decreases as a function of the node activity if activity and
attractiveness are different, while it is constant if they are the
same. Heterogeneous attractiveness furthermore slows down
the transport dynamics, as we observe that in this case the
MFPT is larger for all nodes.

The presented model can be further enriched in several
ways. In particular, the activation dynamics it describes is
Poissonian rather than bursty as typically observed in real
systems [39,44–46,66–70]. The tie selection process is driven
only by global popularity and neglects local tie reinforcement
mechanisms responsible for high-order organization of real
networks. The framework of activity-driven networks has
been extended in several instances to include such features
[9,10,46]. However, the study of node popularity and its effect
on network dynamical properties was missing. Overall, the
results presented in this article contribute to the development
of a comprehensive picture of how the dynamics of networks
affect the dynamics unfolding upon networks.
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